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Abstract

Our aim in this paper is to establish explicit formulas for the top
Lyapunov exponents of planar linear stochastic differential equations.
We use these formulas to examine the sample-path stability of a lin-
ear stochastic differential equations arising in fluid dynamics and of a
model of stochastic Hopf bifurcation.
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1 Introduction

The characteristic Lyapunov exponent of a non-zero solution of a linear
stochastic differential equation measures the asymptotic exponential growth
rate of the norm of this solution. Thank to the Multiplicative Ergodic The-
orem (see, [Ose68, Ar98]), the set of all possible Lyapunov exponents, called
Lyapunov spectrum, of a linear stochastic differential equation consists of
finite non-random real numbers.

It is well known that the Lyapunov spectrum indicates not only the stability
of the corresponding linear stochastic differential equations but also some
other important dynamical properties of the nonlinear perturbed stochastic
systems such as the transience/recurrence, see [Bax90], the normal form the-
ory, see [AI98] and the bifurcation theory, see [Ar98, Chapter 8]. Therefore,
computing the Lyapunov exponents of linear stochastic differential equa-
tions is an extremely important task in the qualitative theory of stochastic
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differential equations. In this paper, our aim is to establish an explicit for-
mula for the top Lyapunov exponent of planar linear stochastic differential
equations of the form(

dxt

dyt

)
= A

(
xt

yt

)
dt+B

(
xt

yt

)
◦ dWt, (1)

where A,B ∈ R2×2. For this purpose, we consider two separated cases: the
coefficients A and B of (1) do not (case (i)) or do (case (ii)) satisfy the
Hörmander hypoellipticity condition.

Concerning the case (i), we are able to write explicitly the solutions of (1)
and to use the Strong Law of Large Numbers for Martingales to compute
explicitly the top Lyapunov exponent of (1). Meanwhile, for the case (ii),
we first use the Furstenberg-Khasminskii formula to represent the top Lya-
punov exponent as an integral of a function involving coefficients A and B
over the stationary distribution of the induced flow of (1) on the unit cir-
cle. Finally, we compute explicitly the stationary distribution by solving the
Fokker-Planck equation associated with the induced flow on the unit circle.
To do this, depending on the Jordan normal form of the diffusion coefficient
B, we can partition the unit circle on some open intervals such that on each
open interval the associated Fokker-Planck equation is a solvable ordinary
differential equation (Note that in general Fokker-Planck equations are im-
plicit ordinary differential equations). Note that this procedure is also used
in [IL99, IL01] to establish explicit formulas for the top Lyapunov exponent
and the rotation number of (1) in the case that the Jordan normal form of

B is

(
α 0

1 α

)
, where α ∈ R.

The paper is organized as follows: In Section 2, we recall some fundamental
aspects of Lyapunov exponents of linear stochastic differential equations.
Section 3 is devoted to present our main results in this paper about ex-
plicit formulas for the top Lyapunov exponents of planar linear stochastic
differential equations. These formulas are later used to detect the area of
parameters for which a linear stochastic differential equation arising from
fluid dynamics is sample-path asymptotically stable (Subsection 4.1) and
the bifurcation value of a model of stochastic Hopf bifurcation (Subsection
4.2).

To conclude this introductory section, we introduce notations which are
used throughout this paper. For a matrix M , let σ(M) denote the set of all
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complex eigenvalues of M and let

ρ(M) := {max Reλ : λ ∈ σ(M)} .

Let 〈·〉 denote the standard Euclidean inner product in R2 and S1 denote
the unit circle in R2, i.e. S1 := {x ∈ R2 : ‖x‖ = 1}. Let R≥0 be the set of
non-negative real numbers.

2 Preliminaries

Consider a planar linear stochastic differential equation of the form(
dxt

dyt

)
= A

(
xt

yt

)
dt+B

(
xt

yt

)
◦ dWt, (2)

where

(
xt

yt

)
∈ R2 and A,B ∈ R2×2. Let ΦA,B(t, ξ) denote the solution

of (2) with (x0, y0)T = ξ ∈ R2 \ {0}. Then, the top sample path Lyapunov
exponent λA,B of (2) is defined by

λA,B = lim
t→∞

1

t
log ‖ΦA,B(t, ·)‖ a.s.,

see e.g. [Ar98]. To gain a formula to compute λA,B, we rewrite equation (2)

in its polar coordinates by defining rt :=
√
x2
t + y2

t and st :=

(
xt
rt
,
yt
rt

)T

.

Using Ito’s formula, see e.g. [KP92], we obtain

drt = fA(st)rt dt+ fB(st)rt ◦ dWt, dst = gA(st) dt+ gB(st) ◦ dWt,

where for a matrix M =

(
m11 m12

m21 m22

)
∈ R2×2, we define

fM (s) := 〈s,Ms〉 and gM (s) := Ms− fM (s)s for s ∈ S1.

By identifying ϕt and −ϕt, the angular motion is in fact a motion on

one-dimensional projective space. Writing st =

(
cosϕt

sinϕt

)
, where ϕt ∈[

−π
2
,
π

2

)
, leads to

drt = fA(ϕt)rt dt+ fB(ϕt)rt ◦ dWt, dϕt = gA(ϕt) dt+ gB(ϕt) ◦ dWt, (3)
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where for a matrix M =

(
m11 m12

m21 m22

)
∈ R2×2

fM (ϕ) := m11 cos2 ϕ+m22 sin2 ϕ+ (m12 +m21) cosϕ sinϕ,

gM (ϕ) := (m22 −m11) cosϕ sinϕ+m21 cos2 ϕ−m12 sin2 ϕ.

Now we recall the well-known Furstenberg-Khasminskii formula for the top
Lyapunov exponent of (2).

Theorem 1 (Furstenberg-Khasminskii formula). Suppose that the following
non-degeneracy condition holds:

(H) There is no s ∈ S1 such that

As = 〈As, s〉s and Bs = 〈Bs, s〉s.

Then, the top Lyapunov exponent λA,B of (2) is given by

λA,B =

∫ π
2

−π
2

(
fA(ϕ) +

1

2
f ′B(ϕ)gB(ϕ)

)
p(ϕ) dϕ,

where p : [−π
2 ,

π
2 ] → R≥0 is a smooth density function satisfying that

p(−π
2

) = p(
π

2
),
∫ π

2

−π
2
p(ϕ) dϕ = 1 and the following differential equation

1

2
gB(ϕ)2p′(ϕ) =

(
gA(ϕ)− 1

2
g′B(ϕ)gB(ϕ)

)
p(ϕ) + C, (4)

where C is a constant.

Proof. See e.g. [IL01, page 34-37].

3 Explicit formulas for top Lyapunov exponents

Our aim in this section is to establish explicit formulas for the top Lyapunov
exponents of planar linear stochastic differential equations. For this purpose,
we divide this section into two subsections. In Subsection 3.1, we consider
degenerated linear stochastic differential equations, i.e. equations in which
the drift and the diffusion coefficients do not fulfill condition (H) of Theorem
1. For systems satisfying condition (H), we give explicit formulas for their
top Lyapunov exponents in Subsection 3.2.

4



3.1 Degenerated linear stochastic differential equations

Suppose that A,B ∈ R2×2 do not satisfy condition (H). Therefore, there
exists s ∈ S1 such that

As = 〈As, s〉s and Bs = 〈Bs, s〉s,

which implies that s ∈ S1 is a common real eigenvector of A and B. Thus,
for the orthogonal matrix T ∈ R2×2 defined by Te1 = s and Te2 := s⊥,
we have T−1AT and T−1BT are lower triangular matrices. Hence, any
degenerated linear stochastic differential equation can be transformed to a
lower triangular linear stochastic differential equation and our aim in this
subsection is to give an explicit formula for Lyapunov exponent of this class
of linear stochastic differential equations. Before going to the main result in
this subsection, we need the following preparatory lemma.

Lemma 2. Let α, β ∈ R be arbitrary and (Wt)t∈R be a Brownian motion
defined in a probability space (Ω,F ,P). Then, the following statements hold
almost surely:

(i) lim supt→∞
1
t log

∣∣∣∫ t0 exp(αs)Ws(ω) ds
∣∣∣ ≤ α.

(ii) limt→∞
1
t log

∫ t
0 exp(αs+ βWs(ω)) ds = α.

Proof. Let ε be an arbitrary positive number. Using Strong Law of Large
Numbers for Martingales, there exists a measurable set Ω̂ with P(Ω̂) = 1

and limt→∞
Wt(ω)
t = 0 for all ω ∈ Ω̂, see e.g. [BGV10, Appendix A]. Choose

and fix an arbitrary ω ∈ Ω̂. Thus, for ω ∈ Ω̂ there exists T (ε, ω) > 0 such
that

−εs ≤Ws(ω) ≤ εs for all s ≥ T (ε, ω).

Hence, for all t ≥ T (ε, ω) we have∫ t

T (ε,ω)
exp(αs)Ws(ω) ds ≤ ε

∫ t

0
exp(αs)s ds,

which implies that

lim sup
t→∞

1

t
log

∣∣∣∣∣
∫ t

T (ε,ω)
exp(αs)Ws(ω) ds

∣∣∣∣∣ ≤ lim sup
t→∞

1

t
log

(
ε

∫ t

0
exp(αs)s ds

)
≤ α .
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Hence, (i) is proved. For all t ≥ T (ε, ω) we also have

∫ t

T (ε,ω)
exp (α− |β|ε)s ds ≤

∫ t

T (ε,ω)
exp(αs+ βWs(ω)) ds

≤
∫ t

T (ε,ω)
exp (α+ |β|ε)s ds,

which implies that

α− |β|ε ≤ lim inf
t→∞

1

t
log

∫ t

0
exp(αs+ βWs(ω)) ds

and

α+ |β|ε ≥ lim sup
t→∞

1

t
log

∫ t

0
exp(αs+ βWs(ω)) ds.

Letting ε→ 0 yields (ii) and the proof is complete.

Theorem 3 (Explicit formula for the top Lyapunov exponents of degen-
erated linear stochastic differential equations). Consider system (2) where
A,B are of the following form

A =

(
a11 0
a21 a22

)
and B =

(
b11 0
b21 b22

)
.

Then,
λA,B = ρ(A) = max

{
a11, a22

}
.

Proof. The stochastic differential equation for the first component xt is

dxt = a11xt dt+ b11xt ◦ dWt,

which implies that
xt = exp (a11t+ b11Wt)x0.

The equation for the second component yt is

dyt =

(
a22 +

b222

2

)
yt dt+

(
a21 + b21

b11 + b22

2

)
xt dt+ (b21xt + b22yt) dWt.
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Using the variation of constants formula, see e.g. [KP92, pp. 120], we obtain
that

yt = exp (a22t+ b22Wt)
(
y0 +

(
a21 + b21

b11 − b22

2

)
x0

∫ t

0
exp (αs+ βWs) ds

+b21x0

∫ t

0
exp(αs+ βWs) dWs

)
,

where α := a11−a22 and β := b11−b22. Since limt→∞
Wt
t = 0 it follows that

lim
t→∞

1

t
log |xt| = a11 for x0 6= 0

and

lim
t→∞

1

t
log |yt| = a22 for x0 = 0, y0 6= 0.

Consequently, λA,B ≥ ρ(A). To conclude the proof, it is sufficient to show
that λA,B ≤ ρ(A). Equivalently, we prove that limt→∞

1
t log |yt| ≤ ρ(A). To

do this, we consider the following separated cases:

Case 1: If β = 0, then by using Ito’s formula, we obtain that∫ t

0
exp(αs) dWs = exp(αt)Wt − α

∫ t

0
exp(αs)Ws ds.

Therefore,

yt = exp (a22t+ b22Wt)
(
y0 +

(
a21 + b21

b11 − b22

2

)
x0

∫ t

0
exp (αs) ds

)
−

αb21x0 exp (a22t+ b22Wt)

∫ t

0
exp(αs)Ws ds+

b21x0 exp (a11t+ b11Wt)Wt,

which together with Lemma 2(i) implies that lim supt→∞
1
t log |yt| ≤ ρ(A).

Case 2: If β 6= 0, then by using Ito’s formula, we obtain that∫ t

0
exp(αs+ βWs) dWs =

1

β

(
exp(αt+ βWt)− 1

)
−
(
α

β
+
β

2

)∫ t

0
exp(αs+ βWs) ds.
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Thus,

yt =
(
y0 −

b21

β
x0

)
exp (a22t+ b22Wt) +

b21

β
x0 exp(a11t+ b11Wt)

+
(
a21 − b21

α

β

)
x0 exp (a22t+ b22Wt)

∫ t

0
exp (αs+ βWs) ds.

By virtue of Lemma 2(ii), limt→∞
1
t log |yt| ≤ ρ(A) and the proof is complete.

3.2 Non-degenerated linear stochastic differential equations

According to Theorem 1, the top Lyapunov exponent of a non-degenerated
linear stochastic differential equation is given explicitly in terms of the sta-
tionary distribution of the induced flow on the unit circle. Hence, to obtain
an explicit form of the top Lyapunov exponent, our attempt in this subsec-
tion is to solve explicitly non-zero solutions of (4). Note that the equation
(4) can be singular in the sense that gB(ϕ) might be equal to zero for some
values of ϕ. So, to solve (4) we distinguish the following types of the form
of matrix B (up to a transformation generated by a non-singular matrix):

Type I B = α id, Type II B =

(
α 0
0 β

)
,

Type III B =

(
α 0
1 α

)
, Type IV B =

(
α −β
β α

)
,

where α, β ∈ R and additionally, in Type II we assume that α 6= β and in
Type IV we assume that β 6= 0.

Type I

Let B be of Type I. Then, any matrix A ∈ R2×2 commutes with B. In the
following lemma, we compute the top Lyapunov exponent of (2) when A
and B commute. Consequently, we obtain a formula for the top Lyapunov
exponent of (2) when B is of Type I.

Lemma 4. Suppose that A and B are commutative, i.e. AB = BA. Then,
for any non-zero initial value (x0, y0)T ∈ R2\{0} the characteristic Lyapunov

8



exponent of the solution ΦA,B(t, (x0, y0)T) of (2) is

lim sup
t→∞

1

t
log
∥∥ΦA,B(t, (x0, y0)T)

∥∥ = lim
t→∞

1

t
log
∥∥exp (tA)(x0, y0)T

∥∥ . (5)

In particular, λA,B = ρ(A)

Proof. Since the matrices A and B are commute it follows that the explicit
solution of (2) is

ΦA,B(t, (x0, y0)T) = exp (tA+BWt) (x0, y0)T = exp (WtB) exp (tA) (x0, y0)T,

which implies that∥∥exp (tA) (x0, y0)T
∥∥

‖exp (−WtB)‖
≤
∥∥ΦA,B(t)(x0, y0)T

∥∥ ≤ ‖exp (WtB)‖
∥∥exp (tA) (x0, y0)T

∥∥ .
(6)

Since limt→∞
Wt
t = 0 it follows that

lim
t→∞

1

t
log ‖exp (WtB)‖ = lim

t→∞

1

t
log ‖exp (−WtB)‖ = 0,

which together with (6) proves (5). Since

max
(x0,y0)T∈R2\{0}

lim
t→∞

1

t
log
∥∥exp (tA) (x0, y0)T

∥∥ = ρ(A),

it follows that λA,B = ρ(A). The proof is complete.

Theorem 5 (Explicit formula for the top Lyapunov exponents of linear
SDE of Type I). Consider system (2) with the drift part A = (aij) ∈ R2×2

and with the diffusion part B =

(
α 0
0 α

)
, where α ∈ R. Then, the top

Lyapunov exponent of (2) is given by λA,B = ρ (A).

Type II

In this part, we consider the case that B is of Type II. Note that for all

diagonal singular matrices F =

(
f1 0
0 f2

)
∈ R2×2 we have FBF−1 = B.

In the following remark, a suitable diagonal matrix F which enables to
simplify the form of the drift term A is found:
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Remark 6. Let A = (aij) ∈ R2×2. Then, the pair (A,B) satisfy condition
(H) of Theorem 1 iff a12a21 6= 0. Depending on the sign of a12a21, we can
simplify A as follows:

(a) If a12a21 > 0, then for F =

(
sign(a12)

√
a21
a12

0

0 1

)
we have

Â := FAF−1 =

(
a11

√
a12a21

√
a12a21 a22

)
. (7)

(b) If a12a21 < 0, then for F =

(
sign(a12)

√
−a21
a12

0

0 1

)
we have

Â := FAF−1 =

(
a11

√
−a12a21

−
√
−a12a21 a22

)
. (8)

Theorem 7 (Explicit formula for the top Lyapunov exponents of linear
SDE of Type II). Consider system (2) with the drift part A = (aij) ∈ R2×2

and with the diffusion part B =

(
α 0
0 β

)
, where α, β ∈ R with α 6= β.

Then, the following statements hold:

(a) If a12a21 > 0, then

λA,B =
a11 + a22

2
+

∫∞
0 PA,B(u) exp

(
−2
√
a12a21

(α−β)2
1+u2

u

)
du

2
∫∞

0 QA,B(u) exp
(
−2
√
a12a21

(α−β)2
1+u2

u

)
du
,

where

PA,B(u) := u
2(a22−a11)

(α−β)2
−2 (

(a11 − a22)(1− u2) + 4
√
a12a21u+

+2(α− β)2 u2

1 + u2

)
,

QA,B(u) := u
2(a22−a11)

(α−β)2
−2

(1 + u2).
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(b) If a12a21 < 0, then

λA,B =
a11 + a22

2

+
1

C

∫ ∞
0

RA,B(u)e
2
√
−a12a21

(α−β)2
1−u2
u

∫ u

0

v
− 2(a22−a11)

(α−β)2

1 + v2
e
− 2
√
−a12a21

(α−β)2
1−v2
v dv du

+
1

C

∫ 0

−∞
RA,B(u)e

2
√
−a12a21

(α−β)2
1−u2
u

∫ u

−∞

|v|−
2(a22−a11)

(α−β)2

1 + v2
e
− 2
√
−a12a21

(α−β)2
1−v2
v dv du,

where

RA,B(u) := |u|
2(a22−a11)

(α−β)2
−2
(
a11 − a22

2
(1− u2) + (α− β)2 u2

1 + u2

)
and

C :=

∫ ∞
0

SA,B(u)e
2
√
−a12a21

(α−β)2
1−u2
u

∫ u

0

v
− 2(a22−a11)

(α−β)2

1 + v2
e
− 2
√
−a12a21

(α−β)2
1−v2
v dv du

+

∫ 0

−∞
SA,B(u)e

2
√
−a12a21

(α−β)2
1−u2
u

∫ u

−∞

|v|−
2(a22−a11)

(α−β)2

1 + v2
e
− 2
√
−a12a21

(α−β)2
1−v2
v dv du,

here SA,B(u) := (1 + u2)|u|
2(a22−a11)

(α−β)2
−2

.

Proof. Let λ
Â,B

denote the top Lyapunov exponent of the following linear
stochastic differential equation

dXt = ÂXt +BXt ◦ dWt, (9)

where Â is defined as in Remark 6. Obviously, λA,B = λ
Â,B

and our aim

is to compute λ
Â,B

. For this purpose, by definition of B, we have gB(ϕ) =
β−α

2 sin 2ϕ. Then, the equation for the stationary distribution of the induced
flow on S1 is

sin2 2ϕp′(ϕ) =

(
8g
Â

(ϕ)

(β − α)2
− 2 sin 4ϕ

)
p(ϕ) + C, (10)

where C is a constant. Using the explicit formula of g
Â

(ϕ), the differential
equation corresponding to the linear part of (10) is given by

p′(ϕ)

p(ϕ)
=

4

(α− β)2

(
â22 − â11

sin 2ϕ
+

(â12 + â21) cos 2ϕ

sin2 2ϕ
+
â21 − â12

sin2 2ϕ

)
− 4 cot 2ϕ,
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where ϕ ∈ [−π
2 ,

π
2 ] \ {±π

2 , 0}. A solution of the preceding equation on
[−π

2 ,
π
2 ] \ {±π

2 , 0} is

Π(ϕ) :=
| tanϕ|

2(â22−â11)
(α−β)2

sin2 2ϕ exp
(

2(â12+â21)
(α−β)2 sin 2ϕ

+ 2(â21−â12) cot 2ϕ
(α−β)2

) . (11)

By variation of constants formula, we have

p(ϕ) =

 Π(ϕ)
(
p(π

4
)

Π(π
4

) + C
∫ ϕ
π
4

1
sin2 2sΠ(s)

ds
)

for ϕ ∈ (0, π2 ),

Π(ϕ)
(
p(−π

4
)

Π(−π
4

) + C
∫ ϕ
−π

4

1
sin2 2sΠ(s)

ds
)

for ϕ ∈ (−π
2 , 0).

(12)

Now, we consider two separated cases:

(a) Let Â be of the form (7). Then, by (11) the function Π(ϕ) is given by

Π(ϕ) =
| tanϕ|

2(a22−a11)
(α−β)2

sin2 2ϕ exp
(

4
√
a12a21

(α−β)2
1

sin 2ϕ

) ,
which implies that limϕ→0− Π(ϕ) = limϕ→−π

2
+ Π(ϕ) = ∞. Therefore, by

boundedness of p and (12), we have

p(−π
4 )

Π(−π
4 )

+ C

∫ 0

−π
4

1

Π(s) sin2 2s
ds =

p(−π
4 )

Π(−π
4 )

+ C

∫ −π
2

−π
4

1

Π(s) sin2 2s
ds = 0.

Consequently, p(−π
4 ) = C = 0 and using the fact that

∫ π
2

−π
2
p(ϕ) dϕ = 1, we

obtain that

p(ϕ) =

{ Π(ϕ)∫ π
2

0 Π(s) ds
, if ϕ ∈ [0, π2 ],

0, if ϕ ∈ [−π
2 , 0).

In light of Theorem 1 and from the fact that

f
Â

(ϕ) +
1

2
f
′
B(ϕ)gB(ϕ) =

a11 + a22

2
+
a11 − a22

2
cos 2ϕ+

√
a12a21 sin 2ϕ+

(α− β)2

4
sin2 2ϕ,

we have

λA,B =
a11 + a22

2
+

∫ π
2

0

(
a11−a22

2 cos 2ϕ+
√
a12a21 sin 2ϕ+ (α−β)2

4 sin2 2ϕ
)

Π(ϕ) dϕ∫ π
2

0 Π(ϕ) dϕ
.
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Changing variable ϕ = arctanu in the preceding integral completes the proof
of this part.

(b) Let Â be of the form (8). Then, by (11) the function Π(ϕ) is of the
following form

Π(ϕ) =
| tanϕ|

2(a22−a11)
(α−β)2

sin2 2ϕ exp
(
−4
√
−a12a21

(α−β)2
cot 2ϕ

) ,
which implies that limϕ→0+ Π(ϕ) = limϕ→−π

2
+ Π(ϕ) = ∞. Consequently,

from boundedness of p(ϕ) and (12) we have

p(π4 )

Π(π4 )
+ C

∫ 0

π
4

1

sin2 2s Π(s)
ds =

p(−π
4 )

Π(−π
4 )

+ C

∫ −π
2

−π
4

1

sin2 2s Π(s)
ds = 0.

Thus,

p(ϕ) =

 C
∫ ϕ

0
Π(ϕ)

sin2 2s Π(s)
ds for ϕ ∈ (0, π2 ),

C
∫ ϕ
−π

2

Π(ϕ)

sin2 2s Π(s)
ds for ϕ ∈ (−π

2 , 0).

Since
∫ π

2

−π
2
p(ϕ) dϕ = 1 it follows that

C =
1∫ π

2
0

∫ ϕ
0

Π(ϕ)

sin2 2sΠ(s)
ds dϕ+

∫ 0
−π

2

∫ ϕ
−π

2

Π(ϕ)

sin2 2sΠ(s)
ds dϕ

.

A direct computation yields that

f
Â

(ϕ) +
1

2
f
′
B(ϕ)gB(ϕ) =

a11 + a22

2
+
a11 − a22

2
cos 2ϕ+

(α− β)2

4
sin2 2ϕ,

which together with Theorem 1 implies that

λA,B =
a11 + a22

2
+

∫ π
2

0

(
a11−a22

2 cos 2ϕ+ (α−β)2

4 sin2 2ϕ
) ∫ ϕ

0
Π(ϕ)

sin2 2sΠ(s)
ds dϕ∫ π

2
0

∫ ϕ
0

Π(ϕ)

sin2 2sΠ(s)
ds dϕ+

∫ 0
−π

2

∫ ϕ
−π

2

Π(ϕ)

sin2 2sΠ(s)
ds dϕ

+

∫ 0
−π

2

(
a11−a22

2 cos 2ϕ+ (α−β)2

4 sin2 2ϕ
) ∫ ϕ
−π

2

Π(ϕ)

sin2 2sΠ(s)
ds dϕ∫ π

2
0

∫ ϕ
0

Π(ϕ)

sin2 2sΠ(s)
ds dϕ+

∫ 0
−π

2

∫ ϕ
−π

2

Π(ϕ)

sin2 2sΠ(s)
ds dϕ

.

Changing variables s = arctan v and ϕ = arctanu in the preceding integral
completes the proof.
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Type III

In this subsection, we recall the result in [IL99, IL01] about explicit formula
of Lyapunov exponent of linear stochastic differential equations whose diffu-
sion parts are of Type III. Note that in this case a pair (A,B) do not satisfy
the degeneracy condition (H) iff the matrix A is not of lower triangular form,
i.e. a12 6= 0.

Theorem 8 (Explicit formula for the Lyapunov exponents of linear SDE
of Type III). Consider system (2) with the drift part A = (aij) ∈ R2×2 and

with the diffusion part B =

(
α 0
1 α

)
, where α ∈ R. Then,

λA,B =
a11 + a22

2
+

1

2
|a12|

∞∫
0

√
v exp

(
−1

6 |a12| v3 + v
2|a12|(µ1 − µ2)2

)
dv

∞∫
0

1√
v

exp
(
−1

6 |a12| v3 + v
2|a12|(µ1 − µ2)2

)
dv

.

Type IV

In this subsection, we consider the case that the matrix B has a pair of
conjugated complex eigenvalues, i.e.

B =

(
α −β
β α

)
where α, β ∈ R. (13)

Theorem 9 (Explicit formula for the top Lyapunov exponents of linear
SDE of Type IV). Consider system (2) with the drift part A = (aij) ∈ R2×2

and with the diffusion part B =

(
α −β
β α

)
, where α, β ∈ R with β 6= 0.

Define a function ΠA,B :
[
−π

2
,
π

2

]
→ R by

ΠA,B(ϕ) := exp

(
a11 − a22

2β2
cos 2ϕ+

a12 + a21

2β2
sin 2ϕ− a12 − a21

β2
ϕ

)
.

Then, the top Lyapunov exponents of (2) is given by:

If a12 = a21, then

λA,B =
a11 + a22

2
+

∫ π
2

−π
2

(
a11−a22

2 cos 2ϕ+ a12+a21
2 sin 2ϕ

)
ΠA,B(ϕ) dϕ∫ π

2

−π
2

ΠA,B(ϕ) dϕ
.
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If a12 6= a21 then

λA,B =
1

ΓA,B(exp(π(a12−a21)
β2 )− 1)

∫ π
2

−π
2

1

ΠA,B(ϕ)
dϕ

∫ π
2

−π
2

fA(ϕ)ΠA,B(ϕ) dϕ

+
1

ΓA,B

∫ π
2

−π
2

∫ ϕ

−π
2

fA(ϕ)
ΠA,B(ϕ)

ΠA,B(u)
du dϕ.

where

ΓA,B :=

∫ π
2

−π
2

∫ ϕ

−π
2

ΠA,B(ϕ)

ΠA,B(u)
du dϕ+

∫ π
2

−π
2

ΠA,B(ϕ) dϕ
∫ π

2

−π
2

1
ΠA,B(ϕ) dϕ

exp(π(a12−a21)
β2 )− 1

. (14)

Proof. By definition of gB(ϕ), we have gB(ϕ) = β for all ϕ ∈
[
−π

2
,
π

2

]
.

Then, the condition (H) holds for all A ∈ R2×2 and the differential equation
of p(ϕ) is given by

p′(ϕ) =
2gA(ϕ)

β2
p(ϕ) + C, (15)

where C is a constant. From the definition of ΠA,B, we get that

ΠA,B(ϕ) = exp

(∫ ϕ

−π
2

2gA(u)

β2
du

)
exp

(
(a12 − a21)π − (a11 − a22)

2β2

)
.

Therefore, ΠA,B(ϕ) is a nontrivial solution of the corresponding linear equa-

tion of (15) given by p′(ϕ) = 2gA(ϕ)
β2 p(ϕ). By variation of constants formula,

we arrive at

p(ϕ) = ΠA,B(ϕ)

(
κ+ C

∫ ϕ

−π
2

1

ΠA,B(u)
du

)
, (16)

where κ is a constant. In the remaining part, we solve κ and C by using

the properties that p(−π
2

) = p(
π

2
) and

∫ π
2

−π
2
p(u) du = 1. From definition of

ΠA,B, we have

ΠA,B(−π
2

)

ΠA,B(
π

2
)

= exp

(
π(a12 − a21)

β2

)
.
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So, from (16) the equality p(−π
2

) = p(
π

2
) leads to

exp

(
π(a12 − a21)

β2

)
κ = κ+ C

∫ π
2

−π
2

1

ΠA,B(u)
du.

To solve the preceding equality, we consider the following separated cases:

Case 1: If a12 = a21, then C = 0. Hence, from
∫ π

2

−π
2
p(ϕ) dϕ = 1 we derive

that κ = 1∫ π
2
−π2

ΠA,B(ϕ) dϕ
. According to Theorem 1, we obtain

λ(A,B) =

∫ π
2

−π
2
fA(ϕ) ΠA,B(ϕ) dϕ∫ π
2

−π
2

ΠA,B(ϕ) dϕ

=
a11 + a22

2
+

∫ π
2

−π
2

(
a11−a22

2 cos 2ϕ+ a12+a21
2 sin 2ϕ

)
ΠA,B(ϕ) dϕ∫ π

2

−π
2

ΠA,B(ϕ) dϕ
.

Case 2: If a21 6= a12, then from p(−π
2

) = p(
π

2
) we derive that

κ = C

∫ π
2

−π
2

1
ΠA,B(u) du

exp(π(a12−a21)
β2 )− 1

.

Since
∫ π

2

−π
2
p(ϕ) dϕ = 1 it follows that

C

∫ π
2

−π
2

∫ ϕ

−π
2

ΠA,B(ϕ)

ΠA,B(u)
du dϕ+

∫ π
2

−π
2

ΠA,B(ϕ) dϕ
∫ π

2

−π
2

1
ΠA,B(ϕ) dϕ

exp(π(a12−a21)
β2 )− 1

 = 1.

Hence, C = 1
ΓA,B

, where ΓA,B is defined as in (14) and using Theorem 1,

the proof is complete.
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4 Applications

4.1 Sample-path stability of a linear stochastic differential
equation arsing from fluid dynamics

In this subsection, we consider the following linear stochastic differential
equation(

dut

dvt

)
=

(
−R−1 1

0 −R−1

)(
ut

vt

)
dt+ σ

(
0 −1

1 0

)(
ut

vt

)
◦ dWt,

(17)
where σ 6= 0. This system was discussed in [BK14] and arises from a model
in fluid dynamics. In [BK14], the authors compute explicitly the area of
parameters for which system (17) is mean-square asymptotically stable. In-
stead of studying mean-square asymptotic stability, our aim is to find the
area of parameters for which system (17) is sample-path asymptotically sta-
ble.

Theorem 10. System (17) is asymptotically stable if and only if two pa-
rameters R, σ satisfy

ΓA,B
R

>
1

exp( π
σ2 )− 1

∫ π
2

−π
2

∫ π
2

−π
2

sin 2ϕ

2

exp
(

sin 2ϕ
2σ2 − ϕ

σ2

)
exp

(
sin 2u
2σ2 − u

σ2

) du dϕ

+

∫ π
2

−π
2

∫ ϕ

−π
2

sin 2ϕ

2

exp
(

sin 2ϕ
2σ2 − ϕ

σ2

)
exp

(
sin 2u
2σ2 − u

σ2

) du dϕ,
where

ΓA,B :=

∫ π
2

−π
2

∫ ϕ

−π
2

exp
(

sin 2ϕ
2σ2 − ϕ

σ2

)
exp

(
sin 2u
2σ2 − u

σ2

) du dϕ+

(∫ π
2

−π
2

exp
(

sin 2ϕ
2σ2 − ϕ

σ2

)
dϕ
)2

exp( π
σ2 )− 1

> 0.

(18)

Proof. The diffusion coefficient of this linear stochastic differential equation
if of Type IV. Hence, we can use Theorem 9 to compute and to determine
the sign of the top Lyapunov exponent of (17). A direct computation yields
that

ΠA,B(ϕ) = exp

(
sin 2ϕ

2σ2
− ϕ

σ2

)
and fA(ϕ) = − 1

R
+

sin 2ϕ

2
.
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Therefore, the constant ΓA,B defined in (14) is computed explicitly as in
(18). Hence, by Theorem 9, we have

ΓA,BλA,B = − 1

R
ΓA,B +

1

exp( π
σ2 )− 1

∫ π
2

−π
2

∫ π
2

−π
2

sin 2ϕ

2

exp
(

sin 2ϕ
2σ2 − ϕ

σ2

)
exp

(
sin 2u
2σ2 − u

σ2

) du dϕ

+

∫ π
2

−π
2

∫ ϕ

−π
2

sin 2ϕ

2

exp
(

sin 2ϕ
2σ2 − ϕ

σ2

)
exp

(
sin 2u
2σ2 − u

σ2

) du dϕ,
which completes the proof.

As is proved in [BK14, Theorem 4.2], system (17) is mean-square asymptot-
ically stable iff R and σ satisfy

6

R
> −σ2 +

3

√
8σ6 + 27σ2 + 3

√
3σ4(16σ4 + 27)

+
4σ4

3

√
8σ6 + 27σ2 + 3

√
3σ4(16σ4 + 27)

.

The following lemma is devoted to show that mean-square asymptotic sta-
bility implies sample-path asymptotic stability for an arbitrary planar linear
stochastic differential equation(

dxt

dyt

)
= A

(
xt

yt

)
dt+B

(
xt

yt

)
◦ dWt. (19)

Recall that the mean-square Lyapunov exponent of (19) denoted by λms
A,B is

defined by

λms
A,B := lim

t→∞

1

t
logE‖ΦA,B(t, ·)‖2,

see e.g. [AKO86].

Lemma 11. Consider (19) and suppose that λms
A,B < 0. Then, λA,B < 0.

Proof. Note that in the case that the coefficients A and B of (17) satisfy
condition (H) of Theorem 1, then the assertion of this lemma was proved in
[Ar84, Corollary 1]. Hence, we only need to deal with the case that the pair
{A,B} does not satisfy (H). Based on the arguments at the beginning of
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Subsection 3.1, we can assume w.l.o.g. that A and B are upper triangular
matrices, i.e.

A =

(
a11 0

a12 a22

)
and B =

(
b11 0

b12 b22

)
.

Using Ito’s formula, we obtain that

dEx2
t

dt
= 2(a11 + b211) dEx2

t ,

dExtyt
dt

=

(
a11 + a22 +

(b11 + b22)2

2

)
Extyt,

+

(
a21 +

b21(b11 + b22)

2
+ b11b21

)
Ex2

t

dEy2
t

dt
= 2

(
a22 + b222

)
Ey2

t + b221Ex2
t + 2

(
a21 +

b21(b11 + 3b22)

2

)
Extyt.

Therefore, λms
A,B < 0 is equivalent to the fact that

a11 + b211 < 0 and a22 + b222 < 0,

which implies together with Theorem 3 that λA,B < 0. The proof is com-
plete.

4.2 A model of stochastic Hopf bifurcation

Consider a model of stochastic Hopf bifurcation of the following form(
dxt

dyt

)
=

(
−yt + (a− b(x2

t + y2
t ))xt

xt + (a− b(x2
t + y2

t ))yt

)
dt+

(
σ1 0

0 σ2

)(
xt

yt

)
◦ dWt,

(20)
where a ∈ R and b, σ1, σ2 > 0 are parameters. Note that the preceding model
with an additional assumption that σ1 = σ2 is studied in [Bax94]. Our aim
in this section is to find the bifurcation value of (20) in the remaining case
that σ1 6= σ2. For this purpose, the linearized equation along the trivial
solution of (20) is(

dxt

dyt

)
=

(
a −1

1 a

)(
xt

yt

)
dt+

(
σ1 0

0 σ2

)(
xt

yt

)
◦ dWt. (21)
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Let δ := σ1 − σ2 and denote by abif(δ) the bifurcation value satisfying that
when a changes increasingly and crosses abif(δ), the system (21) changes
from stability to instability. For the case that δ > 0, in light of Theorem 7
the bifurcation value abif(δ) is

abif(δ) = −δ
2

C

∫ ∞
0

exp
(

2(1−u2)
δ2u

)
1 + u2

∫ u

0

exp
(
−2(1−v2)

δ2v

)
1 + v2

dv du

− δ2

C

∫ 0

−∞

exp
(

2(1−u2)
δ2u

)
1 + u2

∫ u

−∞

exp
(
−2(1−v2)

δ2v

)
1 + v2

dv du,

where

C :=

∫ ∞
0

1 + u2

u2
exp

(
2(1− u2)

δ2u

)∫ u

0

exp
(

2(1−v2)
δ2v

)
1 + v2

dv du

+

∫ 0

−∞

1 + u2

u2
exp

(
2(1− u2)

δ2u

)∫ u

−∞

exp
(

2(1−v2)
δ2v

)
1 + v2

dv du.

By virtue of Theorem 5, abif(0) = 0, i.e. when δ = 0 the bifurcation value of
the stochastic Hopf bifurcation model (20) coincides with the Hopf bifurca-
tion value of the deterministic part. Meanwhile, when δ > 0, the bifurcation
value of the stochastic Hopf bifurcation model (20) is strictly smaller than
the Hopf bifurcation value of the deterministic part.
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