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ABSTRACT. We show that any two trajectories of so-
lutions of a one-dimensional fractional differential equation
(FDE) either coincide or do not intersect each other. How-
ever, in the higher dimensional case, two different trajec-
tories can meet. Furthermore, one-dimensional FDEs and
triangular systems of FDEs generate nonlocal fractional dy-
namical systems, whereas a higher dimensional FDE does
not, in general, generate a nonlocal dynamical system.

1. Introduction. In recent years, fractional differential equations
(FDEs) have attracted increasing interest due to the fact that they can
model many mathematical problems in science and engineering [11, 15,
21]. In this paper, we consider a d-dimensional, fractional differential
equation involving the Caputo derivative °Dg, of order o € (0, 1), for ¢
in a finite interval J := [0, 7] or in the real half-line J := [0, c0):

(1) “Dgx(t) = f(t,2(t)).

Here, f : J x RY — R? is a continuous vector-valued function. A
continuous function z : J — R? is called a solution of (1) if this
equation is satisfied for all ¢ € J\ {0}, in which case z(0) is called
the initial value of the solution x(-).

We are interested to know whether (1) generates a dynamical system
so that the tools and methods of the classical theory of dynamical
systems are applicable in the investigation of FDEs. Another important
problem in the theory of FDEs, which is closely related to the problem
of generation of dynamical systems by FDEs, is the question of whether
two different trajectories of a FDE can intersect. We solve both these
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problems. Namely, we show that a one-dimensional FDE or a triangular
FDE generates a nonlocal fractional dynamical system, whereas, in
general, a higher dimensional FDE does not. Correspondingly, two
different trajectories of a one-dimensional or a triangular FDE cannot
meet, whereas different trajectories of a higher dimensional FDE may
intersect each other. As a byproduct of our investigation, we get lower
bounds for the solutions of one-dimensional FDEs and of triangular
linear FDEs.

The question of whether solutions of (1) can intersect was treated
by Diethelm [10, 11], Diethelm and Ford [12], Agarwal et al. [1],
Hayek et al. [14], and Bonilla, Rivero and Trujillo [4]. Note that, in
the case of ordinary differential equations (ODEs), it is well known
that two trajectories either coincide or they do not intersect; the
authors mentioned above proved that similar results hold for fractional
differential equations of order o € (0,1). The main difficulty of the
problem for FDEs is the nonlocal nature (or history-dependence) of
solutions of FDEs. The above authors used various tools to deal with
the FDE case. However, several flaws make their proofs incomplete.
We will present some discussion about this matter in Section 3.

The paper is organized as follows. Section 2 is a preparatory section,
where we present some basic notions from fractional calculus and
the theory of FDEs. Section 3 is devoted to results on separation
of solutions of one-dimensional FDEs; we also discuss flaws in the
proofs of results from the papers mentioned above. In Section 4, we
study the generation of nonlocal fractional dynamical systems by one-
dimensional FDEs. Section 5 is devoted to high dimensional triangular
systems of FDEs, where, based on the results in Section 4, we show
that a triangular system of FDEs does generate a nonlocal fractional
dynamical system. In Section 6, we show that a higher dimensional
FDE does not, in general, generate a nonlocal dynamical system: two
different trajectories of a high dimensional FDE may intersect each
other in finite time.

2. Preliminaries. We start this section by briefly recalling a frame-
work of fractional calculus and fractional differential equations. For
more details, we refer to the books of Diethelm [11] and by Kilbas,
Srivastava and Trujillo [15].

Let R? be the standard d-dimensional Euclidean space equipped with
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usual Euclidean norm. We denote by R the set of all nonnegative real
numbers, by C([0, 00); RY) the space of continuous functions from [0, co)
to R, and by (Coo(RY), |- [ec) C C([0,00);RY) the space of all
continuous functions ¢ : R, — R? that are uniformly bounded on R,
ie.,
l€lloo := sup €] < ox.
teRy

It is well known that (Coo(R?), | - || ) is a Banach space.

Let a > 0, [a,b] C R and z : [a,b] — R, with 2 € L'([a,b]), i.e.,
f: |x(7)| dr < co. Then, the Riemann-Liouville integral of order a of
the function z(-) is defined by

1 ! a—1
) /a (t—7)*"z(r)dr forte (a,b],

Ig+l'(t) = ﬁ
see, e.g., Diethelm [11], where the Gamma function is defined by
INa) = / 7 Lexp(—7)dr for a > 0.
0
The corresponding Riemann—Liouville fractional derivative of order a
of an absolutely continuous function z(+) : [a,b] — R is given by
D x(t) = (D™I)“z)(t) for t € (a,b],

where D = d/dt is the usual derivative and m := [«] is the smallest
integer greater than or equal to «. On the other hand, the Caputo
fractional derivative “D&, x of a function z € C™([a, b]) is defined by

D, x(t) = (II""*D™z)(t) for t € (a,b].

The Caputo fractional derivative of a d-dimensional vector func-
tion z(t) = (z1(t),...,24(t))" is defined component-wise as

DG, a(t) = (CDgy a1 (1) C DG, 2a(t))"
It is well-known that the initial-value problem of the FDE (1) is

equivalent to a Volterra integral equation of the second kind. Namely,
we have the following result.

Lemma 1. A continuous function x : J — R is a solution of the
FDE (1) with the initial value condition z(0) = x¢ if and only if it is a
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solution of the Volterra integral equation of the second kind
I L
2) 2(t) = 20+ —— / (t— )2 f (ry (7)) dr.
I(a) Jo ( )

Proof. For a proof when d = 1, we refer to Diethelm [11, Lemma 6.2,
p. 86] and Kilbas et al. [15, Theorem 3.24, p. 199]; the multidimen-
sional case d > 1 follows by componentwise application of the one-
dimensional case. O

3. Separation of trajectories of solutions of one-dimensional
FDE.

3.1. Two different trajectories of a one-dimensional FDE do
not meet. In this section, we consider the one-dimensional case of the
system (1), i.e., the FDE

(3) “Dgya(t) = f(t, (1)),

where f :J xR — R is a continuous function. Assume that f satisfies
the following Lipschitz condition on the second variable: there exists a
nonnegative continuous function L : J — R, such that

4) |ft,z)— f(t,y)| < L(t)|lr—y| forallte Jandallz,yecR.

It is well known that, under the Lipschitz condition (4), the initial-value
problem for (3) has a unique solution, defined on the whole interval J,
for any given initial value; see, e.g., Baleanu and Mustafa [2, Theo-
rem 2], Tisdell [22, Theorem 6.4] and Diethelm [11, Theorem 6.8]. We
will show that any two solutions of (3) either coincide or do not inter-
sect on J. To do so, we need two useful technical tools for investigating
FDEs: the variation-of-constants formula and the comparison princi-
ple. We refer the reader to the books of Kilbas et al. [15, Chapter 5]
and Diethelm [11, Chapter 7] for a more detailed discussion about the
using Laplace transforms to obtain the variation-of-constants formula
for solutions to FDEs.

Lemma 2 (Variation-of-constants formula for FDEs). Consider the
FDE (3) on the finite interval J = [0,7]. Assume that the function
f(,-) in the equation (3) satisfies the condition (4). If the function
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f(,-) is of the form
ft,x) = Mz +g(t, x)

for some fixed M € R and all t € J and z € R, then the solution x(-)
of (3) with the initial value z(0) = z( satisfies, for all ¢ € J, the formula

(1) = Bo(Mt®)zo + /0 (t = 1) B (M(t — 7)*)g (r, 2(r)) dr,

where, for z € C, the Mittag-Leffler functions are defined by

o0 Zk
B (%) ;:gm and  E,(z) := Ea1(2).

Proof. We define a function §(t,z) on R>o x R by

. g(t,z), ifte JandzxeR,
g(t,x) := )
g(T,z), ift>T and z € R.

Then, there exists a positive constant L such that
9(t,2) = §(t,y)| < Llz —y| and [§(t,0)| <L
for all z, y € R and all ¢t € R>g.
We now consider, on the half real line [0, c0), the FDE

“Dg, @(t) = Mi(t)

(5) = Mi(t)

It is obvious that the function §(t,2) — §(¢,0) is Lipschitz continuous
with respect to the second variable and satisfies the condition

l§(t,z) — §(t,0)| < Llz|, for all t € R and z € R.

Moreover, §(¢,0) is a bounded continuous function on R>q. By virtue
of Lemma 1 and the Lipschitz property of g, for any zo € R, the
equation (5) with the initial condition Z(0) = xo has a unique solution
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which satisfies the Volterra integral equation

. I ol trn o .
() = 0+ o / (t — 1) [Mi(r) + §(r, (7)) — §(r.0)] dr

1 ! a—1»,
+ @ /0 (t—71)*""g(7,0)dr,

for all ¢ > 0. Therefore, for any ¢t > 0, we have

Lt M+L [t olia
F(oz+1)+ (o) /O(t—T) |2(7)] d,

|2(8)] < [xol +
and consequently,

(0)| 1 e
exp(t) = oxplt) (”30 e 1))

(6)

Put v(t) = Z(t)/ exp(t) for t > 0 and set

1 Lte
K:=sup——|(|xo| + =——— ) < x;
P e (1 1)

from (6) we obtain the estimate

M+ L

v(t) < K + )

t
/ (t— 1) Lo(r)dr, >0,
0

which, by a Gronwall-type inequality [11, Lemma 6.19, p. 111], implies

that v(t) < KE,((M 4 L)t*) for t > 0. Thus,

|&(t)] < K exp(t)Eq((M + L)t*) for t >0,

which shows that, for any 2y € R, the solution Z(-) of the equation (5)

with the initial value Z(0) = z is exponentially bounded on [0, o).

Hence, we can apply the Laplace transform to both sides of the

equation (5) and get, for some positive constant c,

s L{a(t)}(s) — s wo = ML{E()}(s) + L{G(t, (1) }(s), R(s) > ¢
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see Diethelm [11, Theorem 7.1, p. 134]. Therefore,

a—1

LD} ) = om0 + o L{3(0, (1)) (9),

S

assuming that R(s) > max{c, |M|'/}, so applying the inverse Laplace
transform to both sides gives

Sa—l

#(1) = £ 2 Moo+ £ 0l () 6) b,

for all ¢ > 0. Using the known formula [21, formula (1.80), p. 21]

a—p
L{ ™ Bap(Mt?)}(s) = ———=. R(s) > | M|V,
s« — M
with 6 = a or f = 1, and using the properties of the Laplace
transform [11, Theorem D.11, p. 231], we conclude that, for all ¢ > 0,

5(t) = Ba(Mt*)zo + / (t = 7)% By o (M(t — 7)*)g(r, &(r)) dr.

For a given initial value zg, equation (3) has a unique solution on J, and
likewise equation (5) has a unique solution on R>q. These two solutions
coincide on J because §(t,x) = g(t,z) for all x € R and ¢t € J, and
therefore x(-) satisfies

£(t) = Ea(Mt®)zy + / (t = 7)2 B o (M(t — 7))g (7, 2(7)) dr,

forallt e J. O

Remark 3. 1t is easily seen that, in the setting of Lemma 2, if J is not
compact but is instead the real half-line [0, 00), then the variation-of-
constants formula holds true on the whole of [0, 00).

Remark 4. One can see that the proof of Lemma 2 can be easily carried
out for the higher dimensional case with M changed to a constant
matrix and with the functions z(-), f, g changed to vector functions;
cf. Diethelm [11, Remark 7.1, p. 135] for both the one dimensional and
the higher dimensional cases, where f and g depend only on ¢ but not
on x.
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To prove the main result in this section, we need a preparatory
lemma that is a small modification of a result of Lakshmikantham [16,
Theorem 2.1]. For convenience of the reader, we present a proof.

Lemma 5 (Comparision Principle). Let 0 < ¢ < 1, and assume that
the continuous functions v, v1, w ,wy € C(J,R) and g € C(J x R,R)
satisfy

u(t) < v (t) + 1)/0(t5)qlg(s,v(s))ds

I'(q
and

w(t) > wi(t) + ﬁ/o (t — )7 g(s,w(s)) ds

for all t € J. Suppose further that g(¢,x) is nondecreasing in x for
each t € J. If

(7) vi(t) <wi(t) forallteJ,
then
(8) v(t) <w(t) foralltelJ.

Proof. Suppose for a contradiction that (8) is not true. Then,
because of the continuity of v(-) and w(-), there exists t; € J\ {0}
such that

(9) v(ty) =w(t1) and o(t) <w(t) for 0 <t <t;.
Using (7), (9) and the nondecreasing nature of g, we find that

v(ty) <wvi(t) + ﬁ/@ 1(151 —5)1 1 g(s,v(s))ds

<wi(t1) + ﬁ /()'1(t1 —8)1 1 g(s,w(s)) ds

<wi(t) + F(lq)/o l(tl —8)1 1 g(s,w(s)) ds < w(ty),

contradicting the condition v(t;) = w(t1) in (9). Hence, (8) holds and
the proof is complete. O

Now we are in a position to prove our main theorem of this section.



FRACTIONAL DIFFERENTIAL EQUATIONS 9

Theorem 6 (Different trajectories do not meet). Assume that f
satisfies the Lipschitz condition (4). Then, for any two different initial
values 19 # oo in R, the trajectories of the corresponding solutions of
the FDE (3) do not meet on J, i.e., the solutions z1(-) and z2(+) of (3)
starting from x19 = x1(0) and x99 = z2(0) satisfy x1(t) # x2(t) for all
teJ.

Proof. For definiteness, we assume that

(10) CEl(O) =T10 < Too = 1’2(0)

To prove the theorem, we show that x1(t) < xo(t) for all t € J.
Suppose that this is not true, then there is 73 € J \ {0} such that
x21(Th) > x2(T1). By the continuity of z1(-) and z2(-), and by (10),
there is a T > 0 such that

21(To) = 22(Tz) and x1(t) < zo(t) forall 0 <t < Ts.
Put M := maxo<¢<, L(t) and define
(11)  g(t,z) = f(t,z) + Mz forall0 <t <T;and z € R.

Then ¢ : [0,T2] x R — R is nondecreasing in z for each ¢ € [0,73]. In
fact, by (4), (11) and the choice of M, if ¢t € [0,T»] and = < y, then

g(t,y) —g(t,x) = M(y —x)+ f(t,y) — f(t,z) > (M — L(t))(y —z) > 0.

By virtue of Lemma 2, since z1(+) and x2(-) are solutions of (3), on the
interval [0, T3] we have

(12) xl(t) = Ea(fMta);Tlo
+ / (t— T)O‘_lEa’a(—M(t - T)O‘)g(T, $1(T)) dr,
0
and
(13) $2(t) = Ea(fMta)IQO
+ / (t— T)O‘_lEa’a(—M(t - T)O‘)g(T, (EQ(T)) dr.
0
Since Eq o(s) > 0 for all s € R (see, e.g., Cong et al. [5, Lemma 2]),
(

the function Ey o (=M (t—7)*)g(7, z) is nondecreasing in the variable =
for 0 < 7 <t < T,. Therefore, Lemma 5 is applicable to the pair
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of integral equations (12)—(13) on [0, T3], and gives z1(T2) < z2(T%).
Thus, we arrive at a contradiction, and consequently the conclusion of
the theorem is true. O

Remark 7. Theorem 6 provides a full solution to Conjecture 1.2 of
Diethelm [10]. In that paper, Diethelm provides a partial solution to
the problem of separation of trajectories: he proved Conjecture 1.2
under some restrictive conditions [10, Theorem 2.2].

3.2. Discussion on the problem of separation of solutions of a
general FDE. Diethelm [11, Theorem 6.12] formulated and proved
a theorem on separation of solutions of a FDE that is the same as our
Theorem 6. For the proof, he used a fixed point theorem on a short
interval of time, and then used induction to extend the result to the
whole (long) interval of time under consideration. However, his proof
contains a flaw in the induction part: the passage to the next step
from N =1 to N = 2 does not work, because the argument leading to
a contractive mapping on the first subinterval of time fails on the second
subinterval, owing to the fact that the FDE is history dependent.

In a subsquent joint work with Ford [12, Theorems 3.1 and 4.1],
Diethelm gave an alternative proof of his result [11, Theorem 6.12]
on separation of solutions of a FDE. Instead of induction forward in
time from one subinterval to the next, they used induction backward
in time from one subinterval to the foregoing interval. However, their
argument in the first step of this induction does not work. Using the
numbering and notation of Diethelm and Ford [12], their equation (13)
is equivalent to their equation (8) only if we consider (8) and (13) in
the whole interval [0,b]. Actually, the solution y(¢), considered as the
solution of the terminal problem (13), depends on the future value
y(b) = ¢, and hence we cannot say that the function g(t) on pages 29—
30 is independent of the restriction of the function y to [Tn—_1,Tn].
Therefore, the contraction property of the map F in their formula (14)
does not lead to the existence and uniqueness of the solution of (14),
as claimed. Consequently, their proof of Theorem 3.1 [12], and hence
also of Theorem 4.1, is incomplete.

Note that the earlier proof [11, Theorem 6.12] is correct for a first
“short” interval of time: the smallness of time combined with the
bounded Lipschitz condition for f make a certain operator contractive,
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and hence two different solutions cannot meet. By the way, we note
that continuity alone can also assure the non-intersection of different
trajectories in a short time interval.

Hayek, Trujillo, Rivero, Bonilla and Boreno [14, Theorem 3.1] have
proved the separation theorem on a “short” interval of time. However,
Section 4 of that paper is invalid because of the history dependence
of solutions of the FDE, which prevents us from applying the “usual
method of prolongation” (for ODEs) as claimed by the authors.

Bonilla, Rivero and Trujillo [4] treated higher dimensional linear
systems of FDEs and, in Section 3 of that paper, they relied on the
above mentioned result [14, Theorem 3.1]. Hence, there are gaps in
their proofs of some results [4, Theorem 1 on page 71 and Propositions
1 and 2 on page 72]. For a counter example, see Section 6, which, by
the way, also shows that the arguments of Diethelm and Ford [11, 12]
cannot work: otherwise, as is easily seen, those arguments would work
for the higher dimensional case as well, leading to a contradiction.

4. One-dimensional FDEs generate nonlocal dynamical sys-
tems. In this section, based on the results on separation of trajectories
presented in Section 3, we show that one-dimensional FDEs generate
nonlocal dynamical systems. Hence, tools and methods from the clas-
sical theory of dynamical systems are applicable.

4.1. Bounds for solutions of FDEs. First, we formulate and prove
a lower bound for solutions of a one-dimensional FDE, which provides
us with a better understanding of the geometry of the solutions.

Theorem 8 (Convergence rate for solutions of one-dimensional FDEs).
Assume that f satisfies the Lipschitz condition (4), and put

(14) L*(t) = OS?%L(T).

Then, for any two solutions x1(-) and x3(-) of the FDE (3), and for
any t € J,

|22(t) — 21(t)] = |22(0) — 21(0)| Ea (—L"(£)7).

Proof. For definiteness, we assume that x2(0) > x1(0). Then by
Theorem 6, we have z5(t) > x1(¢) for any ¢ € J. For an arbitrary but
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fixed t > 0, we repeat the arguments in the proof of Theorem 6 on the
interval [0, ¢] to conclude that

w3(s) — 21(s) = Ea(=L"(t)s)(22(0) — 21(0))

+ /08(5 = 7)* Baa(=L*(t)(s = 7)) (9(7, 22(7)) — g(7,21(7)) dr
> Ea(=L7(t)s%)(22(0) — 21(0)).

Now take s =t to complete the proof. O

Corollary 9 (Lower bound for solutions of one-dimensional FDEs).
Assume that f satisfies the Lipschitz condition (4). Assume addition-
ally that f(¢,0) = 0 for all ¢ € J. Then, for any solution z(-) of the
FDE (3) and any t € J,

|2(t)] = [2(0) Ba (= L7 (£)t%).

Proof. Since f(t,0) = 0, the FDE (3) has the trivial solution.
Apply Theorem 8 to the pair consisting of z(-) and the trivial solution
of (3). O

For the divergence rate and upper bound for solutions of the FDEs,
the following statements are easy modifications of well known results.

Theorem 10 (Divergence rate for solutions of one-dimensional FDEs).
Assume that f satisfies the Lipschitz condition (4), and recall the
notation (14). Then, for any two solutions x1(-) and x3(-) of the
FDE (3), and for any ¢ € J,

|22(t) — 21 (8)] < |22(0) — 21(0)| Ea (L7 (1))

Proof. By Lemma 1, for all ¢t € J we have

1

1 (t) :monm/o (t—7)* " f(r (7)) dr

and
1

2o(t) = 25(0) + F(a)/o (t—7)* " f(r,20(7)) dr.
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Therefore, if 0 < s < ¢, then
|z2(s) — 21(s)] < [22(0) — 21(0)]

Lss_Ta_l () — Fr e (P dr
*ma)/o( )* 7 (f(r,22(7)) = f(7,21(7))) d

< |z2(0) — z1(0)] + ﬁ /Os(s — )T LA () |ao (1) — @1 (7)| dT.

By virtue of the Gronwall-type inequality for FDEs (see Diethelm [11,
Theorem 6.19, p. 111] and Tisdell [22, Lemma 3.1, p. 288]), this
estimate implies that

|w2(s) — 1(s)| < [2(0) — 21(0)| Ea (L7 (t)s*).

Since t € J is arbitrary, the theorem follows by putting s = t. ]

Corollary 11 (Upper bound for solutions of one-dimensional FDEs).
Assume that f satisfies the Lipschitz condition (4). Assume addition-
ally that f(¢,0) = 0 for all ¢ € J. Then, for any solution z(-) of the
FDE (3), and for any t € J,

|2(t)] < |2(0)| Ea (L™ ()).
Proof. Since f(t,0) = 0, the FDE (3) has the trivial solution. Apply

Theorem 10 to the pair consisting of x(-) and the trivial solution
of (3). O

Remark 12. It is easily seen that Theorem 10 and Corollary 11 hold
true also for the case of a higher dimensional system of FDEs.

4.2. One-dimensional FDEs generate two-parameter flows.
Now we are in a position to show that one-dimensional FDEs generate
two-parameter flows. First we define the evolution mappings of (3).

Definition 13. The evolution mapping of (3) is given by
CI)O,TI R—R, zg— x(T1)7

where 2o € R is an arbitrary initial value of (3), z(-) is the solution
of (3) starting from x(0) = x, and z(T}) is the evaluation of z(-) at T7.
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Definition 14. A two-parameter family of mappings
vst(')  R=R, s,tel

is called a two-parameter flow in R if it has the following three proper-
ties:

(i) @st(x) is continuous as a function of the three variables s,
teJand z € R;
(ii) for any fixed s, t € J, the mapping ¢, is a homeomorphism
of R; and
(iii) the flow property ¢s i © u,s = @y, holds for all u, s, t € J.

Theorem 15 (One-dimensional FDEs generate two-parameter flows
in R). The following statements hold for the one-dimensional FDE (3).

(i) The evolution mapping @+ generated by (3) is a bijection for
each t € J.

(ii) The FDE (3) generates a two-parameter family of bijections
on J by its evolution mappings, as follows,

(15) D, =Pgp0®y, forals, tel,

where @ . is the evolution mapping of (3) from Definition 13.
(iii) The family @4, for s, t € J, generated by the FDE (3), is a
two-parameter flow in R.
(iv) If f is linear in x, then the two-parameter flow generated by
the FDE (3) is a flow of linear operators.

Proof. (i) Fix an arbitrary Ty € J. By Theorem 6, ®¢ 1, is injective.
To show that ®¢ 1, is surjective, it suffices to show that, for an arbitrary
z* € R, the terminal-value problem

(16) CD8‘+x(t) = f(t,z(t)) fort e [0,T1],
(17) x(Ty) = «™,

has a continuous solution, assuming that the function f is continuous
and satisfies the Lipschitz condition (4). Put

M, :=L"(Th) = Jax, L(t),
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where L(t) is determined from (4). Let us denote by &(-) the solution
of the FDE (16) satisfying the initial condition #(0) = 0. Put

My = max [5(0)], Mz :=|a" = &(Th)| + Mo,
Ms @
M4 = M5 = M2+M4EQ(M1T1 )+1

Eo(—M T2
Clearly My < M3 < My < Ms. Define the function f on [0,7}] x R by

o _ f(t, x), if |z| < Ms,
(18) fm@_{ﬂwmwmmiﬂﬂ>Ma

and consider the terminal value problem

(19) ‘D (t) = f(t,x(1)),
(20) x(Ty) = z*.

Clearly f is Lipschitz continuous and bounded on [0,T1] x R, with
Lipschitz constant L(t). Hence, the problem (19)—(20) has at least one
solution, say x1(-) [3, Theorem 8]. We show that x1(-) is the required
solution of (16)—(17). To this end, notice that for all ¢ € [0, T1] we have

|£(t)] < M2 < Ms and hence f(¢,&(t)) = f(t,&(t)).

Therefore, Z(-) is the solution of the FDE (19) satisfying the initial
condition #(0) = 0. By applying Theorem 8 to the solutions #(-) and
x1(+) of the FDE (19), we see that, for any ¢ € [0,T1],

|2(t) = 21(8)] 2 |2(0) = 21(0)|Ba (= L*(£)t*) = |21 (0)| Ea (=M TY").
Substituting ¢t = T3, we get
|2(T1) — 21(T1)| = [21(0) | Ea (=ML TY),
and hence

B~

|1 (0)] < B MTE) =

Applying Theorem 10 to the solutions Z(-) and z1(-) of the FDE (19)
shows that, for any ¢ € [0, 73],

[z (B)] < [2()] + [21(0)| Ea (MLTT') < M,
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and hence f(t,z1(t)) = f(¢,21(t)). Therefore, z1(-) is a solution of the
FDE (16), and (i) is proved.

(ii) By (i), the evolution mappings of (3) are bijective, and hence
@, ; is well defined by (15). The flow property is easily verified.

(iii) By (ii), the FDE (3) generates a two-parameter family of
bijections ®,; of R for all s, ¢ € J. From Theorems 8 and 10, it
follows that the bijections ®,, are homeomorphisms and ® depends
continuously on three variables s, t and z.

(iv) Obvious. O

Definition 16. The two-parameter flow ® ;, specified in Theorem 15
and generated by the FDE (3), is called the nonlocal dynamical system
generated by (3).

Remark 17. Two distinguished features of the two-parameter flow
generated by the FDE (3) are as follows.

(i) The flow has a historical memory. Although the past has
impact on the behavior of the solutions, the solutions form
a two-parameter flow of homeomorphisms.

(i) The flow is in general a-Holder, but not C*.

Remark 18. Li and Ma [18, Theorem 2] claimed that they constructed
a dynamical system from a FDE. However, their construction is false.
For a counter example, see Cong, Son and Tuan [8, Remark 12].

5. Triangular systems of FDEs generate nonlocal dynamical
systems. In this section, using the results of Section 4 we show that a
higher dimensional, triangular system of FDEs also generates a nonlocal
dynamical system.

Let us consider a d-dimensional triangular system of (not necessarily
linear) FDEs,

“Dg, w1 (t) = filt, 21 (1)),
CD3+$2(t) = f2(t7‘r1(t)7x2(t));

(21)

CD8+.%'d(t) = fd(t7 1‘1(t)7 Ig(t), N 7l‘d(t)),
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for t € J, where z(-) = (z1(-),... ,:rd(-))T € R? and where the vector-
valued function f = (fi,..., fq)T is Lipschitz in the z variables, i.e.,
there exists a continuous function L : J — [0,00) such that, for all
i=1,...,dand all t € J, we have

(22) |fit,x1, .. 2) — filt, v, - v5)|
S LV (@ — )2 + -+ (2 — i)

This triangular system has a distinguished property: it can be solved
successively coordinate-wise and each time we have to solve only a one-
dimensional FDE. Hence, the triangular system inherits many features
of the one-dimensional FDEs.

Proposition 19 (Convergence rate for solutions of a triangular system
of FDEs). Assume that the Lipschitz condition (22) is satisfied, and
define L*(¢) as before in (14). Then, for any two solutions z(-) and y(-)
of the triangular FDE (21), and for any t € J,

l2(t) = y@)I = 2(0) — y(0)| Ea (—L* (£)t*).

Proof. Let x(-) = (z1(),...,24(-))T and y(-) = (y1(-), .-, ya(-))* be
two arbitrary solutions of the triangular FDE (21). Consider the first
equation in (21): it is a 1-dimensional FDE for the first coordinate.
Applying Theorem 8 to this equation, we get

|21(t) = y1 ()] > |21(0) — y1.(0)| Ea (=L7 () 7).

Since the first coordinate is solvable from the first equation, we can
substitute it into the second equation of the system (21) and get a
1-dimensional FDE for the second coordinate,

“Dipu(t) = falt,21(t), u(t) = falt, u(t)),

where, due to (22), the function fo(-,-) : J x R — R is L(t)-Lipschitz
continuous with respect to the second variable. Applying Theorem 8
to the solutions x5(-) and yo(+) of this 1-dimensional FDE, we get

|22(t) — y2(t)] > |22(0) — y2(0)| Ea (—L* () ).
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Continuing this process, we get, for ¢ = 1, ..., d and t € J, the
inequality

(23) |2i(t) = yi(t)] > |24(0) — yi(0)| Ea (—L*(t) ).

The conclusion of the proposition follows at once. O

An important particular case of the triangular system of FDEs (21)
is a linear triangular system,

(24) “Dga(t) = Alt)a(t),

wheret € J, 2 € R? and A : JxR¥*? is a bounded continuous triangular
(d x d) matrix-valued function. Thus, A(-) = [a;;(-)]1<i,j<4 With either
a;; =0 for all ¢ > j (upper triangular) or else a;; = 0 for all i < j (lower
triangular), and there exists a continuous function L : J — [0, 00) such
that

(25) JA()|| < L(t) forallte J.

Clearly, Proposition 19 is applicable to the linear triangular sys-
tem (24). Moreover, we also have a lower bound for solutions of (24).

Proposition 20 (Lower bound for solutions of a linear triangular sys-
tem of FDEs). Assume that the triangular matrix function A satisfies
(25), and recall the notation (14). Then, for any solution z(-) of the
FDE (24), and for any t € J,

@) = |z(0)[| Ea (=L () ).
Proof. Since the system (24) has the trivial solution 0, we can apply

Proposition 19 to the two solutions z(-) and 0 of (24) and arrive at the
desired conclusion. g

Similar to the one-dimensional case, for any 77 € J, the evolution
mapping of (21) is given by
(26) eor  RY = RY zo 0 2(Th),

where 7o € R? is an arbitrary initial value of (21), x(-) is the solution
of (21) starting from x(0) = xg, and x(7T}) is the evaluation of z(-)
at T;. By the same arguments as in Section 4, we can show that the
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evolution mapping ¢ of the triangular FDE (21) is a bijection for
any t € J.

Definition 21. A two-parameter family of mappings
0et():RERY st €,

is called a two-parameter flow in R? if it has the following three
properties:

(i) @s,(x) is continuous as a function of the three variables s, t € J
and = € R%
(ii) for any fixed s, t € J, the mapping ¢, +(-) is a homeomorphism
of R?%; and
(iii) the flow property ¢s i © pu,s = @y, holds for all u, s, t € J.

Theorem 22 (Triangular systems of FDEs generate nonlocal dynam-
ical systems). The following statements hold.

(i) The triangular system of FDEs (21) generates a two-parameter
flow in RY, namely

Pt 1= @Ovtowa’i:Rd%Rd for s, t € J,

where g ¢ is the evolution mapping of (21).
(ii) The linear triangular system of FDEs (24) generates a two-
parameter flow of d-dimensional linear nonsingular operators.

Proof. Similar to Theorem 15. (]

Definition 23. The two-parameter flow ¢, ; generated by the triangu-
lar FDE (21) is called the nonlocal dynamical system generated by (21).

6. A general high dimensional system of FDEs does not
generate a dynamical system. Finally, we show that in the high
dimensional case different trajectories of a FDE can intersect each
other. Thus, a high dimensional system of FDEs does not, in general,
generate a dynamical system. In order for a high dimensional FDE to
generate a nonlocal dynamical system we need an additional property of
the FDE, such as triangularity. The results of this section also provide
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a counter example to the assertions of Bonilla, Rivero and Trujillo [4,
Theorem 1, Propositions 1 and 2].

Theorem 24 (Different trajectories of a high dimensional system of
FDEs can meet). For any d > 2, there exists a system of type (1)
with the property that it has two different solutions, x1(-) and zo(-),
with x1(0) # x2(0) but which intersect each other at some finite time
moment T € (0,00), i.e., x1(T) = z2(T).

Proof. It suffices to construct a two-dimensional system of type (1)
having the desired property. In fact, the system we construct will also
be linear and autonomous.

Since a € (0,1), the complex-valued Mittag-Leffler function E,(+)
has infinitely many zeros in C [13, Corollary 3.10, p. 30]. Fix z* € C
such that E,(z*) = 0. Let

= arg(z") € (—m,w] and \:=cosp+ising,

where i = /=1 € C. Note that since a« € R, we have E,(z*) =
E.(z*) = 0, where w denotes the complex conjugate of the complex
number w. Since a € (0, 1) we have z* ¢ R, and hence A ¢ R. Consider

the matrix
{ cosyp  sin gp]
A= . ,
—singp cosgp

which has two (complex) eigenvalues, namely A and A. We show that
the associated linear and autonomous FDE,

(27) “Dg,x(t) = Az(t) for t € Ry,

has the desired property. Indeed, it is known [11, Theorem 7.15, p. 152]
that this FDE has two linearly independent solutions of the form

z1(t) = [zgﬂ and y(t) = [_UQES)} 7
where u, v : Ry — R are given by

u(t) := Eq(AtY) + Eo(Xt*) and  v(t) :=i(Ea (M) — Eq(AtY)).
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Since u(0) = 2 and v(0) = 0, it follows that

z1(0) = [g] and z2(0) = [g]
The general solution of (27) is
(28) z(t) = ax1(t) + bxa(t),

where a, b € R are arbitrary real constants. Let T > 0 be the unique
finite positive number satisfying

AT = 2%;

a unique such T exists due to the definitions of z* and A. Clearly
uw(T) = v(T) = 0, and hence z1(T) = xo(T) = (0,0)T. From (28), it
follows that for any solution x(t) of (27) we have z(T") = 0. O

From Theorem 24 we obtain immediately the following corollary.

Corollary 25 (A higher dimensional FDE does not generate a nonlocal
dynamical system). For d > 2, the FDE (1) does not, in general,
generate a two-parameter flow in R?. Hence it does not, in general,
generate a nonlocal dynamical system.

Remark 26. We note the following.

(i) Actually, for the FDE (27), all the solutions are equal to (0,0)T
at time T'; hence, all of them meet each other.

(ii) Theorem 24 shows that, in contrast to the initial-value problem,
the terminal-value problem for FDEs is not always solvable.

(iii) Theorem 24 allows us to understand better the dynamics of
FDEs, by revealing a distinguished feature in comparision with
ODEs: different trajectories of an FDE may meet, whereas for
an ODE they cannot.

(iv) By a small modification of A in the proof of Theorem 24, we
can make the time of intersection T" small.

(v) By a small modification of the proof, one can show that Theo-
rem 24 also holds for any positive real a # 1.
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