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We propose a new algorithm for finding the Edgeworth-Pareto hull for multiple objective
linear mathematical programming problems, where the constraint set is given by a finite
number of points. We apply the proposed algorithm to minimizing an increasingly quasicon-
cave function over the efficient set by using the Edgeworth-Pareto hull in outcome space.
When the cardinality of the discrete constrained set is large, one can replace this set by the
vertices of its convex hull. Application to minimization problems of an increasingly quasi-
concave function over the efficient set by using the Edgeworth-Pareto hull is discussed. The
obtained computational results on a lot number of randomly generated problems show the
efficiency of the proposed algorithm for some cases.
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1. Introduction

The multiple objective (vector) mathematical programming problem involves simulta-
neous optimization (minimization or maximization) of p > 2 criterion functions over a
nonempty set. For this problem the concept of an efficient Pareto solution plays an im-
portant role. The efficient set, even for the case when the constrained set is polyhedral
convex and the criterion functions are affine, may not be convex. Thus finding the entire
or a significant part of this set, in general, is a difficult global optimization problem,
especially for large size problems. Fortunately, in many practical problems, the number
of the criterion functions is much smaller than the dimension of the decision variable.
For this case, some properties for the efficient set can be derived and understood more
easily by focusing on the efficient outcome set rather than on the efficient set itself.
The outcome set approach has been used in studies concerning the existence of the ef-
ficient solution. It also has been used for key properties of the efficient set such as the
connectedness, stability, contractibility and optimization over the efficient set, see e.g.,
[3, 4, 9-11]. Numerous instances of the beneficial use of outcome set can be cited, for
example, [3, 4, 7,9, 21].

On the other hand, the concept of the Edgeworth-Pareto efficiency has been used
for studies multiple objective programming problems thanks to the fact that this set
has particular properties, see e.g. [23], such as it is a full-dimensional convex set, all
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of its vertices are efficient. These facts can be employed in some applications such as
in optimization over the efficient set. There exist several approaches for approximating
the Edgeworth-Pareto hull such as the Haussdorff approximation [13, 24], the iterative
polyhedral approximation based on a synthesis of the ideas of the branch-and-bound
method [23].

The problem of optimizing a real function over the efficient set has been introduced
by Philip [22] for the linear case. After the appearance of the works by Benson [5, 6] this
problem has attracted much attention of the researchers, see e.g. [1, 8, 12, 16, 17, 19, 25,
26] and the references therein. However to our best knowledge there is no method for
this problem in the case when the constraint set is a finite set of points. Such a finite set
is often given by methods of statistics for practical problems.

The purpose of this paper is to propose a new algorithm for determining the vertex-set
in outcome space of the Edgeworth-Pareto hull for multiple objective linear problems,
where the constraint set is given as a finite number of points, and to apply it to minimizing
an increasingly quasiconcave function over the efficient set of such a discrete multiple
objective program by using the Edgeworth-Pareto hull in outcome space rather than
the efficient set itsself. The main points of the problem to be solved and the proposed
algorithm are the followings:

e The constrained set X of the multiple objective linear problem under consideration
can be a discrete set given by a finite number of points in the decision space;

e The proposed algorithm can use algorithms for finding the vertices of the convex
hull in the outcome space for the discrete constraint set. The number of these vertices
is often significantly smaller than the number of points of X. This fact allows that the
method can handle multiple objective discrete programs whose constrained set may be
very large;

e The algorithm is a finite recursive procedure in outcome space that can compute all
vertices of the Edgeworth-Pareto hull;

e The optimization problem over the efficient set of a multiple objective linear program
whose constraint set is given by a finite number of points is solved by using the proposed
algorithm for determining the vertex-set of the Edgeworth-Pareto hull in the outcome
space. The latter set is convex, and, in general, much smaller than the efficient set in
outcome space (see Fig. 1 below).

The paper is organized as follows. The next section contains some properties concerning
the Egdeworth-Pareto hull and related optimization problem over this set. The third
section is devoted to description of the proposed algorithm for finding the Egdeworth-
Pareto hull and its application to optimization over the efficient set. We close the paper
with some computational results and experiments for the proposed algorithms.

2. Preliminaries on the Edgeworth-Pareto hull

First we recall that the convex hull convD of a set D is the intersection of all convex
sets containing D. It is well known from the convex analysis that every vertices of convD
belongs to D, and that convD is a bounded polyhedral convex set (polytope) if D is a
finite set.

In what follows, as usual, for two vectors a,b € RP, the notation a > b means a — b €
RE = {y = (1, yp)ttn > 0,...,y, > 0}. By V(P) we denote the vertex-set of a
polyhedral convex set P.

We consider the multiple linear objective optimization problem that is given as



Vmin{f(z) = Cz : 2z € X}, (VP)

where X C R" is a set of finite points in R", C'is a (p x n)-real matrix. Recall that a
point z* € X is said to be an efficient solution for Problem (VP) if z € X, Cz < Cz*
then Cz* = Cz. Let X denote the set of all efficient solutions for Problem (VP).

The set Y = C(X) C RP, is called the outcome set (or image) of X. Since X is finite, Y
is finite too. Denote the convex hull of Y by convY. Recall [15, 23] that the set convY +RE
is called the Edgeworth-Pareto hull of Y, denoted by Y°, which means

Y°={yeRPly==z2+d,z €convY,d € R }.
From the definition, it is easy to check that
Y Y, V(Y®) C Y,
where Yg stands for the efficient set of Y. It is easy to see that
Ye={yeY:3x € Xp,y=_Cuz}.
Consider the following optimization problem over the efficient set

min{e(f(x)) : z € Xp}, (P)

where ¢ : RP — R, f : R" — RP. The outcome-space reformulation of Problem (P) is
given by

min{p(y) : y € Ye}. (OP)
The next result is a direct consequence of Proposition 2.1 in [7].

PROPOSITION 2.1 A point z* is a global optimal solution of Problem (P) if and only if
y* € Yg, with f(x*) = y*, is a global optimal solution of Problem (OP).

Now let us consider the optimization problem over the Edgeworth-Pareto hull related
to (OP) which is defined as

min{p(y) : y € Y°} (OP°).

The following proposition gives a relationship between Problems (OP) and (OP°).

PROPOSITION 2.2 Suppose that ¢(y) is lower semi-continuous and quasiconcave on Y,
then

i) If problem (OP®) is solvable then one of the optimal solutions of (OP°) attains at
a vertex of Y°;

it) If y* € V(Y°) is an optimal solution of (OP?), then it is also an optimal solution
of (OP).

Proof. The first part of the assertion is obvious because the function ¢ is quasiconcave
and Y is convex. Suppose that y* € V(Y®) is an optimal solution of (OP?), which



Y? = convY + Ri

x: efficient point

V(Y°) = {a,b}

Figure 1. The Edgeworth Pareto hull

means

e(y*) < p(y) for all y € Y°.

Since Yy C Y C Y*, it implies that

o(y*) < p(y) for all y € Yg.

Since y* € V(Y°), by V(Y°) C Yg, we have y* € Yg. Thus y* is an optimal solution of
problem (OP). [ |

Remark 1 1If ¢(y) is an increasing function in the sense that y > ¢/, implies ¢(y) > »(y/),
and ¢(y) is lower semi-continuous and quasiconcave then problem (OP?) is solvable.
Thus, by Proposition 2.2, every optimal solution of problem

min{p(y) |y € V(Y°)}

is also an optimal solution of (OP).

3. Description of the algorithms

Propositions 2.1 and 2.2 suggest that for solving Problem (OP) one can evaluate the
objective function ¢ at vertices of the Edgeworth-Pareto hull in the outcome space. In
the case the discrete set X is large and the number of the criteria is much smaller than
the dimension of decision variable (often in practice), one suggests the use of an existing
algorithm for computing all vertices of the convex hull of the image set Y of X. Fig. 1
is an example in R? showing that the number of vertices of convY is much smaller than
that of Y.

Now we are going to present an algorithm for finding all vertices of the Edgeworth-
Pareto hull. Suppose that V(Y°) = {v',v?,...,v'}. From the definition of Y, it is ob-
viously that for every y € Y° there exists a vector d € R’ such that y = z + d,
where z is a convex combination of {v',v? ... '}, that for each k € {1,2,..,1},
oF & conv({v!,v?, .., v} \ {v*}) + RE, that dimY® = p, and that V(Y°) C Y.
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Figure 2. An illustration for Algorithm 1

The algorithm below for finding V' (Y®) can be regarded as an induction procedure for
the dimension of the set Y°. Suppose that for each coordinate j we have computed all
vertices of the Edgeworth-Pareto hull of Y; where Y is obtained from Y by deleting j-th
coordinate. Then the algorithm for computing V(Y) from V(Y}), for every j =1,...,p
can be described in detail as follows.

Algorithm 1

e Step 1: Find y™ € RP such that y™ > max{y;|y € Y'}.
e Step 2: Foreach j=1,...,p
oSet Y; = {pjly)ly € Y}, where pj(y) is obtained from yT =
(Y1 -2 Yj—1, Y5> Yj+1, ---Yp) Dy deleting j-th coordinate.
o Compute V(Y}) in the space RP~! and set

Vj = {v € RPlp;(v) € V(Y)),v; = 9"},

P
e Step 3: Let Y/ :=Y U (J V;) U{yM} and define V(Y*) by taking
7j=1
V(Y®) = V(convY')NY.
Remark 2 It is easily seen that if Y7 C R then
V(YY) = min{yaly = (y1,52) € Y}

and
V(Yy) = min{y1ly = (y1,92) € Y}

To illustrate the algorithm, let us consider the following simple example for p = 2 (Fig.
2).
Suppose that

Y :={a,b,c,d} with a:=(1,1),b:=(1,0),c:=(0,-1),d:=(—1,-1).



Then, by definition

Yy = {1,0,—1,—1}, Y3 = {1,1,0,—1}.

Thus
Y ={-1,0,1} + Ry = [-1,400), Yy ={-1,0,1} + Ry = [-1,400).
Hence
V(YY) = {=1}, V(¥?) = {-1}.
Take

y{‘/l =2 >max{y : (y1,y2) €Y} =1, yé‘/‘[ =3 >max{ys: (y1,42) €Y} = 1.
Then, by definition

Vi={v=(v1,02) €R: vy € V(YY) 01 =y =2} = {(2,-1)} = {y""}

Vo= {v=(vi,02) € R* 01 € V(V),0a = 35" =3} ={(-1,3)} = {y""*}.
Thus
Y =Y ULV, 1} Uy} = Y U{(2, 1), (-1,3)} U{(2.3)}.
Since V(convY”) NY = {(—1,—1)}, we have V(Y°) = {(~1, 1)}

Now we show the validity and finite convergence of the algorithm.

THEOREM 3.1 Algorithm 1 is well defined and terminates after a finite number of steps
yielding all vertices of the Edgeworth-Pareto hull Y°.

Proof. We divide the proof into several steps:

(i) Firstly, we show that there exists a set S = {v!,v?,...;v'} C Y such that V(convY’) =

P

(}Ule) U{yMIus.

]:
Indeed, from y < yM for all y € convY”’, it follows that y is a vertex of convY”.
For the case j = 1, let v € V] and suppose that v & V (convY”). Since v; =y} >y

for all y = (y1, ..., yp) € convY”’, we see that v is a convex combination of points in Y’

in the facet y; = y17, which means that

v= Z Aot + Ay™ (1)
’U“Evl

= Z Mt + Mg + A (v = q), (2)
eV

where > A+ Aw =12, Ay €[0,1], g€ Y.
v“eVl



(i)

(iii)

From (2) we can write

pi(v) = > Aupr(v") + Aupi(g) + o
vreEV]

where p1(v"),p1(q) € V1 = pi(Y), a = Aupi((yM — q)) € pi(RY) = RY. But
p1(v) € V(YY) we see that A\, = 1 with pi(v,) = p1(v), Ay = 0 with p1(v,) # p1(v)
and A\j; = 0. Combining with (1) we can conclude that v is a vertex of convY”’. The
same argument can be used for j =2, ..., p.

Next we show that for each j € {1,...,p} and v € Vj, there exists v € S such that
pj(0) = pj(v). We suppose that j = 1, for other j the argument is the same. Fix
v € Vi and let v = argmin{yi|ly € Y,p1(y) = p1(v)}. We prove that v € S. Indeed,
since p1 () € V(Y7), the point © cannot be a convex combination of points in Y’ whose
projections on p; (RY) := {(y2, ..., yp), y; > 0 Vj} are different from p(v). On the other
hand, since

o1 = min{y1ly € Y,p1(y) = p1(v)} = min{y1ly € Y', p1(y) = p1(v)},

we have 0 & conv(Y”\ {t}) + RE as the desired conclusion.
Now we show Y° = S°.

Obviously, S° C Y, so it is sufficient to show that Y° C §°. Indeed, take an y € Y°
then there exist z € convY,d € ]Rfr such that y = z + d. Since z € convY C convY’,
we can express z as a convex combination of V(convY”’) that means

z—Z)\kv +ZZAW + AryM (3)

J=1vlev;

where A, M., Aar € [0,1] and Z Ak + E SN 4+ Ay =1
k=1 J=lvlev,
By(ii), for each Uu € Vj there is Uu € S such that Uu = Uu —i—auej with au > 0. Thus,
from (3) it follows that

Z—Z)\kv —i—ZZAJvJ—F)\MU —1—2204367—1—)\]\/[ —ol), 4)
_Z)\kv —l—ZZ)\]U]—F)\MU —|—d (5)

J=1ylev;

P o
where Z > ane? + A (y™M —ovt) € RE which implies that y € S° and Y° C R°.
J=lvlev;

Finally, we claim that V(Y®) =S = V(convY’)NY.

For this purpose, first we show that v* ¢ conv({v!,v?,...,v'} \ {v*}) + R” , for each
ke{l1,2,..1}.

Indeed, suppose in contrary that v* = u + 3, where u is a convex combination of
{v' 0%, .03\ {vF} and B € R” . Note that for each j € {1,...,p}, ok + (yJM —v;-“)e] €
conv(Y”’) and y]M > U}“ therefore there is an t; > 0 such that v* + te/ € convy’



p .
for 0 <t < t;. Since convY” is convex, conv( |J {v* +tel|0 <t < t;}) C convY”. Let
j=1
v :=v¥ + \B, then there exists A > 0 satisfying

p
v E COHV(U{vk +ted|0 <t < t;})
j=1
which means v € convY”’, and therefore v* = %H
v* € V(convY”).
From (iii) and (iv) we can conclude that V(Y°) = S = V(convY’) NY.

u + %HU which contradicts the fact

Remark 3 1. Since conv(Y) = conv(V (convY’)) in Algorithm 1 one can replace Y with
V(convY'). In many cases, the set V(convY') is significantly smaller than Y. In the case
when the number of the criteria is relatively small, there exist existing efficient algorithms
such as Quickhull ones [2] for computing V (convY).

2. When p = 2, Algorithm 1 for computing V(Y ) can be modified as follows.

e Step 1:
a1 = min{yi|ly € Y}, ag = min{ysly € Y,y1 = a1}, a = (a1, az).
by = min{yg\y S Y}, by = min{yﬂy S Y, Y2 = bg}, b= (bl,bg).
e Step 2: If a = b then V(Y°) = {a}.
Otherwise, let T be the set of all points of Y that lie below the line connecting a
and b, that means

T={y=(y1,92) €Y | (y1 —a1)/(b1 —a1) — (y2 — a2)/(b2 — az) < 0}
Then V(Y°) = V(conv(T U {a,b})).

Having the vertices of the Edgeworth-Pareto hull we can solve Problem (OP?) thereby,
by Propositions 2.1, 2.2, to obtain a global solution of (OP) and (P) in the case of
Problem (OP°) has a solution. The algorithm is the following.

Algorithm 2

e Step 1. Use an algorithm, for example in [2], to compute all vertices V (convY’) of the
convex hull of the outcome set Y = f(X) = C.X.

e Step 2. Apply Algorithm 1 with ¥ := V(convY’) to compute the vertex-set V(Y ) of
the Edgeworth-Pareto hull Y°.

e Step 3. Evaluating the objective function ¢ at every vertex of V(Y ) to obtain a
vertex that is a global optimal solution to (OFP°).

Remark 4 The following simple example shows that Problem (OP°) has nonsolution
while Problem (OP) solvable. In this case Algorithm 2 cannot be used.

Example. Consider the outcome set Y = {a,b,c,d}, where a = (1,3),b = (2,3),c =
(2.5,2.5),d = (3,1) as in Fig.3. It is easily seen that Yr = {a,¢,d} and V(Y*°) = {a, d}.
The function p(y) = —y3 — y2 is continuous and quasiconcave on Y°. The solution of

problem (OP) is c and ¢ ¢ V(Y°).



Y={a, b, c, d}
Y,={a, c, d}

V(Y®) = {a, d}

a b
C
2.5
7 d
0 Ji 2 253

Figure 3. Example

4. Numerical experiments and results

We implemented the proposed algorithms by coding in Matlab R2012a, on an PC with
RAM 8G, Intel core i7 2.26 GHz and Win7-64bit operating system.

To compute the convex hull of Y we use the Matlab command ”convhulln” which was
designed based on Quickhull algorithm [2].

The data is given as follows.

e f(x) = Cxz, where the matrix C' € {0, 1}P*" is generated randomly.

e X including m vectors in R" is regarded as a matrix of order m x n. The entries of X
is generated randomly in the interval [0, 1000].

e The funtion ¢ is given by

¢1(y) = min{B'(y)"2 | z € {0,1}",a” 2 < b}
or

©o(y) = min{B*(y)Tz | z € {0,1}",aTz < b}

where a € R™ is an integer vector randomly generated in [0,1000]. The vector
n
b=1 Zlai is chosen as the capacity of Knapsack problem [18] and B*(y) : RP —
1=
R™ k =1,2 are given by

Bl(y) =TIy al > 0,y; > 0,i=1,..,n;j = 1,...,p

and

n
Bi(y) = Zaz» log(y; + 1),@2» >0,y;,>0,i=1,...,n;5=1,...,p.
j=1



Table 1. Computational results for Algorithm 1.

m = 10° m = 10°
p n #V(convY) #V(Y°) CPU(s) #V(convY) #V(Y°) CPU(s)
20 17.4 3.6 0.0952 20.2 4.3 0.7972
2 50 15.3 3.6 0.1092 17.6 3.9 0.9313
100 15.7 3.8 0.1544 17.7 3.8 1.3775
20 80.8 9.1 0.117 111.8 9.9 0.9859
3 50 7.7 9.4 0.1778 94 8.9 1.0889
100 72.2 7.2 0.2059 87.9 9.5 1.3806
20 301 18.6 0.1763 450.9 18.4 1.2511
4 50 256.3 12.5 0.1981 307.2 15.3 1.4087
100 231.8 13.3 0.2262 307.2 15.3 1.4087
20 853.3 23.2 0.5772 1477.6 38 2.5943
5 50 658.7 21.8 0.4586 1060 25.8 2.3228
100 621.8 19.8 0.4352 967.2 24.7 2.5225

It is clear that ¢; and 9 are increasing and quasiconcave with respect to y. So by
Remark 1 Problem (OP?) is solvable and we can apply Algorithm 2 for solving Problem
(OP).

To evaluate ¢ at each y we solve an integer program by wusing CVX 2.1
containing Gurobi Solver 6.0 (academic version at http://cvxr.com/cvx/ and
http://www.gurobi.com/).

We tested Algorithms 1 and 2 for problems with m = 10%, m = 10° and p = 2, 3,4, 5.
The coefficients {oc;};zllz are randomly generated in [0, 1], [0,0.5] and in [0, 0.25] for
n = 20, n = 50 and n = 100 respectively.

For each problem size we run 10 instances randomly generated and take the average
over them. In tables below by #S we denote the average of the cardinality of a set .S for
10 tested instances, where S can be V(convY), V(Y ) or Yg. We compared Algorithm 2
with the enumeration algorithm in [14] (denoted by Algorithm 3) that generates every
point in Yz and evaluates the objective function at each generated point to obtain the
solution set. From the obtained computational results we can conclude the followings:

e Algorithm 1 for computing the Edgeworth-Pareto hull of a multiple objective discrete
linear program is efficient when the cardinality of the constrained set can be large (10),
while the number of the criteria is relatively small;

e Algorithm 2, which uses the Edgeworth-Pareto hull, for optimizing an increasingly
quasiconcave lower semi-continuous function over the efficient set of a multiple objective
discrete linear program is much more efficient than the enumeration algorithm in [14],
whenever the constrained set is sufficiently large and the evaluation of the objective
function requires much computational times.

10



Table 2. Comparison for running time between Algorithm 2 and Algorithm 3.

§01-CPU(S) QDQ—CPU(S)
m |p n | #V(conwY) #V(Y°®) #Yrp Algo.2 Algo.3 Algo. 2 Algo. 3
20 17.4 3.6 8.1 0.4961 1.5647 0.4118 1.4945
2 50 15.3 3.6 6.2 0.5148 1.4305 0.4212 1.3884
100 15.7 3.8 6.7 0.5476 1.2355 0.468 1.2168
20 80.8 9.1 25.8 0.883 3.4382 0.8268 3.4164
3 50 e 9.4 244 1.0436 3.705 0.9204 3.6379
10° 100 72.2 7.2 15.8 0.9079 3.3524 0.8315 3.2885
20 301 18.6 55.4 1.7628 8.2446 1.702 8.1838
4 50 256.3 12.5 40.4 1.3073 8.1417 1.1778 7.9202
100 231.8 13.3 40.7 1.3666 6.1527 1.2558 5.9187
20 853.3 23.2 73.3 2.6767 17.6843 2.4476 17.0915
5 50 658.7 21.8 74.7  2.5085 16.0198 2.3478 15.8404
100 621.8 19.8 71.7 2.028 10.1697 1.989 10.0543
20 20.2 4.3 8.4 1.1716 6.4912 1.1794 6.4319
2 50 17.6 3.9 6.9 1.2527 7.5161 1.2698 7.5161
100 17.7 3.8 7.4 1.7004 5.2385 1.7098 5.1886
20 111.8 9.9 239 1.8548 14.1774 1.8174 14.11654
3 50 94 8.9 264 1.9812 17.6796 1.8751 17.5361
108 100 87.9 9.5 279 2.3057 19.8917 2.1887 19.848
20 450.9 18.4 61.2 2.8532 57.0823 2.6676 56.8982
4 50 356.5 15.7 61 2.4617  41.3278 2.4461 41.0922
100 307.2 15.3 64.3 2.6411 424744 2.6005 42.2607
20 1477.6 38 153.5 5.694  119.2986 5.577  119.26276
5 50 1060 25.8 96.3 4.6691 90.2169 4.4164 90.1218
100 967.2 24.7 104.9 4.6597  79.9053 4.4725 79.7103

5. Conclusion

We have proposed an induction algorithm in outcome space for finding the Edgeworth-
Pareto hull of multiple objective discrete linear programming problems, where the con-
strained set is given by a finite number of points in the decision space. In the case the
cardinality of the constrained set is very large, in order to reduce computational times,
we have used an existing algorithm such as Quickhull one to replace the constrained set
by the vertices of its convex hull. Application to minimization problems of an increasingly
quasiconcave function over the efficient set by using the Edgeworth-Pareto hull has been
discussed. Some numerical results showing the efficiency of the proposed algorithms have
been reported.
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