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Abstract

We develop the dichotomy spectrum for random dynamical systems and demonstrate its
use in the characterization of pitchfork bifurcations for random dynamical systems with ad-
ditive noise.

Crauel and Flandoli [CF98] had shown earlier that adding noise to a system with a deter-
ministic pitchfork bifurcation yields a unique attracting random fixed point with negative
Lyapunov exponent throughout, thus “destroying” this bifurcation. Indeed, we show that in
this example the dynamics before and after the underlying deterministic bifurcation point
are topologically equivalent.

However, in apparent paradox to [CF98], we show that there is after all a qualitative change
in the random dynamics at the underlying deterministic bifurcation point, characterized by
the transition from a hyperbolic to a non-hyperbolic dichotomy spectrum. This breakdown
manifests itself also in the loss of uniform attractivity, a loss of experimental observability
of the Lyapunov exponent, and a loss of equivalence under uniformly continuous topological
conjugacies.

1 Introduction

Despite its importance for applications, relatively little progress has been made towards the
development of a bifurcation theory for random dynamical systems. Main contributions have
been made by Ludwig Arnold and co-workers [Arn98], distinguishing between phenomenological
(P-) and dynamical (D-) bifurcations. P-bifurcations refer to qualitative changes in the profile
of stationary probability densities [SN90]. This concept carries substantial drawbacks such as
providing reference only to static properties, and not being independent of the choice of coordi-
nates. D-bifurcations refer to the bifurcation of a new invariant measure from a given invariant
reference measure, in the sense of weak convergence, and are associated with a qualitative change
in the Lyapunov spectrum. They have been studied mainly in the case of multiplicative noise
[Bax94, CIS99, Wan15], and numerically [ABSH99, KO99].
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In this paper, we contribute to the bifurcation theory of random dynamical systems by shedding
new light on the influential paper Additive noise destroys a pitchfork bifurcation by Crauel and
Flandoli [CF98], in which the stochastic differential equation

dx =
(
αx− x3

)
dt+ σdWt , (1.1)

with two-sided Wiener process (Wt)t∈R on a probability space (Ω,F ,P), was studied. In the
deterministic (noise-free) case, σ = 0, this system has a pitchfork bifurcation of equilibria: if
α < 0 there is one equilibrium (x = 0) which is globally attractive, and if α > 0, the trivial
equilibrium is repulsive and there are two additional attractive equilibria ±

√
α. [CF98] establish

the following facts in the presence of noise, i.e. when |σ| > 0:

(i) For all α ∈ R, there is a unique globally attracting random fixed point {aα(ω)}ω∈Ω.

(ii) The Lyapunov exponent associated to {aα(ω)}ω∈Ω is negative for all α ∈ R.

As a result, [CF98] concludes that the pitchfork bifurcation is destroyed by the additive noise.
(This refers to the absence of D-bifurcation, as (1.1) admits a qualitative change P-bifurcation,
see [Arn98, p. 473].) However, we are inclined to argue that the pitchfork bifurcation is not
destroyed by additive noise, on the basis of the following additional facts concerning the dynamics
near the bifurcation point, that we obtain in this paper:

(i) The attracting random fixed point {aα(ω)}ω∈Ω is uniformly attractive only if α < 0 (The-
orem 4.3).

(ii) At the bifurcation point there is a change in the practical observability of the Lyapunov ex-
ponent: when α < 0 all finite-time Lyapunov exponents are negative, but when α > 0 there
is a positive probability to observe positive finite-time Lyapunov exponents, irrespective
of the length of time interval under consideration (Theorem 4.4).

(iii) The bifurcation point α = 0 is characterized by a qualitative change in the dichotomy spec-
trum associated to {aα(ω)}ω∈Ω (Theorem 4.6). In addition, we show that the dichotomy
spectrum is directly related to the observability range of the finite-time Lyapunov spectrum
(Theorem 4.7).

In light of these findings, we thus argue for the recognition of qualitative properties of the di-
chotomy spectrum as an additional indicator for bifurcations of random dynamical systems.
Spectral studies of random dynamical systems have focused mainly on Lyapunov exponents
[Arn98, Con97], but here we develop an alternative spectral theory based on exponential di-
chotomies that is related to the Sacker–Sell (or dichotomy) spectrum for nonautonomous differ-
ential equations. The original construction due to R.J. Sacker and G.R. Sell [SS78] requires a
compact base set (which can be obtained, for instance, from an almost periodic differential equa-
tion). Alternative approaches to the dichotomy spectrum [AS01, BAG93, Ras09, Ras10, Sie02]
hold in the general non-compact case, and we use similar techniques for the construction of
the dichotomy spectrum by combining them with ergodic properties of the base flow. We note
that the relationship between the dichotomy spectrum and Lyapunov spectrum has also been
explored in [JPS87] in the special case that the base space of a random dynamical system is a
compact Hausdorff space, but our setup does not require a topological structure of the base.

In analogy to the corresponding bifurcation theory for one-dimensional deterministic dynamical
systems, we finally study whether the pitchfork bifurcation with additive noise can be character-
ized in terms of a breakdown of topological equivalence. We recall that two random dynamical
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systems (θ, ϕ1) and (θ, ϕ2) are said to be topologically equivalent if there are families {hω}ω∈Ω of
homeomorphisms of the state space such that ϕ2(t, ω, hω(x)) = hθtω(ϕ1(t, ω, x)), almost surely.
We establish the following results for the stochastic differential equation (1.1):

(i) Throughout the bifurcation, i.e. for |α| sufficiently small, the resulting dynamics are topo-
logically equivalent (Theorem 5.2).

(ii) There does not exist a uniformly continuous topological conjugacy between the dynamics
of cases with positive and negative parameter α (Theorem 5.5).

These results lead us to propose the association of bifurcations of random dynamical systems
with a breakdown of uniform topological equivalence, rather than the weaker form of general
topological equivalence with no requirement on uniform continuity of the involved conjugacy.
Note that uniformity of equivalence transformations plays an important role in the notion of
equivalence for nonautonomous linear systems (i.e. in contrast to random systems, the base set
of nonautonomous systems is not a probability but a topological space), see [Pal79].

This paper is organised as follows. In Section 2, invariant projectors and exponential dichotomies
are introduced for random dynamical systems. Section 3 is devoted to the development of the
dichotomy spectrum. In Section 4, we discuss the pitchfork bifurcation with additive noise,
reviewing the results of [CF98] and develop our main results in relationship to the dichotomy
spectrum. Finally, in Section 5, we discuss the existence (and absence) of (uniform) topological
equivalence of the dynamics in the neighbourhood of the bifurcation point. Important prelimi-
naries on random dynamical systems are provided in the appendix.

2 Exponential dichotomies for random dynamical systems

In this section, we define invariant projectors and exponential dichotomies as tools to describe
hyperbolicity and (un)stable manifolds of linear random dynamical systems.

Let (Ω,F ,P) be a probability space and (X, d) be a metric space. A random dynamical system
(θ, ϕ) (RDS for short) consists of a metric dynamical system θ : T× Ω→ Ω, where T = R or Z
(which models the noise, see Appendix) and a (B(T) ⊗ F ⊗ B(X),B(X))-measurable mapping
ϕ : T× Ω×X → X (which models the dynamics of the system) fulfilling

(i) ϕ(0, ω, x) = x for all ω ∈ Ω and x ∈ X,

(ii) ϕ(t+ s, ω, x) = ϕ(t, θsω, ϕ(s, ω, x)) for all t, s ∈ T, ω ∈ Ω and x ∈ X.

Note that we frequently use the abbreviation ϕ(t, ω)x for ϕ(t, ω, x) (even if the random dynamical
system under consideration is nonlinear). We also say that a random dynamical system (θ, ϕ)
is ergodic if θ is ergodic.

For the spectral theory part of this paper, suppose that the phase space X is given by the
Euclidean space Rd. A random dynamical system (θ, ϕ) is called linear if for given α, β ∈ R, we
have

ϕ(t, ω)(αx+ βy) = αϕ(t, ω)x+ βϕ(t, ω)y

for all t ∈ T, ω ∈ Ω and x, y ∈ Rd. Given a linear random dynamical system (θ, ϕ), there exists
a corresponding matrix-valued function Φ : T×Ω→ Rd×d with Φ(t, ω)x = ϕ(t, ω)x for all t ∈ T,
ω ∈ Ω and x ∈ Rd.

3



Given a linear random dynamical system (θ,Φ), an invariant random set M (see Appendix) is
called a linear random set if for each ω ∈ Ω, the set M(ω) is a linear subspace of Rd. Given
linear random sets M1,M2,

ω 7→M1(ω) ∩M2(ω) and ω 7→M1(ω) +M2(ω)

are also linear random sets, denoted by M1 ∩ M2 and M1 + M2, respectively. A finite sum
M1+· · ·+Mn of linear random sets is called a Whitney sum M1⊕· · ·⊕Mn ifM1(ω)⊕· · ·⊕Mn(ω) =
Rd holds for almost all ω ∈ Ω.

An invariant projector of (θ,Φ) is a measurable function P : Ω→ Rd×d with

P (ω) = P (ω)2 and P (θtω)Φ(t, ω) = Φ(t, ω)P (ω) for all t ∈ T and ω ∈ Ω .

The range
R(P ) :=

{
(ω, x) ∈ Ω× Rd : x ∈ RP (ω)

}
and the null space

N (P ) :=
{

(ω, x) ∈ Ω× Rd : x ∈ NP (ω)
}

of an invariant projector P are linear random sets of (θ,Φ) such that R(P )⊕N (P ) = Ω× Rd.
The following proposition says that, provided ergodicity, the dimensions of the range and the
null space of an invariant projector are almost surely constant.

Proposition 2.1. Let P : Ω → Rd×d be an invariant projector of an ergodic linear random
dynamical system (θ,Φ). Then

(i) the mapping ω 7→ rkP (ω) is measurable, and

(ii) rkP (ω) is almost surely constant.

Proof. (i) We first show that the mapping A 7→ rkA on Rd×d is lower semi-continuous. For
this purpose, let {Ak}k∈N be a sequence of matrices in Rd×d which converges to A ∈ Rd×d,
and define r := rkA. Then there exist non-zero vectors x1, . . . , xr such that Ax1, . . . , Axr are
linearly independent, which implies that det[Ax1, . . . , Axr, xr+1, . . . , xd] 6= 0 for some vectors
xr+1, . . . , xd ∈ Rd. Since limk→∞Ak = A, one gets

lim
k→∞

det[Akx1, . . . , Akxr, xr+1, . . . , xd] = det[Ax1, . . . , Axr, xr+1, . . . , xd] .

Hence, there exists a k0 ∈ N such that vectors Akx1, . . . , Akxr are linearly independent for
k ≥ k0, and thus, rkAk ≥ r for all k ≥ k0. Consequently, the lower semi-continuity of the
mapping A 7→ rkA is proved. Therefore, the map Rd×d → N0, A 7→ rkA is the limit of a
monotonically increasing sequence of continuous functions [Ton52] and thus is measurable. The
proof of this part is complete. (ii) By invariance of P , we get that

P (θtω) = Φ(t, ω)P (ω)Φ(t, ω)−1,

which implies that rkP (θtω) = rkP (ω). This together with ergodicity of θ and measurability
of the map ω 7→ rkP (ω) as shown in (i) gives that rkP (ω) is almost constant.
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According to Proposition 2.1, the rank of an invariant projector P can be defined via

rkP := dimR(P ) := dimRP (ω) for almost all ω ∈ Ω ,

and one sets
dimN (P ) := dimNP (ω) for almost all ω ∈ Ω.

The following notion of an exponential dichotomy describes uniform exponential splitting of
linear random dynamical systems.

Definition 2.2 (Exponential dichotomy). Let (θ,Φ) be a linear random dynamical system, and
let γ ∈ R and Pγ : Ω → Rd×d be an invariant projector of (θ,Φ). Then (θ,Φ) is said to admit
an exponential dichotomy with growth rate γ ∈ R, constants α > 0, K ≥ 1 and projector Pγ if
for almost all ω ∈ Ω, one has

‖Φ(t, ω)Pγ(ω)‖ ≤ Ke(γ−α)t for all t ≥ 0 ,

‖Φ(t, ω)(1− Pγ(ω))‖ ≤ Ke(γ+α)t for all t ≤ 0 .

The following proposition shows that the ranges and null spaces of invariant projectors are given
by sums of Oseledets subspaces.

Proposition 2.3. Let (θ,Φ) be an ergodic linear random dynamical system which satisfies the
integrability condition of Oseledets Multiplicative Ergodic Theorem (see Appendix). Let λ1 >
· · · > λp and O1(ω), . . . , Op(ω) denote the Lyapunov exponents and the associated Oseledets
subspaces of (θ,Φ), respectively, and suppose that Φ admits an exponential dichotomy with growth
rate γ ∈ R and projector Pγ. Then the following statements hold:

(i) γ 6∈ {λ1, . . . , λp}.

(ii) Define k := max
{
i ∈ {0, . . . , p} : λi > γ

}
with the convention that λ0 = ∞. Then for

almost all ω ∈ Ω, one has

NPγ(ω) =

k⊕
i=1

Oi(ω) and RPγ(ω) =

p⊕
i=k+1

Oi(ω) .

Proof. (i) Suppose to the contrary that γ = λk for some k ∈ {1, . . . , p}. Because of the Multi-
plicative Ergodic Theorem, we have

lim
t→∞

1

t
ln ‖Φ(t, ω)v‖ = λk = γ for all v ∈ Ok(ω) \ {0} . (2.1)

On the other hand, for all v ∈ RPγ(ω) we get ‖Φ(t, ω)v‖ ≤ Ke(γ−α)t‖v‖ for all t ≥ 0. Thus,

lim sup
t→∞

1

t
ln ‖Φ(t, ω)v‖ ≤ γ − α for all v ∈ RPγ(ω) ,

which together with (2.1) implies that Ok(ω) ∩RPγ(ω) = {0}. Similarly, using the fact that

lim
t→−∞

1

t
ln ‖Φ(t, ω)v‖ = λk = γ for all v ∈ Ok(ω) \ {0}

and Definition 2.2, we obtain that Ok(ω) ∩ NPγ(ω) = {0}. Consequently, Ok(ω) = {0} and it
leads to a contradiction.
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(ii) Let v ∈ RPγ(ω) \ {0} be arbitrary. Then, according to Definition 2.2 and the definition of
k we obtain that

lim
t→∞

1

t
ln ‖Φ(t, ω)v‖ ≤ γ − α < λk. (2.2)

Now we write v in the form v = vi + vi+1 + · · · + vp, where i ∈ {1, . . . , p} with vi 6= 0 and
vj ∈ Oj(ω) for all j = i, . . . , p. Using the fact that for j ∈ {i, . . . , p} with vj 6= 0

lim
t→∞

1

t
ln ‖Φ(t, ω)vj‖ = λj ≤ λi,

we obtain that

lim
t→∞

1

t
ln ‖Φ(t, ω)v‖ = λi,

which together with (2.2) implies that i ≥ k + 1 and therefore RPγ(ω) ⊂
⊕p

i=k+1Oi(ω). Simi-

larly, we also get that NPγ(ω) ⊂
⊕k

i=1Oi(ω). On the other hand,

Rd = NPγ(ω)⊕RPγ(ω) =

k⊕
i=1

Oi(ω)⊕
p⊕

i=k+1

Oi(ω).

Consequently, we have RPγ(ω) =
⊕p

i=k+1Oi(ω) and NPγ(ω) =
⊕k

i=1Oi(ω). The proof is
complete.

The monotonicity of the exponential function implies the following basic criteria for the existence
of exponential dichotomies.

Lemma 2.4. Suppose that the linear random system (θ,Φ) admits an exponential dichotomy
with growth rate γ and projector Pγ. Then the following statements are fulfilled:

(i) If Pγ ≡ 1 almost surely, then (θ,Φ) admits an exponential dichotomy with growth rate ζ
and invariant projector Pζ ≡ 1 for all ζ > γ.

(ii) If Pγ ≡ 0 almost surely, then (θ,Φ) admits an exponential dichotomy with growth rate ζ
and invariant projector Pζ ≡ 0 for all ζ < γ.

Given γ ∈ R, a function g : R→ Rd is called γ+-exponentially bounded if supt∈[0,∞) ‖g(t)‖e−γt <
∞. Accordingly, one says that a function g : R→ Rd is γ−-exponentially bounded if supt∈(−∞,0] ‖g(t)‖e−γt <
∞.

We define for all γ ∈ R

Sγ :=
{

(ω, x) ∈ Ω× Rd : Φ(·, ω)x is γ+-exponentially bounded
}
,

and
Uγ :=

{
(ω, x) ∈ Ω× Rd : Φ(·, ω)x is γ−-exponentially bounded

}
.

It is obvious that Sγ and Uγ are linear invariant random sets of (θ,Φ), and given γ ≤ ζ, the
relations Sγ ⊂ Sζ and Uγ ⊃ Uζ are fulfilled.

The relationship between the projectors of exponential dichotomies with growth rate γ and the
sets Sγ and Uγ will now be discussed.

Proposition 2.5. If the linear random dynamical system (θ,Φ) admits an exponential dichotomy
with growth rate γ and projector Pγ, then N (Pγ) = Uγ and R(Pγ) = Sγ almost surely.
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Proof. Suppose that (θ,Φ) admits an exponential dichotomy with growth rate γ, constants α,
K and projector Pγ . This means that for almost all ω ∈ Ω, one has

‖Φ(t, ω)Pγ(ω)‖ ≤ Ke(γ−α)t for all t ≥ 0 ,

‖Φ(t, ω)(1− Pγ(ω))‖ ≤ Ke(γ+α)t for all t ≤ 0 .
(2.3)

We now prove the relation N (Pγ) = Uγ almost surely. (⊃) Choose (ω, x) ∈ Uγ with ω in the
full measure set F ∈ F where both (2.3) and Birkhoff’s Ergodic Theorem hold, and with x
arbitrary. We have that ‖Φ(t, ω)x‖ ≤ Ceγt for all t ≤ 0 and some real constant C > 0. Write
x = x1 + x2 with x1 ∈ RPγ(ω) and x2 ∈ NPγ(ω). By Birkhoff’s Ergodic Theorem there exists
a sequence ti → −∞ such that for all i ∈ N one has θtiω ∈ F , and hence

‖x1‖ = ‖Φ(−ti, θtiω)Φ(ti, ω)Pγ(ω)x‖ = ‖Φ(−ti, θtiω)Pγ(θtiω)Φ(ti, ω)x‖
≤ Ke−(γ−α)ti‖Φ(ti, ω)x‖ ≤ CKe−(γ−α)tieγti = CKeαti .

The right hand side of this inequality converges to zero in the limit i→∞. This implies x1 = 0,
and thus, (ω, x) ∈ N (Pγ). (⊂) Choose (ω, x) ∈ N (Pγ). Thus, for all t ≤ 0 and almost all
ω ∈ Ω, the relation ‖Φ(t, ω)x‖ ≤ Ke(γ+α)t‖x‖ is fulfilled. This means that Φ(·, ω)x is γ−-
exponentially bounded. The proof of the statement concerning the range of the projector is
treated analogously.

3 The dichotomy spectrum for random dynamical systems

We introduce the dichotomy spectrum for random dynamical systems in this section. For the
definition of the dichotomy spectra, it is crucial for which growth rates, a linear random dy-
namical system (θ,Φ) admits an exponential dichotomy. The growth rates γ = ±∞ are not
excluded from our considerations; in particular, one says that (θ,Φ) admits an exponential di-
chotomy with growth rate ∞ if there exists a γ ∈ R such that (θ,Φ) admits an exponential
dichotomy with growth rate γ and projector Pγ ≡ 1. Accordingly, one says that (θ,Φ) admits
an exponential dichotomy with growth rate −∞ if there exists a γ ∈ R such that (θ,Φ) admits
an exponential dichotomy with growth rate γ and projector Pγ ≡ 0.

Definition 3.1 (Dichotomy spectrum). Consider the linear random dynamical system (θ,Φ).
Then the dichotomy spectrum of (θ,Φ) is defined by

Σ :=
{
γ ∈ R : (θ,Φ) does not admit an exponential dichotomy with growth rate γ

}
.

The corresponding resolvent set is defined by ρ := R \ Σ.

The aim of the following lemma is to analyze the topological structure of the resolvent set.

Lemma 3.2. Consider the resolvent set ρ of a linear random dynamical system (θ,Φ). Then
ρ ∩ R is open. More precisely, for all γ ∈ ρ ∩ R, there exists an ε > 0 such that Bε(γ) ⊂ ρ.
Furthermore, the relation rkPζ = rkPγ is (almost surely) fulfilled for all ζ ∈ Bε(γ) and every
invariant projector Pγ and Pζ of the exponential dichotomies of (θ,Φ) with growth rates γ and
ζ, respectively.
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Proof. Choose γ ∈ ρ arbitrarily. Since (θ,Φ) admits an exponential dichotomy with growth rate
γ, there exist an invariant projector Pγ and constants α > 0, K ≥ 1 such that for almost all
ω ∈ Ω, one has

‖Φ(t, ω)Pγ(ω)‖ ≤ Ke(γ−α)t for all t ≥ 0 ,

‖Φ(t, ω)(1− Pγ(ω))‖ ≤ Ke(γ+α)t for all t ≤ 0 .

Set ε := 1
2α, and choose ζ ∈ Bε(γ). It follows that for almost all ω ∈ Ω,

‖Φ(t, ω)Pγ(ω)‖ ≤ Ke(ζ−α
2

)t for all t ≥ 0 ,

‖Φ(t, ω)(1− Pγ(ω))‖ ≤ Ke(ζ+α
2

)t for all t ≤ 0 .

This yields ζ ∈ ρ, and it follows that rkPζ = rkPγ for any projector Pζ of the exponential
dichotomy with growth rate ζ. This finishes the proof of this lemma.

Lemma 3.3. Consider the resolvent set ρ of a linear random dynamical system (θ,Φ), and let
γ1, γ2 ∈ ρ ∩ R such that γ1 < γ2. Moreover, choose invariant projectors Pγ1 and Pγ2 for the
corresponding exponential dichotomies with growth rates γ1 and γ2. Then the relation rkPγ1 ≤
rkPγ2 holds. In addition, [γ1, γ2] ⊂ ρ is fulfilled if and only if rkPγ1 = rkPγ2, and in this case
one has that Pγ = Pζ almost surely for all γ, ζ ∈ [γ1, γ2].

Proof. The relation rkPγ1 ≤ rkPγ2 is a direct consequence of Proposition 2.5, since Sγ1 ⊂ Sγ2
and Uγ1 ⊃ Uγ2 . Now assume that [γ1, γ2] ⊂ ρ. Arguing contrapositively, suppose that rkPγ1 6=
rkPγ2 , and choose invariant projectors Pζ , ζ ∈ (γ1, γ2), for the exponential dichotomies of (θ,Φ)
with growth rate ζ. Define

ζ0 := sup
{
ζ ∈ [γ1, γ2] : rkPζ 6= rkPγ2

}
.

Due to Lemma 3.2, there exists an ε > 0 such that rkPζ0 = rkPζ for all ζ ∈ Bε(ζ0). This
is a contradiction to the definition of ζ0. Conversely, let rkPγ1 = rkPγ2 , then Proposition 2.5
together with the fact that Sγ1 ⊂ Sγ2 and Uγ1 ⊃ Uγ2 yields that R(Pγ1) = R(Pγ2) and N (Pγ1) =
N (Pγ2) almost surely, hence Pγ1 = Pγ2 almost surely and Pγ2 is also an invariant projector of
the exponential dichotomy with growth rate γ1. Thus, one obtains for almost all ω ∈ Ω,

‖Φ(t, ω)Pγ2(ω)‖ ≤ K1e
(γ1−α1)t for all t ≥ 0

for some K1 ≥ 1 and α1 > 0, and∥∥Φ(t, ω)(1− Pγ2(ω))
∥∥ ≤ K2e

(γ2+α2)t for all t ≤ 0

with some K2 ≥ 1 and α2 > 0. For all γ ∈ [γ1, γ2] these two inequalities imply, by setting
K := max {K1,K2} and α := min {α1, α2}, that for almost all ω ∈ Ω

‖Φ(t, ω)Pγ2(ω)‖ ≤ Ke(γ−α)t for all t ≥ 0 ,

‖Φ(t, ω)(1− Pγ2(ω))‖ ≤ Ke(γ+α)t for all t ≤ 0 .

This means that γ ∈ ρ, and thus, [γ1, γ2] ⊂ ρ. Now for arbitrary γ, ζ ∈ [γ1, γ2] with γ ≤ ζ
one has rkPγ ≤ rkPζ , and since the relation rkPγ1 = rkPγ2 also holds, one must have that
rkPγ = rkPζ . Then Proposition 2.5 together with the fact that Sγ ⊂ Sζ and Uγ ⊃ Uζ yields
that R(Pγ) = R(Pζ) and N (Pγ) = N (Pζ) almost surely, and hence Pγ = Pζ almost surely.
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For an arbitrarily chosen a ∈ R, define

[−∞, a] := (−∞, a] ∪ {−∞} , [a,∞] := [a,∞) ∪ {∞}

and
[−∞,−∞] := {−∞}, [∞,∞] := {∞}, [−∞,∞] := R .

The following Spectral Theorem, describes that the dichotomy spectrum consists of at least one
and at most d closed intervals.

Theorem 3.4 (Spectral Theorem). Let (θ,Φ) be a linear random dynamical system with di-
chotomy spectrum Σ. Then there exists an n ∈ {1, . . . , d} such that

Σ = [a1, b1] ∪ · · · ∪ [an, bn]

with −∞ ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn ≤ ∞.

Proof. Due to Lemma 3.2, the resolvent set ρ ∩ R is open. Thus, Σ ∩ R is the disjoint union
of closed intervals. The relation (−∞, b1] ⊂ Σ implies [−∞, b1] ⊂ Σ, because the assumption
of the existence of a γ ∈ R such that (θ,Φ) admits an exponential dichotomy with growth rate
γ and projector Pγ ≡ 0 leads to (−∞, γ] ⊂ ρ using Lemma 2.4, and this is a contradiction.
Analogously, it follows from [an,∞) ⊂ Σ that [an,∞] ⊂ Σ. To show the relation n ≤ d, assume
to the contrary that n ≥ d+ 1. Thus, there exist

ζ1 < ζ2 < · · · < ζd ∈ ρ

such that the d + 1 intervals (−∞, ζ1) , (ζ1, ζ2) , . . . , (ζd,∞) have nonempty intersection with
the spectrum Σ. It follows from Lemma 3.3 that

0 ≤ rkPζ1 < rkPζ2 < · · · < rkPζd ≤ d

is fulfilled for invariant projectors Pζi of the exponential dichotomy with growth rate ζi, i ∈
{1, . . . , n}. This implies either rkPζ1 = 0 or rkPζd = d. Thus, either

[−∞, ζ1] ∩ Σ = ∅ or [ζd,∞] ∩ Σ = ∅

is fulfilled, and this is a contradiction. To show n ≥ 1, assume that Σ = ∅. This implies
{−∞,∞} ⊂ ρ. Thus, there exist ζ1, ζ2 ∈ R such that (θ,Φ) admits an exponential dichotomy
with growth rate ζ1 and projector Pζ1 ≡ 0 and an exponential dichotomy with growth rate ζ2

and projector Pζ2 ≡ 1. Applying Lemma 3.3, one gets (ζ1, ζ2)∩Σ 6= ∅. This contradiction yields
n ≥ 1 and finishes the proof of the theorem.

Each spectral interval is associated to a so-called spectral manifold, which generalises the sta-
ble and unstable manifolds obtained by the ranges and null spaces of invariant projectors of
exponential dichotomies.

Theorem 3.5 (Spectral manifolds). Consider the dichotomy spectrum

Σ = [a1, b1] ∪ · · · ∪ [an, bn]

of the linear random dynamical system (θ,Φ) and define the invariant projectors Pγ0 := 0,
Pγn := 1, and for i ∈ {1, . . . , n− 1}, choose γi ∈ (bi, ai+1) and projectors Pγi of the exponential
dichotomy of (θ,Φ) with growth rate γi. Then the sets

Wi := R(Pγi) ∩N (Pγi−1) for all i ∈ {1, . . . , n}
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are fiber-wise linear subsets of Rd, the so-called spectral manifolds, which form a Whitney sum,
i.e. for almost all ω ∈ Ω

W1(ω)⊕ · · · ⊕Wn(ω) = Rd,
and moreover, for almost all ω ∈ Ω, Wi(ω) 6= {0} for i ∈ {1, . . . , n}.

Proof. The setsW1, . . . ,Wn obviously have linear fibers. We first show thatWi(ω) 6= {0} almost
surely for all i ∈ {1, . . . , n}. If W1(ω) 6= {0} does not hold almost surely, then Proposition 2.1
implies that Pγ1(ω) = 0 almost surely, and Lemma 2.4 implies [−∞, γ1] ∩ Σ = ∅, which is a
contradiction. A similar argument may be used forWn. In the case 1 < i < n, using Lemma 3.3,
one obtains

dimWi = dim
(
R(Pγi) ∩N (Pγi−1)

)
= rkPγi + d− rkPγi−1 − dim

(
R(Pγi) +N (Pγi−1)

)
≥ 1.

Now the relation W1(ω) ⊕ · · · ⊕ Wn(ω) = Rd P-a.s. will be proved. For 1 ≤ i < j ≤ n, due
to Proposition 2.5, the relations Wi ⊂ R(Pγi) and Wj ⊂ N (Pγj−1) ⊂ N (Pγi) are almost surely
fulfilled. This yields that, almost surely,

Wi(ω) ∩Wj(ω) ⊂ R(Pγi(ω)) ∩N (Pγi(ω)) = {0} .

One also obtains

Rd = W1(ω) +N (Pγ1(ω)) =W1(ω) +N (Pγ1(ω)) ∩
(
R(Pγ2(ω)) +N (Pγ2(ω))

)
= W1(ω) +N (Pγ1(ω)) ∩R(Pγ2(ω)) +N (Pγ2(ω)) =W1(ω) +W2(ω) +N (Pγ2(ω)) .

using the fact that for linear subspaces E,F,G ⊂ Rd with E ⊃ G fulfill E∩(F+G) = (E∩F )+G.
It follows inductively that

Rd =W1(ω) + · · ·+Wn(ω) +N (Pγn(ω)) =W1(ω) + · · ·+Wn(ω)

for almost all ω ∈ Ω.

Remark 3.6. If the linear random dynamical system (θ,Φ) under consideration fulfills the
conditions of the Multiplicative Ergodic Theorem, then Proposition 2.3 implies that the spectral
manifolds Wi of the above theorem are given by Whitney sums of Oseledets subspaces.

The remaining part of this section on the dichotomy spectrum will be devoted to the study of
boundedness properties of the spectrum. Firstly, a criterion for boundedness from above and
below is provided by the following proposition.

Proposition 3.7. Consider a linear random dynamical system (θ,Φ), let Σ denote the di-
chotomy spectrum of (θ,Φ), and define

α±(ω) :=

{
ln+

(
‖Φ(1, ω)±1‖

)
: T = Z ,

ln+
(

supt∈[0,1] ‖Φ(t, ω)±1‖
)

: T = R .

Then Σ is bounded from above if and only if

ess sup
ω∈Ω

α+(ω) <∞ ,

and Σ is bounded from below if and only if

ess sup
ω∈Ω

α−(ω) <∞ .

Consequently, if the dichotomy spectrum Σ is bounded, then Φ satisfies the integrability condition
of the Multiplicative Ergodic Theorem.
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Proof. Suppose that Σ is bounded from above. Then there exist K ≥ 1 and Γ ∈ R such that
for almost all ω ∈ Ω

‖Φ(t, ω)‖ ≤ KeΓt for all t ≥ 0 ,

which implies that ess supω∈Ω α
+(ω) ≤ ln(K)+|Γ|. On the other hand, suppose that ess supω∈Ω α

+(ω) <
∞. Then there exists a full measure set F ∈ F such that for all ω ∈ F we have α+(ω) ≤ β for
some positive number β. Define

Ω̃ :=
⋂
n∈Z

θnF .

Due to the measure preserving property of θ, we get that P
(
Ω̃
)

= 1. Then for all ω ∈ Ω̃, we
have

‖Φ(t, ω)‖ ≤ ‖Φ(t− btc, θbtcω)‖‖Φ(1, θbtc−1ω)‖ · · · ‖Φ(1, ω)‖ ≤ eβ(t+1) for all t ≥ 0.

Let γ > β be arbitrary and ε < γ − β. Then

‖Φ(t, ω)‖ ≤ eβe(γ−ε)t for all t ≥ 0 ,

which implies that Φ admits an exponential dichotomy with growth rate γ and projector Pγ ≡
1, and hence Σ ⊂ [−∞, β]. Similarly, we get that Σ is bounded from below if and only if
ess supω∈Ω α

−(ω) <∞. This finishes the proof of this proposition.

The following example shows that there exist linear random dynamical systems which satisfy
the integrability condition of the Multiplicative Ergodic Theorem, but which have no bounded
dichotomy spectrum.

Example 3.8. Let (Ω,F ,P) be a non-atomic probability space and θ : Z × Ω → Ω be a metric
dynamical system which is ergodic. Then there exists, by using [Hal60, Lemma 2, p. 71], a
measurable set U of the form

U =
∞⋃
k=1

k⋃
j=0

θjUk, (3.1)

where Ui, i ∈ N, are measurable sets such that

(i) for all k, ` ∈ N, i ∈ {0, . . . , k} and j ∈ {0, . . . , `}, we have

θjUk ∩ θiU` = ∅ whenever k 6= ` or i 6= j ,

(ii) 0 < P(Uk) ≤ 1
k3

for all k ∈ N .

We now define a random variable a : Ω→ R by

a(ω) :=


1 : ω ∈ Ω \ U ,
k : k is even and ω ∈ θjUk ,
1
k : k is odd and ω ∈ θjUk .

with j ∈ {0, . . . , k}. Using the random variable a, we define a discrete-time scalar linear random
dynamical system Φ : Z× Ω→ R by

Φ(n, ω) =


a(θn−1ω) · · · a(ω) : n ≥ 1 ,

1 : n = 0 ,
a(θ−1ω)−1 · · · a(θnω)−1 : n ≤ −1 .

11



A direct computation yields that

E ln+(‖Φ(1, ω)‖) =

∞∑
k=1

(2k + 1)P(U2k) ln(2k) ≤
∞∑
k=1

(2k + 1)
ln(2k)

8k3
<∞ ,

and

E ln+(‖Φ(1, ω)−1‖) =
∞∑
k=1

(2k + 2)P(U2k+1) ln(2k + 1)

≤
∞∑
k=1

(2k + 2)
ln(2k + 1)

(2k + 1)3
<∞ .

Then the linear system Φ satisfies the integrability condition of the Multiplicative Ergodic The-
orem. The fact that the dichotomy spectrum of Φ is unbounded from above follows from

‖Φ(n, ω)‖ = kn for all ω ∈ Uk with k even and 0 ≤ n ≤ k + 1 .

Similarly, one can prove that the spectrum is unbounded from below.

4 Random pitchfork bifurcation

We first review in Subsection 4.1 the main results of [CF98], which concern the one-dimensional
stochastic differential equation

dx =
(
αx− x3

)
dt+ σdWt , (4.1)

depending on real parameters α and σ and driven by a two-sided Wiener process (Wt)t∈R. This
stochastic differential equation has a unique random fixed point {aα(ω)}ω∈Ω for all α ∈ R. We
then show in Subsection 4.2 that there is a qualitative change in the random dynamics at the
bifurcation point α = 0 in the sense that after the bifurcation, the attracting random fixed
points {aα(ω)}ω∈Ω have qualitatively different properties for α < 0 and α ≥ 0 with respect to
uniform attraction, which is lost at the bifurcation point. We also associate this bifurcation
in Subsection 4.3 with non-hyperbolicity of the dichotomy spectrum of the linearization at the
bifurcation point.

4.1 Existence of a unique random attracting fixed point

Consider the stochastic differential equation (4.1). We first look at the deterministic case σ = 0.
Then for α < 0, the ordinary differential equation (4.1) has one equilibrium (x = 0) which
is globally attractive. For positive α, the trivial equilibrium becomes repulsive, and there are
two additional equilibria, given by ±

√
α, which are attractive. This also means that the global

attractor Kα of the deterministic equation undergoes a bifurcation from a trivial to a nontrivial
object. It is given by

Kα :=

{
{0} : α ≤ 0 ,[

−
√
α,
√
α
]

: α > 0 .

It was shown in [CF98] that such an attractor bifurcation does not persist for random attractors
of the randomly perturbed system where |σ| > 0, and we will explain the details now.

Firstly, since the solutions of (4.1) explode in backward time, we need the notion of a local
random dynamical system (see [Arn98, Section 1.2] for further details).
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Definition 4.1. Suppose that T = R, and (Ω,F ,P, θ) is a metric dynamical system. A local
continuous random dynamical system over θ on a topological space X is a measurable mapping

ϕ : D → X, (t, ω, x) 7→ ϕ(t, ω, x)

where D ⊂ R× Ω×X is a measurable set, with the following properties: For all ω ∈ Ω

(i) The random domain

D(ω) := {(t, x) ∈ R×X : (t, ω, x) ∈ D} ⊂ R×X

is nonvoid and open, and

ϕ(ω) : D(ω)→ X, (t, x) 7→ ϕ(t, ω, x)

is continuous with respect to x.

(ii) For each x ∈ X
D(ω, x) := {t ∈ R : (t, ω, x) ∈ D} ⊂ R

is an open interval containing 0, hence can be written as

D(ω, x) =: (κ−(ω, x), κ+(ω, x)).

(iii) ϕ(ω) satisfies the local cocycle property:

ϕ(0, ω) = idX

and for all x ∈ X and all s ∈ D(ω, x) we have the following property: t ∈ D(θsω, ϕ(s, ω, x))
if and only if t+ s ∈ D(ω, x). In this case we have,

ϕ(t+ s, ω)x = ϕ(t, θsω)ϕ(s, ω)x.

Some basic properties of local continuous random dynamical systems are given in [Arn98, The-
orem 1.2.3]. By [Arn98, Theorem 2.3.36] the stochastic differential equation (4.1) generates
a local continuous RDS ϕ : D → R over the standard metric dynamical system (Ω,F ,P, θ)
representing the Wiener process. Solutions may explode only in backward time, and for each
(ω, x) ∈ Ω×R we have D(ω, x) = (κ(ω, x),∞), where the measurable function κ : Ω×X → R−
is the explosion time of the trajectory ϕ(·, ω)x starting at x at time t = 0.

The stochastic differential equation (4.1) induces a Markov semigroup with transition probabil-
ities T (x,B) for x ∈ R and B ∈ B(R). A probability measure ρ on B(X) is called a stationary
measure for the Markov semigroup if

ρ(B) =

∫
R
T (x,B) dρ(x) for all B ∈ B(R) .

It can be shown [Arn98, p. 474] that for any α ∈ R and |σ| > 0, the Markov semigroup associated
with (4.1) admits a unique stationary measure ρα,σ with density

pα,σ(x) = Nα,σ exp
(

1
σ2 (αx2 − 1

2x
4)
)
, (4.2)
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where Nα,σ is a normalization constant. This stationary measure corresponds to an invariant
measure µ of the local random dynamical system (θ, ϕ) generated by (4.1). The invariant
measure µ has the disintegration given by

µω = lim
t→∞

ϕ(t, θ−tω)ρ for almost all ω ∈ Ω .

It was shown in [CF98] that µω is a Dirac measure concentrated on aα(ω), and linearizing along
this invariant measure µ yields a negative Lyapunov exponent, given by

λα = − 2

σ2

∫
R

(αx− x3)2pα,σ(x) dx .

Moreover, the family {aα(ω)}ω∈Ω is the global random attractor (see Appendix), which implies
that the attractor bifurcation associated with a deterministic pitchfork bifurcation (that is, Kα

bifurcates from a singleton to a non-trivial object) is destroyed by noise, and µ is the unique
invariant measure for the random dynamical system. Also {aα(ω)}ω∈Ω is the only solution to
(θ, ϕ) which does not explode and exists for all times.

4.2 Qualitative changes in uniform attractivity

In order to establish qualitative changes in the attractivity of the unique random attracting
fixed point {aα(ω)}ω∈Ω, a detailed understanding about the location of this attractor is needed.

Proposition 4.2. Consider (4.1) for α ∈ R, and let {aα(ω)}ω∈Ω be its unique random fixed
point. Then for any ε > 0 and T ≥ 0, there exists a measurable set A ∈ FT−∞ (see Appendix) of
positive measure such that

aα(θsω) ∈ (−ε, ε) for all s ∈ [0, T ] and ω ∈ A .

Proof. The unique stationary measure ρα,σ for the Markov semigroup associated to (4.1) with
|σ| > 0 is equivalent to the Lebesgue measure with the density function given by (4.2). The in-
variant measure δa(ω) and stationary measure ρ are in correspondence by the following relations:
the invariant measure is obtained as the limit of the pullback images of the stationary measure,
i.e.

δa(ω) = lim
t→∞

ϕ(t, θ−tω)ρ for almost all ω ∈ Ω ,

and the stationary measure is obtained as the expectation of the invariant measure, i.e.

ρ(·) =

∫
Ω
δa(ω)(·)dP(ω) (4.3)

(see [CF98]). Now define

η :=
εe−|α|T

2(1 + |σ|)
.

Since the support of ρ is the entire real line, it follows from (4.3) that the set

A1 := {ω ∈ Ω: aα(ω) ∈ (−η, η)} (4.4)

has positive probability for any α ∈ R. The global pullback attractor {aα(ω)} is measurable
with respect to the past of the noise F0

−∞ (again see [CF98]), and hence A1 ∈ F0
−∞. Define

A2 :=
{
ω ∈ Ω: supt∈[0,T ] |ω(t)| ≤ η

2

}
∈ FT0
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which, by [IW81, Section 6.8], has positive probability. Since the sets A1 and A2 are independent,
the set A := A1 ∩ A2 ∈ FT−∞ also has positive probability. Choose and fix an arbitrary ω ∈ A.
By the definition of A1 we have that |aα(ω)| < η. Since aα(ω) is a random fixed point of ϕ it
follows, using the integral from of (4.1), that

aα(θtω) = aα(θsω) +

∫ t

s

(
αaα(θrω)− aα(θrω)3

)
dr + σ(ω(t)− ω(s)) . (4.5)

Choose and fix an arbitrary t ∈ [0, T ]. Define I := {s ∈ [0, t] : aα(θsω) = 0}; by continuity the
set I is closed (but possibly empty). We consider the following three cases:

Case 1. If t ∈ I, then |aα(θtω)| = 0.

Case 2. If I is not empty and t /∈ I, then s := sup I < t and aα(θsω) = 0. By the definition of
I and continuity, we have either aα(θrω) > 0 for all r ∈ (s, t] or aα(θrω) < 0 for all r ∈ (s, t].
Using this observation and (4.5), we obtain that

|aα(θtω)| ≤ |σ|η +

∫ t

s
|α||aα(θrω)| dr.

Case 3. If I is empty, then either aα(θsω) > 0 for all s ∈ [0, t] or aα(θsω) < 0 for all s ∈ [0, t].
Using (4.5) and noting that |aα(ω)| < η, we arrive at the following inequality:

|aα(θtω)| ≤ (1 + |σ|)η +

∫ t

0
|α||aα(θsω)| ds.

In view of the three cases above, we have that

|aα(θtω)| ≤ (1 + |σ|)η +

∫ t

0
|α||aα(θsω)|ds for all t ∈ [0, T ] .

Then, using Gronwall’s inequality, we obtain that

|aα(θtω)| ≤ (1 + |σ|)ηe|α|t < ε for all t ∈ [0, T ] .

Thus we have that for all ω ∈ A, aα(θtω) ∈ (−ε, ε) for all t ∈ [0, T ], which completes the
proof.

We now give a detailed description of the random bifurcation scenario for the stochastic differ-
ential equation (4.1) by means of both asymptotic and finite-time dynamical behaviour. The
asymptotic description implies that there is a qualitative change in the uniformity of attraction
of the unique random attractor {aα(ω)}ω∈Ω. On the other hand, the finite-time description
shows that after the bifurcation, even if the time interval is very large, the (asymptotic) Lya-
punov exponent cannot be observed with non-vanishing probability (by a finite-time Lyapunov
exponent); however, before the bifurcation, the (asymptotic) Lyapunov exponent can be ap-
proximated by the finite-time Lyapunov exponent. Finite-time Lyapunov exponents for random
dynamical systems have not been considered in the literature so far, but play an important role
in the description of Lagrangian Coherent Structures in fluid dynamics [HY00].

Let {aα(ω)}ω∈Ω denote the unique random fixed point of the stochastic differential equation
(4.1). Then {aα(ω)}ω∈Ω is called locally uniformly attractive if there exists δ > 0 such that

lim
t→∞

sup
x∈(−δ,δ)

ess sup
ω∈Ω

|ϕ(t, ω)(aα(ω) + x)− aα(θtω)| = 0.
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Theorem 4.3 (Random pitchfork bifurcation, asymptotic description). Consider the stochastic
differential equation (4.1) with the unique random attracting fixed point {aα(ω)}ω∈Ω. Then the
following statements hold:

(i) For α < 0, the random attractor {aα(ω)}ω∈Ω is locally uniformly attractive; in fact, it is
even globally uniformly exponential attractive, i.e.

|ϕ(t, ω, x)− ϕ(t, ω, aα(ω))| ≤ eαt|x− aα(ω)| for all x ∈ R . (4.6)

(ii) For α > 0, the random attractor {aα(ω)}ω∈Ω is not locally uniformly attractive.

Proof. (i) Let x ∈ R be arbitrary such that x 6= aα(ω). Using the monotonicity of solutions, we
may assume that ϕ(t, ω, x) > ϕ(t, ω, aα(ω)) for all t ≥ 0. The integral form of (4.1) ,

ϕ(t, ω)x = x+

∫ t

0

(
αϕ(s, ω)x− (ϕ(s, ω)x)3

)
ds+ σω(t)

yields that

ϕ(t, ω)x− ϕ(t, ω)aα(ω) ≤ x− aα(ω) + α

∫ t

0

(
ϕ(s, ω)x− ϕ(s, ω)aα(ω)

)
ds .

Using Gronwall’s inequality implies (4.6), which finishes this part of the proof.

(ii) Suppose to the contrary that there exists δ > 0 such that

lim
t→∞

sup
x∈(−δ,δ)

ess sup
ω∈Ω

|ϕ(t, ω, aα(ω) + x)− aα(θtω)| = 0 ,

which implies that there exists N ∈ N such that

sup
x∈(−δ,δ)

ess sup
ω∈Ω

|ϕ(t, ω, aα(ω) + x)− aα(θtω)| <
√
α

4
for all t ≥ N . (4.7)

According to Proposition 4.2, there exists A ∈ F0
−∞ of positive probability such that aα(ω) ∈

(− δ
2 ,

δ
2). Note that −

√
α and

√
α are two attractive fixed points for the deterministic differential

equation
ẋ = αx− x3 .

Let φ(·, x0) denote the solution of the above deterministic equation which satisfies x(0) = x0.
Then there exists T > N such that

φ(T, δ/2) >

√
α

2
and φ(T,−δ/2) < −

√
α

2
. (4.8)

For any ε > 0, we define

A+
ε :=

{
ω ∈ Ω : supt∈[0,T ] |ω(t)| < ε

}
.

Clearly, A+
ε ∈ FT0 has positive probability, and thus, P(A∩A+

ε ) = P(A)P(A+
ε ) is positive. Due

to the compactness of [0, T ], there exists ε > 0 such that for all ω ∈ A+
ε , we have

|ϕ(T, ω, δ/2)− φ(T, δ/2)| <
√
α

4
and |ϕ(T, ω,−δ/2)− φ(T,−δ/2)| <

√
α

4
,
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which implies together with (4.8) that

ϕ(T, ω, δ/2) >

√
α

4
and ϕ(T, ω,−δ/2) < −

√
α

4
.

Due to the fact that |aα(ω)| < δ
2 for all ω ∈ A ∩A+

ε , we get that for all ω ∈ A ∩A+
ε

sup
x∈(−δ,δ)

|ϕ(T, ω, aα(ω) + x)− aα(θTω)|

≥max
{
ϕ(T, ω, δ/2)− aα(θTω)|, |ϕ(T, ω,−δ/2)− aα(θTω)|

}
.

Consequently,

sup
x∈(−δ,δ)

ess sup
ω∈Ω

|ϕ(t, ω, aα(ω) + x)− aα(θtω)| >
√
α

4
,

which contradicts (4.7) and the proof is complete.

For the description of the bifurcation via finite-time properties, we consider a compact time
interval [0, T ] and define the corresponding finite-time Lyapunov exponent associated with the
invariant measure δaα(ω) by

λT,ωα :=
1

T
ln

∣∣∣∣∂ϕα∂x (T, ω, aα(ω))

∣∣∣∣ .
Clearly, the (classical) Lyapunov exponent λ∞α associated with the random fixed point aα(ω) is
given by

λ∞α = lim
T→∞

λT,ωα .

In contrast to the classical Lyapunov exponent, the finite-time Lyapunov exponent is, in general,
a non-constant random variable.

Theorem 4.4 (Random pitchfork bifurcation, finite-time description). Consider the stochastic
differential equation (4.1) with the unique random attracting fixed point {aα(ω)}ω∈Ω. For any
finite time interval [0, T ], let λT,ωα denote the finite-time Lyapunov exponent associated with
{aα(ω)}ω∈Ω. Then the following statements hold:

(i) For α < 0, the random attractor {aα(ω)}ω∈Ω is finite-time attractive, i.e.

λT,ωα ≤ α < 0 for all ω ∈ Ω .

(ii) For α > 0, the random attractor {aα(ω)}ω∈Ω is not finite-time attractive, i.e.

P
{
ω ∈ Ω : λT,ωα > 0

}
> 0.

Proof. (i) follows directly from Theorem 4.3 (i).

(ii) Choose ε :=
√
α

2 > 0. According to Proposition 4.2, there exists a measurable set A ∈ FT−∞
of positive probability such that for all ω ∈ A

aα(θsω) ∈ (−ε, ε) for all s ∈ [0, T ] .
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Let ω ∈ A be arbitrary and we will estimate λT,ωα . Let Φα(t, ω) := ∂ϕα
∂x (t, ω, aα(ω)) denote

the linearized random dynamical system along the random fixed point aα(ω). Note that the
linearized equation along the random fixed point aα(ω) is given by

ξ̇(t) = (α− 3aα(θtω)2)ξ(t) ,

from which we derive that

Φα(t, ω) = exp

(∫ t

0

(
α− 3aα(θsω)2

)
ds

)
.

We thus get

λT,ωα = α− 1

T

∫ T

0
3aα(θtω)2dt ≥ α

4
,

which completes the proof.

Remark 4.5. For a system without any special structure, finite-time Lyapunov exponents are
exact numerically computable quantities which measures expansion rate or contraction rate along
a random fixed point. Therefore, the change of the sign of finite-time Lyapunov exponents is
definitely a bifurcation point that we observe from a practical point of view.

For a system with some specified structures such as positivity, we refer to [Pol10] for a powerful
method to compute the maximal Lyapunov exponent with an explicit bound.

4.3 The dichotomy spectrum at the bifurcation point

We will compute the dichotomy spectrum of the linearization around the unique random at-
tracting fixed point {aα(ω)} of the system (4.1). As a direct consequence, we observe that
hyperbolicity is lost at the bifurcation point α = 0.

Theorem 4.6. Let Φα(t, ω) := ∂ϕα
∂x (t, ω, aα(ω)) denote the linearized random dynamical system

along the random fixed point aα(ω). Then the dichotomy spectrum Σα of Φα is given by

Σα = [−∞, α] for all α ∈ R .

Proof. From the linearized equation along aα(ω)

ξ̇(t) = (α− 3aα(θtω)2)ξ(t) ,

we derive that

Φα(t, ω) = exp

(∫ t

0

(
α− 3aα(θsω)2

)
ds

)
. (4.9)

Consequently,
|Φα(t, ω)| ≤ eα|t| for all t ∈ R ,

which implies that Σα ⊂ [−∞, α]. Thus, it is sufficient to show that [−∞, α] ⊂ Σα. For this
purpose, let γ ∈ (−∞, α] be arbitrary. Suppose the opposite, that Φα admits an exponential
dichotomy with growth rate γ, invariant projector Pγ and positive constants K, ε. We now
consider the two possible cases: (i) Pγ = 1 and (ii) Pγ = 0:

Case (i). Pγ = 1, i.e. we have

Φα(t, ω) ≤ Ke(γ−ε)t for all t ≥ 0 . (4.10)
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Choose and fix T > 0 such that e
ε
4
T > K. According to Proposition 4.2, there exists a measur-

able set A ∈ FT−∞ of positive measure such that

aα(θsω) ∈
(
−
√
ε/2,
√
ε/2
)

for all ω ∈ A and s ∈ [0, T ] .

From (4.9) we derive that

|Φα(T, ω)| ≥ eT(α− 3ε
4 ) > Ke(γ−ε)T ,

which is a contradiction to (4.10).

Case (ii): Pγ = 0, i.e. we have for almost all ω ∈ Ω

Φα(t, θ−tω) ≥ 1

K
e(γ+ε)t for all t ≥ 0 ,

which together with (4.9) implies that

lnK + (α− γ)t

3
≥
∫ t

0
aα(θsθ−tω)2 ds . (4.11)

Choose and fix T > 0 such that

(T − 1)3

3
>

lnK + (α− γ)T

3
.

Consider the following integral equation

x(t) =

∫ t

0

(
αx(s)− x(s)3

)
ds+

t4

4
− αt

2

2
+ t .

Clearly, the explicit solution of the above equation is x(t) = t. Due to the compactness of [0, T ],

there exists an ε > 0 such that for any x(0) ∈ (−ε, ε) and ω(t) with supt∈[0,T ] |ω(t)− t4

4 +α t
2

2 −t| ≤
ε then the solution x(t) of the following equation

x(t) = x(0) +

∫ t

0
(αx(s)− x(s)3) ds+ ω(t)

satisfies that supt∈[0,T ] |x(t) − t| ≤ 1. According to Proposition 4.2, there exists a measurable

set A−ε ∈ F0
−∞ of positive measure such that aα(ω) ∈ (−ε, ε) for all ω ∈ A−ε . Define A+

ε ∈ FT0
by

A+
ε :=

{
ω ∈ Ω : supt∈[0,T ] |ω(t)− t4/4 + αt2/2− t| ≤ ε

}
.

Therefore, for all ω ∈ A−ε ∩ A+
ε , we get

sup
t∈[0,T ]

|aα(θtω)− t| ≤ 1 ,

which implies that ∫ T

0
aα(θsω)2 ds >

(T − 1)3

3
>

lnK + (α− γ)T

3
.

Note that P(A−ε ∩ A+
ε ) = P(A−ε )P(A+

ε ) > 0. Then for ω ∈ θT (A−ε ∩ A+
ε ), the above leads to a

contradiction to (4.11), and the proof is complete.
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We have seen in Theorem 4.4 that the bifurcation of (4.1) manifests itself also via finite-time
Lyapunov exponents: before the bifurcation, all finite-time Lyapunov exponents are negative,
and after the bifurcation, one observes positive finite-time Lyapunov exponents with positive
probability for arbitrarily large times. This implies in particular that for positive α the set of
all finite-time Lyapunov exponents observed on a set of full measure does not converge to the
(classical) Lyapunov exponent when time tends to infinity. The following theorem makes precise
the fact that, in contrast to the Lyapunov spectrum, the dichotomy spectrum includes limits of
the set of finite-time Lyapunov exponents.

Theorem 4.7. Let (θ,Φ) be a linear random dynamical system on Rd with dichotomy spectrum
Σ. Define the finite-time Lyapunov exponent

λ(T, ω, x) :=
1

T
ln
‖Φ(T, ω)x‖
‖x‖

for all T > 0, ω ∈ Ω and x ∈ Rd \ {0} .

Then
lim
T→∞

ess sup
ω∈Ω

sup
x∈Rd\{0}

λ(T, ω, x) = sup Σ

provided that sup Σ <∞ and

lim
T→∞

ess inf
ω∈Ω

inf
x∈Rd\{0}

λ(T, ω, x) = inf Σ

provided that inf Σ > −∞.

Proof. By definition of λ(T, ω, x), we get that for all T, S ≥ 0

(T + S) ess sup
ω∈Ω

sup
x∈Rd\{0}

λ(T + S, ω, x) ≤ T ess sup
ω∈Ω

sup
x∈Rd\{0}

λ(T, ω, x) + S ess sup
ω∈Ω

sup
x∈Rd\{0}

λ(S, ω, x).

This implies that the function [0,∞) ∩ T → R, T 7→ T ess supω∈Ω supx∈Rd\{0} λ(T, ω, x)) is sub-
additive; we thus obtain that the limit T →∞ exists and so

lim
T→∞

ess sup
ω∈Ω

sup
x∈Rd\{0}

λ(T, ω, x) = lim sup
T→∞

ess sup
ω∈Ω

sup
x∈Rd\{0}

λ(T, ω, x).

We first prove that provided sup Σ <∞, we have

γ := lim sup
T→∞

ess sup
ω∈Ω

sup
x∈Rd\{0}

λ(T, ω, x) = sup Σ.

Since sup Σ <∞ it follows that there exists K > 0 such that

‖Φ(t, ω)‖ ≤ Ket sup Σ for all t ≥ 0 . (4.12)

Assume first that γ < sup Σ. This means that there exists a t0 > 0 such that for all t ≥ t0 and
for almost all ω ∈ Ω, we have ‖Φ(t, ω)‖ ≤ et(γ+sup Σ)/2. Thus, together with (4.12), we obtain
for all t ≥ 0 and for almost all ω ∈ Ω that

‖Φ(t, ω)‖ ≤ K̂et(γ+sup Σ)/2, K̂ := max{1,Ket0(sup Σ−γ)/2}.

Hence, sup Σ ≤ (γ + sup Σ)/2, which is a contradiction. Assume now that γ > sup Σ. This
means in particular that sup Σ < ∞. Hence, there exists a K > 0 such that for almost all
ω ∈ Ω, we have

‖Φ(t, ω)x‖ ≤ Ket(γ+sup Σ)/2‖x‖ for all x ∈ Rd .
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This leads to λ(t, ω, x) ≤ (γ + sup Σ)/2 for all x ∈ Rd \ {0}, and thus,

γ = lim sup
T→∞

ess sup
ω∈Ω

sup
x∈Rd\{0}

λ(T, ω, x) ≤ (γ + sup Σ)/2,

which proves the first equality. Similarly, one can show that

lim
T→∞

ess inf
ω∈Ω

inf
x∈Rd\{0}

λ(T, ω, x) = inf Σ

provided that inf Σ > −∞, which finishes the proof of this theorem.

In the following example, we construct explicitly a linear random dynamical system with sup Σ =
∞ but

lim
T→∞

ess sup
ω∈Ω

sup
x∈Rd\{0}

λ(T, ω, x) <∞.

An example of a linear random dynamical system with inf Σ = −∞ but

lim
T→∞

ess inf
ω∈Ω

inf
x∈Rd\{0}

λ(T, ω, x) > −∞

can be constructed analogously. This example shows the importance of the assumption sup Σ <
∞ or inf Σ > −∞ in the above theorem.

Example 4.8. Following the construction in Example 3.8, there exist infinitely many measurable
sets {Un}n∈N of positive measure such that for n ≥ 2, Un, θUn, θ

2Un are pairwise disjoint. We
define a random mapping A : Ω→ R as follows:

A(ω) =


1
n : ω ∈ Un ∪ θ2Un , n ≥ 2 ,

n : ω ∈ θUn , n ≥ 2 ,

1 : otherwise.

Let Φ denote the discrete-time RDS generated by A. Since ln ‖A(·)‖ is neither bounded from
above nor from below, we get that Σ(Φ) = [−∞,∞]. On the other hand, it is easy to see that
for all T ≥ 2 we get that

ess sup
ω∈Ω

|Φ(T, ω)| = 1,

which implies that

lim
T→∞

ess sup
ω∈Ω

1

T
ln |Φ(T, ω)| = 0.

5 Topological equivalence of random dynamical systems

This section deals with topological equivalence of random dynamical systems [IS01, IL02, LL05,
Arn98]. This concept has not been used so far to study bifurcations of random dynamical
systems, and the main aim of this section is to discuss topological equivalence for the stochastic
differential equation (4.1) from Section 4, given by

dx =
(
αx− x3

)
dt+ σdWt .

The concept of topological equivalence for random dynamical systems [Arn98, Definition 9.2.1]
differs from the corresponding deterministic notion of topological equivalence in the sense that
instead of one homeomorphism (mapping orbits to orbits), the random version is given by a
family of homeomorphisms {hω}ω∈Ω. The precise definition is given as follows.
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Definition 5.1 (Topological equivalence). Let (Ω,F ,P) be a probability space, θ : T×Ω→ Ω a
metric dynamical system and (X1, d1), (X2, d2) be metric spaces. Then two random dynamical
systems (ϕ1 : T × Ω × X1 → X1, θ) and (ϕ2 : T × Ω × X2 → X2, θ) are called topologically
equivalent if there exists a conjugacy h : Ω×X1 → X2 fulfilling the following properties:

(i) For almost all ω ∈ Ω, the function x 7→ h(ω, x) is a homeomorphism from X1 to X2.

(ii) The mappings (ω, x1) 7→ h(ω, x1) and (ω, x2) 7→ h−1(ω, x2) are measurable.

(iii) The random dynamical systems ϕ1 and ϕ2 are cohomologous, i.e.

ϕ2(t, ω, h(ω, x)) = h(θtω, ϕ1(t, ω, x)) for all x ∈ X1 and almost all ω ∈ Ω .

A bifurcation is then described by means of a lack of topological equivalence at the bifurcation
point. The following theorem says that near the bifurcation point α = 0, all systems of (4.1)
are equivalent. Since we have a local random dynamical system, the definition of topological
equivalence used is a modification of that given in Definition 5.1.

Theorem 5.2. Let ϕα : Dα → R denote the local continuous RDS generated by the SDE (4.1).
Then there exists an ε > 0 such that for all α ∈ (−ε, ε) the random dynamical systems ϕα are
topologically equivalent to the dynamical system (e−tx)t,x∈R, in the following sense: there exists
a conjugacy h : Ω× R→ R such that for almost all ω ∈ Ω, we have

ϕα(t, ω, h(ω, x)) = h(θtω, e
−tx) for all t ∈ (κα(ω, h(ω, x)),∞), x ∈ R .

Proof. Let aα(ω) denote the unique random fixed point of (4.1). According to the results in
[CF98], we obtain that

Eaα(ω)2 =

∫∞
−∞ u

2 exp
(

1
σ2

(
αu2 − 1

2u
4
))

du∫∞
−∞ exp

(
1
σ2

(
αu2 − 1

2u
4
))

du
.

and therefore,

lim
α→0

Eaα(ω)2 =

∫∞
−∞ u

2 exp
(
− u4

2σ2

)
du∫∞

−∞ exp
(
− u4

2σ2

)
du

> 0.

Then there exists an ε > 0 such that for all α ∈ (−ε, ε), we have

δ :=
3

4
Eaα(ω)2 − α > 0 .

We define the local continuous RDS ψ : D̃ → R by

ψ(t, ω, x) := ϕα(t, ω, x+ aα(ω))− aα(θtω) . (5.1)

where D̃ := {(t, ω, x) ∈ R × Ω × R : t > κα(ω, x + aα(ω))}. By using the transformation
function f(ω, x) := x − aα(ω), the random dynamical systems ϕα and ψ are topologically
equivalent. Hence, it is sufficient to show that ψ is topologically equivalent to the dynamical
system (e−tx)t,x∈R; the proof of this is divided into four parts.

Part 1. We first summarise some properties of ψ:
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1. Since aα(ω) is a random fixed point of ϕα, it follows that

ψ(t, ω, 0) = 0 for all t ∈ R and ω ∈ Ω . (5.2)

2. Due to the monotonicity of ϕα, for x1 > x2, we have

ψ(t, ω, x1) > ψ(t, ω, x2) for all ω ∈ Ω and t ∈ D̃(ω, x1) ∩ D̃(ω, x2) . (5.3)

3. From (4.1), we derive that

ψ(t, ω, x) = x+

∫ t

0
ψ(s, ω, x)

(
α− aα(θsω)2 − aα(θsω)ϕα(s, ω, aα(ω) + x)

− ϕα(s, ω, aα(ω) + x)2
)

ds ,

consequently,

ψ(t, ω, x) = x exp

(∫ t

0
α− aα(θsω)2 − aα(θsω)ϕα(s, ω, aα(ω) + x)

− ϕα(s, ω, aα(ω) + x)2 ds

)
. (5.4)

Part 2. We shall now demonstrate some estimates on ψ. According to Birkhoff’s ergodic
theorem, there exists an invariant set Ω̃ of full measure such that

lim
t→±∞

1

t

∫ t

0
aα(θsω)2 ds = Eaα(ω)2 . (5.5)

Choose and fix ω ∈ Ω̃. From (5.5), there exists T > 0 such that for all |t| > T we have∣∣∣∣1t
∫ t

0
aα(θsω)2 ds− Eaα(ω)2

∣∣∣∣ ≤ δ . (5.6)

The elementary inequality u2 + uv + v2 ≥ 3
4u

2 for u, v ∈ R implies with (5.4) that for x > 0

ψ(t, ω, x) ≤ x exp

(∫ t

0
α− 3

4
aα(θsω)2 ds

)
,

then for t ≥ T , (5.6) implies the following estimate

ψ(t, ω, x) ≤ xe−
δ
4
t, for all x > 0. (5.7)

For negative time ψ explodes, and we have

lim
t→κ̃(ω,x)+

ψ(t, ω, x) =∞ for x > 0 and lim
t→κ̃(ω,x)+

ψ(t, ω, x) = −∞ for x < 0. (5.8)

Part 3. We now show the required conjugacy. By (5.2) and (5.3), for x > 0 we have ψ(s, ω, x) > 0
for all s ∈ D̃(ω, x), and consequently by (5.7) and (5.8) we obtain that

lim
r→∞

∫ ∞
r

ψ(s, ω, x) ds = 0 and lim
r→κ̃(ω,x)+

∫ ∞
r

ψ(s, ω, x) ds =∞.
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Hence there exists a unique r(ω, x) such that∫ ∞
r(ω,x)

ψ(s, ω, x) ds = 1. (5.9)

Similarly, r(ω, x) for x < 0 is defined to satisfy∫ ∞
r(ω,x)

ψ(s, ω, x) ds = −1, (5.10)

and we define r(ω, 0) := −∞. Using the local cocycle property of ψ, we obtain that

r(ω, x) = r(θsω, ψ(s, ω, x)) + s. (5.11)

Define the function

g(ω, x) :=


er(ω,x), x > 0 ,

0, x = 0 ,

−er(ω,x), x < 0 .

We will now show that g transforms the random dynamical system ψ to the dynamical system
(e−tx)t,x∈R. For any x > 0, we have ψ(s, ω, x) > 0 and thus from the definition of the function
g it follows that

g(θsω, ψ(s, ω, x)) = er(θsω,ψ(s,ω,x)),

which implies together with (5.11) that

g(θsω, ψ(s, ω, x)) = er(ω,x)−s = e−sg(ω, x) .

Similarly, for x < 0 we also have g(θsω, ψ(s, ω, x)) = e−sg(ω, x) for all s ∈ (κ̃(ω, x),∞), ω ∈ Ω.

Part 4. We will show that gω : R → R, x 7→ g(ω, x) is a homeomorphism, and that g is jointly
measurable. Choose and fix ω ∈ Ω̃.

Injectivity : From the definition of g, it is easily seen that for x1 > 0 > x2 we have

gω(x1) > 0 > gω(x2).

On the other hand, based on strict monotonicity of ψ we get that for x1 > x2 > 0∫ ∞
r(ω,x2)

ψ(s, ω, x1) ds >

∫ ∞
r(ω,x2)

ψ(s, ω, x2) ds = 1.

Consequently, r(ω, x1) > r(ω, x2) and thus gω(x1) > gω(x2). Similarly, for 0 > x1 > x2 we also
have gω(x1) > gω(x2). Therefore, gω is strictly increasing and thus injective.

Continuity : We first show that limx→0+ gω(x) = 0. Let ε > 0 be arbitrary. Choose T̃ > T such

that 4
δ e
− δ

4
T̃ < 1

3 and e−T̃ < ε. By (5.7), for all t ≥ T̃ we have

ψ(t, ω, x) ≤ e−
δ
4
tx .

As a consequence, for all x ∈ (0, 1) we get∫ ∞
T̃

ψ(s, ω, x) ds ≤
∫ ∞
T̃

e−
δ
4
s ds <

1

3
. (5.12)
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Since limx→0 ψ(s, ω, x) = 0,
[
−T̃ , T̃

]
is a compact interval and limx→0 κ̃(ω, x) = −∞, there

exists δ∗ > 0 such that ∫ T̃

−T̃
ψ(s, ω, δ∗) ds <

1

3
,

which together with (5.12) implies that∫ ∞
−T̃

ψ(s, ω, x) ds <
2

3
for all x ∈

(
0,min{1, δ∗}

)
.

Therefore, r(ω, x) < −T̃ and thus gω(x) < ε for all x ∈
(
0,min{1, δ∗}

)
. Hence, limx→0+ gω(x) =

0. One can similarly show that limx→0− gω(x) = 0, and thus gω is continuous at 0. The continuity
of g on the whole real line can be proved in a similar way.

Surjectivity : It is easy to prove surjectivity from

lim
x→∞

gω(x) =∞ and lim
x→−∞

gω(x) = −∞ .

Measurability : By the definition of g, in order to prove the joint measurability of g it is enough
to show the joint measurability of the mapping (ω, x) 7→ r(ω, x). Since the map x 7→ r(ω, x) is
continuous for each fixed ω ∈ Ω, it follows from e.g. [Cra02, Lemma 1.1] that it is sufficient to
show that the map ω 7→ r(ω, x) is measurable for each fixed x ∈ R. Choose and fix an arbitrary
x > 0, and let β ∈ R be arbitrary. Then, by the definition of r(ω, x) we have{

ω : r(ω, x) ≤ β
}

=

{
ω :

∫ ∞
β

ψ(t, ω, x) dt ≤ 1

}
=

⋂
n∈N,n≥β

{
ω :

∫ n

β
ψ(t, ω, x) dt < 1

}
.

It should be clear that for each n ∈ N, the map ω 7→
∫ n
β ψ(t, ω, x) dt is measurable, and con-

sequently the map ω 7→ r(ω, x) is measurable. The case x < 0 is similar, and we have defined
r(ω, 0) = −∞ for all ω ∈ Ω. Thus we obtain the measurability of the map ω 7→ r(ω, x) for all
x ∈ R.

This completes the proof of this theorem.

This theorem implies that the stochastic differential equation (4.1) does not admit a bifurcation
at α = 0 which is induced by the above concept of topological equivalence. In addition, because
of the observations in Theorem 4.6, this concept of equivalence is not in correspondence with the
dichotomy spectrum (linear systems which are hyperbolic and non-hyperbolic can be equivalent).

We will show now that the concept of a uniform topological equivalence is the right tool to obtain
the bifurcations studied in this paper.

Definition 5.3 (Uniform topological equivalence). Let (Ω,F ,P) be a probability space, θ :
T × Ω → Ω a metric dynamical system and (X1, d1), (X2, d2) be metric spaces. Then two
random dynamical systems (ϕ1 : T×Ω×X1 → X1, θ) and (ϕ2 : T×Ω×X2 → X2, θ) are called
uniformly topologically equivalent with respect to a random fixed point {a(ω)}ω∈Ω of ϕ1 if there
exists a conjugacy h : Ω×X1 → X2 fulfilling the following properties:

(i) For almost all ω ∈ Ω, the function x 7→ h(ω, x) is a homeomorphism from X1 to X2.
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(ii) The mappings (ω, x1) 7→ h(ω, x1) and (ω, x2) 7→ h−1(ω, x2) are measurable.

(iii) The random dynamical systems ϕ1 and ϕ2 are cohomologous, i.e.

ϕ2(t, ω, h(ω, x)) = h(θtω, ϕ1(t, ω, x)) for all x ∈ X1 and almost all ω ∈ Ω .

(iv) We have
lim
δ→0

ess sup
ω∈Ω

sup
x∈Bδ(a(ω))

d2(h(ω, x), h(ω, a(ω))) = 0

and
lim
δ→0

ess sup
ω∈Ω

sup
x∈Bδ(h(ω,a(ω)))

d1(h−1(ω, x), a(ω)) = 0 .

Note that, in comparison to the concept of topological equivalence (Definition 5.1), we added
(iv) to take uniformity into account.

We show now that uniform topological equivalence preserves local uniform attractivity.

Proposition 5.4. Let (Ω,F ,P) be a probability space, θ : T × Ω → Ω a metric dynamical
system and (X1, d1), (X2, d2) be metric spaces, and let (ϕ1 : T × Ω × X1 → X1, θ) and (ϕ2 :
T × Ω × X2 → X2, θ) be two random dynamical systems which are uniformly topologically
equivalent with respect to a random fixed point {a(ω)}ω∈Ω of ϕ1. Let h : Ω×X1 → X2 denote the
conjugacy. Then {a(ω)}ω∈Ω is locally uniformly attractive for ϕ1 if and only if {h(ω, a(ω))}ω∈Ω

is locally uniformly attractive for ϕ2.

Proof. Suppose that {a(ω)}ω∈Ω is locally uniformly attractive for ϕ1 and let η > 0. Then there
exists a γ > 0 such that

ess sup
ω∈Ω

sup
x∈Bγ(a(ω))

d2(h(ω, x), h(ω, a(ω))) ≤ η .

Since {a(ω)}ω∈Ω is locally uniformly attractive for ϕ1, there exists a δ > 0 and a T > 0 such
that

ess sup
ω∈Ω

sup
x∈Bδ(a(ω))

d1(ϕ1(t, ω, x), a(θtω)) ≤ γ

2
for all t ≥ T .

Hence, for all t ≥ T , we have

ess sup
ω∈Ω

sup
x∈Bδ(a(ω))

d2(h(θtω, ϕ1(t, ω, x)), h(θtω, a(θtω))) ≤ η .

This means that for all t ≥ T , we have

ess sup
ω∈Ω

sup
x∈Bδ(a(ω))

d2(ϕ2(t, ω, h(ω, x)), h(θtω, a(θtω))) ≤ η ,

and there exists a β > 0 such that

ess sup
ω∈Ω

sup
x∈Bβ(h(ω,a(ω)))

d1(h−1(ω, x), a(ω)) ≤ δ

2
.

Finally, this means that for all t ≥ T , we have

ess sup
ω∈Ω

sup
x∈Bβ(h(ω,a(ω)))

d2(ϕ2(t, ω, x), h(θtω, a(θtω))) ≤ η ,

which finishes the proof that {h(ω, a(ω))}ω∈Ω is locally uniformly attractive for ϕ2; the converse
is proved similarly.
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As a corollary to this proposition, it follows that (4.1) admits a bifurcation.

Theorem 5.5. The stochastic differential equation (4.1) admits a random bifurcation at α = 0
which is induced by the concept of uniform topological equivalence.

Proof. This is a direct consequence of Theorem 4.3 and Proposition 5.4.

Appendix

Metric dynamical systems. Let B(Y ) denote the Borel σ-algebra of a metric space Y . Consider
a time set T = R or T = Z, and let (Ω,F ,P) be a probability space. A (B(T) ⊗ F ,F)-
measurable function θ : T× Ω → Ω is called a measurable dynamical system if θ(0, ω) = ω and
θ(t + s, ω) = θ(t, θ(s, ω)) for all t, s ∈ T and ω ∈ Ω. We use the abbreviation θtω for θ(t, ω).
A measurable dynamical system is said to be measure preserving or metric if Pθ(t, A) = PA
for all t ∈ T and A ∈ F , and such a dynamical system is called ergodic if for any A ∈ F
satisfying θtA = A for all t ∈ T, one has PA ∈ {0, 1}. A particular metric dynamical system,
which naturally is used when dealing with (one-dimensional) stochastic differential equations, is
generated by the Brownian motion. More precisely, Ω := C0(R,R) := {ω ∈ C(R,R) : ω(0) = 0}.
Let Ω be equipped with the compact-open topology and the Borel σ-algebra F := B(C0(R,R)).
Let P denote the Wiener probability measure on (Ω,F). The metric dynamical system is then
given by the Wiener shift θ : R × Ω → Ω, defined by θ(t, ω(·)) := ω(· + t) − ω(t), and it is
well-known that θ is ergodic [Arn98]. On (Ω,F), we have the natural filtration

F ts := σ
(
ω(u)− ω(v) : s ≤ u, v ≤ t

)
for all s ≤ t ,

with θ−1
u F ts = F t+us+u.

Invariant measures. For a given random dynamical system (θ, ϕ), let Θ : T× Ω×X → Ω×X
denote the corresponding skew product flow, given by Θ(t, ω, x) := (θtω, ϕ(t, ω)x). This is a
measurable dynamical system on the extended phase space Ω×X. A probability measure µ on
(Ω×X,F ⊗ B) is said to be an invariant measure if

(i) µ(ΘtA) = µ(A) for all t ∈ T and A ∈ F ⊗ B,

(ii) πΩµ = P,

where πΩµ denotes the marginal of µ on (Ω,F). If the metric space X is separable and complete,
then an invariant measure µ admits a P-almost surely unique disintegration [Arn98, Proposition
1.4.3], that is a family of probability measures (µω)ω∈Ω with

µ(A) =

∫
Ω

∫
X
1A(ω, x) dµω(x) dP(ω) .

Random sets. A function ω 7→ M(ω) taking values in the subsets of the phase space X of a
random dynamical system is called a closed (compact) random set if M(ω) is closed (compact)
for all ω and the map ω 7→ d(x,M(ω)) is measurable for each x ∈ X, and we use the term
ω-fiber of M for the set M(ω). A random set M is called invariant with respect to the random
dynamical system (θ, ϕ) if ϕ(t, ω)M(ω) = M(θtω) for all t ∈ R and ω ∈ Ω.

Random attractors. A nonempty, compact and invariant random set ω 7→ A(ω) is called global
random attractor for a random dynamical system (θ, ϕ) with metric state space (X, d), if it
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attracts all bounded sets in the sense of pullback attraction, i.e., for all bounded sets B ⊂ X,
one has

lim
t→∞

dist(ϕ(t, θ−tω)B,A(ω)) = 0 for almost all ω ∈ Ω ,

where dist(C,D) := supc∈C d(c,D) is the Hausdorff semi-distance of C and D. A global random
attractor (given it exists) is always unique [CF94]. The existence of random attractors is proved
via so-called absorbing sets [FS96]. A compact random set B(ω) is called a compact random
absorbing set if for almost all ω ∈ Ω and any bounded set D ⊂ X, there exists a time T > 0
such that

ϕ(t, θ−tω)D ⊂ B(ω) for all t ≥ T .

Suppose that φ(t, ω, ·), t ∈ T, ω ∈ Ω, is continuous. Given a compact random absorbing set
B(ω), it follows that there exists a global random attractor {A(ω)}ω∈Ω, given by

A(ω) :=
⋂
τ≥0

⋃
t≥τ

ϕ(t, θ−tω)B(ω) for almost all ω ∈ Ω .

Lyapunov exponents and Multiplicative Ergodic Theory. Given a linear random dynamical sys-
tem (θ,Φ) in Rd, a Lyapunov exponent is given by

λ = lim
t→±∞

1

|t|
ln ‖Φ(t, ω)x‖ for some ω ∈ Ω and x ∈ Rd \ {0} .

The Multiplicative Ergodic Theorem [Ose68, Arn98] shows that there are only finitely many
Lyapunov exponents provided the random dynamical system is ergodic and fulfills an integra-
bility condition. More precisely, consider a linear random dynamical system (θ : T×Ω→ Ω,Φ :
T× Ω→ Rd×d), suppose that θ is ergodic and Φ satisfies the integrability condition

sup
t∈[0,1]

ln+
(
‖Φ(t, ·)±1‖

)
∈ L1(P) ,

here ln+(x) := max{0, ln(x)}. Then the Multiplicative Ergodic Theorem states that almost
surely, there exist at most d Lyapunov exponents λ1 < λ2 < · · · < λp and fiber-wise decomposi-
tion

Rd = O1(ω)⊕O2(ω)⊕ · · · ⊕Op(ω) for almost all ω ∈ Ω

into Oseledets subspaces Oi ⊂ Rd such that for all i ∈ {1, . . . , p} and almost all ω ∈ Ω, one has

lim
t→±∞

1

|t|
ln ‖Φ(t, ω)x‖ = λi for all x ∈ Oi(ω) \ {0} .

References

[ABSH99] L. Arnold, G. Bleckert, and K.R. Schenk-Hoppé, The stochastic Brusselator: para-
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