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1 Introduction

Computing a shortest path in a geometric domain (see Mitchell [1]]) is a fundamental problem in com-
putational geometry with many applications in different areas such as robotics, geographic information
systems and navigation (see Agarwal et al. [2] and Sethian [3]]).

To date, some authors propose many exact algorithms (see Chen and Han [4]], Mitchell et al. [5]], Sharir
and Schorr [6].. . .) to find the shortest path joining two fixed points on a polyhedral surface. Some others
authors consider the problem of finding the shortest path joining two points on a sequence of adjacent
faces and use the results to find the solution of the above problem (see Pham-Trong et al. [[7] and Xin and
Wang [8])).

Several properties of shortest paths joining two points on a geometric domain were considered in
some papers (see Hai and An [9], Sharir and Schorr [6], Mitchell et al. 3] and Hoai, An and Hai [10]).
Sharir and Schorr [6]] proved that the shortest path joining two points on a convex polyhedral surface
cannot pass through any vertex except at its end-points. Mitchell et al. [S]] proved that the general form
of the shortest path on a sequence of edge-adjacent faces is a path which goes through an alternating
sequence of vertices (these faces here are triangles). The unfolded image of the path passes through a
sequence of line segments is a line segment, and the curve angle at any vertex which the path passes
through is greater than or equal to 7.

The problem of finding shortest path joining two points along a sequence of adjacent convex poly-
gons can be simplified to the following: Given two points and a sequence of line segments in real three

dimensional space, find a shortest path that joins these points and passes these line segments in a given
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order. Akman ([[11]) presented an algorithm for finding such shortest paths. Liu and Wong [12] and Saut-
ter [13] considered the problem of finding shortest gentle paths between two points in a sequence of line
segments as a local problem of finding shortest gentle paths between two points on a polytope, where a
path is gentle if its slope is less than or equal to a given positive number. When this number equal to 7,
the shortest gentle paths are the shortest paths.

Our problem covers the one of finding the shortest path lying in a simple polygon in the planar
space that joins two given points and meets a given sequence of sides and vertices of the polygon in
a required order. Our problem is studied under the analytical point of view.We present the existence
and uniqueness of shortest ordered path (Theorem [3.2] and Corollary [3.4). We then investigate some
characteristics of angles between shortest ordered path and line segments, especially when the path goes
through common points some line segments (Theorem Corollaries [4.2H4.3). Sufficient conditions
under which concatenation of two shortest ordered paths be shortest are also given (Theorem [4.2] and
Corollary {.4). In the last section we introduce the concept of straightest path on a sequence of adjacent
convex polygons, establish a relation between shortest paths and straightest paths joining two points
on the sequence, and consider a discrete initial value problem of straightest paths. Theorem [5.1] can be
used to find straightest path on a sequence of convex polygons from a given point and a given direction.
Moreover, using Proposition [5.1]one can construct shortest paths joining two points and passing through

a sequence of convex polygons from its finite straightest paths (see An, Giang, Phu and Polthier [14]).

2 Preliminaries

Given a metric space (X,d). A path in X is a continuous mapping ~ from an interval [tg,?;] C R
to X. We say that v joins the point y(¢) to the point y(¢1). The length of v : [to,t1] — X is the
quantity [() = sup, Zle d(y(7i—1),7(7;)), where the supremum is taken over the set of partitions

to =70 < 11 < -+ < Tp = ty of [tg,t1]. The length of a path is additive, i.e., for any path ~ :
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[to,t1] = X and L. € [to, t1], 1(y) = U(V,,,.,.,) + 1V, ,,))> where vy, and ), are restrictions
of v on [to, t.] and [t.,t1], respectively (see [15]). For instance, let (X, || - ||) be a normed space. A
mapping vy : [to,t1] — X is said to be an affine path if for any A € [0,1], v((1 — N)tg + A1) =
(1 = XN)y(to) + My(t1). Forz,y € X, to,t1 € R, tg < t1, apath ~ : [tg,t1] — X joining x to y is affine
iff (¢) = (t1 —to) " [(t1 — t)z + (t — to)y]. In this case,  has length ||z — y|| and the image ~([to, t1])
is the line segment [z, y] := {(1 — A)x + Ay : 0 < X < 1}. We assume that all paths in this paper have

finite length.

Let o, t and to be real numbers satisfying tg < t1 < to. If v : [to, 1] = X and 75 : [t1,t2] = X
are two paths satisfying (1) = ~2(¢1), then we can define the path v : [tg,t2] — X by setting

Y(t) if to <t <ty,
~(t) = ~ is called the concatenation of v, and 7o, denoted by 1 * 72, and

'}/2(2&) if t1 <t <ts.
we have I(v) = I(11) + I(y2).

Let v : [to,t1] — X and i) : [19,71] — X be two paths in X. We say that v is obtained from 1 by a
change of parameter if there exists a function ¢ : [to, 1] — [0, 71] that is monotonic (in the weak sense),
surjective and that satisfies v = 1 o 1. The function v is called the change of parameter. It is proved that
the equality I(y) = I(n) always holds. We say that v : [to,t1] — X is parametrized by arclength if
for all 7 and 7’ satisfying typ < 7 < 7" < t1, we have l(’y“”,]) =7 —7.If7: [to,t1] — X is any
path, then there always exists a path A : [0,1(y)] — X such that X is parametrized by arclength and ~y
is obtained from A by the change of the parameter ) : [to,t1] — [0, ()] defined by (1) = l(m[toﬂ).

Most definitions and results above can be seen in [[15]].

In this paper, E denotes R", equipped with the Euclidian norm || - ||, and d(z,y) is ||z — y||. For
z,y € E, denote |z, y] = [z,y] \ {z}, [x,y[= [z, y] \ {y}, and ]z, y[= [z, y] \ {z, y}. Note that when
x =y, |z,y] = {z} and [z,y[=]z,y] =]z,y[= 0. If x # y, each point z €]z, y[ is called an interior

point of [z, y]. By abuse of notation, sometimes we also call the image ~y([to, t1]) the path ~ : [tg, t1] — E.
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3 Shortest Ordered Paths

Definition 3.1 Let a, b be points in E and let ey, ..., e, be a sequence of line segments (these line
segments are not necessarily distinct and some of them may be singleton). A path 7 : [to,t1] — E that
joins a to b is called an ordered path with respect to the sequence ey, ..., ey if there is a sequence of
numbers tg <t < --- <{j <ty suchthaty(t;) €e;fori=1,...,k (see Fig.. ~ is called a shortest

ordered path if its length does not exceed any ordered path.

Fig. 1: An ordered path that joins a to b and passes through ey, e, €3, €4, €5, € and e7.

If v joins a to b and is an ordered path with respect to the sequence e, . . ., eg, we call itan O P(a, b)
If, in addition, it is a shortest path, then we say that v is an SOP(a,b)(c, ,....c,)-
In this paper we always assume that e; # e;41 forall i = 1,...,k — 1. We also use the notation

SOP(a,b)y or [a,b] to denote any path that joins a to b, one-to-one, and has length ||a — b|| and image
[a, b]. Usually SOP(a,b)y is assumed to be an affine path joining a to b. The aim of this section is to
prove that shortest ordered path joining two given points and with respect to a given sequence of line
segments exists and in some sense is unique.

We start with an intuitive property of paths.

Lemma 3.1 Let v : [to,t1] — E be any path.

(e1s.-,

ek)'
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(a) U(v) = |lv(to) — v(t1)|| and equality holds only if ¥([to, t1]) = [v(to), ¥(t1)]-

(b) If v is parametrized by arclength and 1(v) = ||y(to) — v(t1)|| > O, then v is affine, that is,

t1 — 1t t—1

0
t) = t t t € [to,t1).
7(t) tl_tO’Y( O)+t1_t07( 1) € [to, ta]
Proof. Seta = ~(to) and b = (¢1).
(a) Choosing the partition {to,t1} of [to,t1] gives I(y) > ||v(to) — v(t1)]| = |la — b||. Suppose

that I(y) = |la — b||. If there were © = ~(7) € ~([to,t1]) such that = ¢ [a,b], then we would have
1) = [lv(to) =) + lIv(r) =@l = lle = z[| + [l = bl] > lla — bl], a contradiction. Thus
~v([to, t1]) C [a,b]. Moreover, since ¥([to,t1]) is connected, a = 7(to) and b = 7(¢1), it follows that
V([to, t1]) = [a, b].

(b) First observe that t; — tg = I(7y) = |ja — b]| > 0 and by (a), v([to,t1]) = [a,b]. Fix to <t < t1
and suppose ¢t = (1 — A)tg + Aty and v(¢) = (1 — p)a + ub, A\, € [0, 1]. Since ~ is parametrized by
arclength, I(v, ;) =t—to > [|7(t)—alland (v, ) = t1 =t > [[b—~(t)||. Adding these inequalities
gives t1 —to > [|[7(t) —al]| + |[b = v(@t)|| > |la — b|| = t1 — to. Hence t — to = ||y(t) — a|, that is

A(tl — t(]) = ,U/HCL — b” = /J,(tl — t(]), whence o= A= (t — to)/(tl — to). O

We now turn to properties of shortest ordered paths. Although the following result is simple, it is

essential for others.

Theorem 3.1 Let ([to, t1]) be an SOP(a,b)(c, ... ey and let to =: tg <t < --- <t < lpgq =1y

satisfy y(t;) € e; fori=1,... k.

(@) Iftj—1 < a < B <t thenl(Vja,p) = lIv(@) =v(B)| and ([, B]) = [v(a), ¥(B)]. If, in addition,

7y is parametrized by arclength, then -y is affine on |, ().

(b) ’y([to,tl}) =UF [v(#),y(tix1)]- Thus 'y([tmtl]) is a polyline.

Proof. On the contrary, suppose that [ (y|ja,5)) > [[7(e) =7(B)]]. Define n : [to, t1] — Eby n(r) = (1)

for 7 € [to, a]U[B, 1] and 7 is affine on [, 8]. nis then an OP(a, b)(c, .. c,.)- However, since [ (n)(o,5]) =

.....
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@)=y B < 10V p1)- 1m) = Umpo,e) +L(mgan) +Lmipient) < ittocat) +1(iasl) + 1 (1) = 10).

This contradicts the fact that 5 is an SOP(a,b)c, ... .,)- Thus I(y|ja,5) = [[7(a) — (3)| and hence,

by Lemma 3.1} v([a, 8]) = [v(),7(8)]. In particular, y([£:, £i11]) = [v(£:), ¥(Ei41)] fori = 0,... k.

Therefore, v([to, t1]) = U gv([ti, tit1]) = UE_o[v(Z:),7(fi41)], which is a polyline. Finally, if + is

parametrized by arclength, Lemma says that v is affine on [«, 3]. O
Remark 3.1 Let f1,..., fr+1 be a sequence of convex polygons (these polygons are not necessarily dis-

tinct and f; and f; 1 may be identical), let e; be a common edge of f; and f;1 and leta € f1,b € fri1
(k > 1).1fv([to, t1]) isan SOP(a,b) (e, ... e, then by Theorem3.1L v ([to, t1]) = U_o[y(%:), v(fig1)] C
Uf:ll fi, i.e., this shortest ordered path lies on the polygons. Conversely, if v : [to, 1] — Uf:ll fiis an

OP(a,b),,....e,) and has the minimum length in the family of all paths that join a to b, lie on the poly-

gons f;, and pass through the edges e, . . ., e in that order, then v([to, t1]) is an SOP(a,b)

(e1,..rek)"

Thus determining a shortest path on the sequence of faces f, ..., fy+1 is equivalent to determining

an SOP(a, b)(el,...,ek)- This is a reason why we investigate in this paper shortest ordered paths with
respect to a sequence of line segments.
The following lemma says that restriction of a shortest ordered path on each subinterval of its domain

is again a shortest ordered path. It can be seen as a “local property” of shortest ordered paths.

Lemma 3.2 Suppose ([to, t1]) is an SOP(a,b)(c,,...ep), V(i) € €i fori =1,... kand ty =: ty <

[1§...§

~+

k<tirr:=ti. If1<m<n<kandty, 1 < a <ty <t, <P <ty then yjqpg) is

an SOP(y(a), Y(B)) (e ,...en)-

en) If V|[a,) 1s NOt shortest,

.....

there exists a path 7 : [, 8] — E thatis an OP(z,y) e, ...e.) With [(n) < 1(Vj[a,5])- Then & := 7)(zy.a] *

(8,61 18 AN OP (@, 0) ey, e0) DU U(E) = U (2.00) + 1) + L (Mp021) < 1 Mitorad) + L (Vi) + L(Mpa1) = 1),

a contradiction. Thus (o, 5 must be an SOP(z,9)c,......e,)- O
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Lemma 3.3 Suppose ([to,t1]) is an SOP(a,b) (e, . ep) and to =: tg <t < -+ < b < gy = 1y,
v(ti) € e fori=1,... .k Ifl(y) > Oforall t,t' € [to,t1] and t < ¥/, then vy is one-to-one on each

subinterval [t;,t;11], 0 <1i < k.

Proof. Suppose conversely that 7 is not one-to-one on [t;, ¢;41], i.e., there exist ; < o < 8 < tj41 with
~v(a) = v(B). Set ¢ := B — a > 0. Consider the mapping 7 : [to,t1 — d] — E defined by n(t) = ~(¢) if
to <t < aandn(t) = y(t+9)ifa <t <ty —0.Itis easy to see that n is an OP(a, b) (e, ,....c,) and since

HMtag1) > 0,1n) = U(iito,01) + L(Morti—1) = 1Mito,a1) + L(i8,021) = 10) = L (V) < 1)

This contradicts the fact that vy is an SOP(a, b)(c, ... c,)- Thus +y is one-to-one on [£;, ;41]. O

In this paper, sometimes we use the following assumption.

(A) The restriction of the path on each non-singleton interval of its domain has positive length.

Assumption (A) means that the path is not constant on any interval with positive length in its domain.
It is satisfied, for instance, if the path is parametrized by arclength or if it is one-to-one.

Next we turn to the problem of existence and uniqueness of a shortest ordered path.

Lemma 3.4 Suppose that v([to, t1]) and n([10,71]) are OP(a,b)(c,,...e,) to < t1 < --- <t < 1y,

70 <7 < -o- < T < 1y such that vy = y(1;) € e; and y; = n(7;) € e; for 1 < i < k.

(a) If a # x1, a # y1 and the angle between 1 — a and y1 — a is not zero, then v and 1 are not both
shortest.
(b) If b # x1, b # yi and the angle between xj, — b and yi, — b is not zero, then ~y and 1 are not both

shortest.

Proof. We prove for case (a), similar arguments apply to case (b). Suppose that y and 7 are both SOP(a, b)(c, ,....e,)
and () =1(n) = o.Letzg = yo := a, Tp+1 = Y11 :=band z; := (x;+y;)/2,i=0,1,...,k+1,s0

zo = aand zp41 = b.Letag := 0, @1 := ||z1—a

, Qg 1= 541+H22721 yeees Qg1 1= o_szerkazkH =

ay + ||b — zi||- Define ¢ : [0, ax+1] = E by o(@;) = z; fori =0,...,k+ 1, and ¢ is affine on each
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subinterval [a;, @i 41]. Then ¢ is continuous, p(a;) € e; fori = 1,...,k,ie., @isan OP(a,b)(,,. .. c,)-
We have
k k
i=0 i=0

Likewise, according to linearity and Theorem 3.1}

k k
() =D llwi = @il and 1) = llyi = yigall- )
i=0

=0

Since the angle between 1 — a and y; — a is not zero,
2lla =z <l =21l +[la =yl 3)
Moreover, for1 <1 < k,
2l|zi = zigall = (@i + 9:) — @ir1 + yir D)l < @i = @il + [[yi — yiga |- 4

. k k
Using (D)@ we get 21(p) = 2> llzi — zix1ll < lla —z1]| + lla —yall + 2D [lzi — ziga | <

k k k k
la—zi||+lla—yil|+ X1 lzi—zip |+ >0y lvi—viga | = Dio 1z — @i |+ 20 19 — viga || =

1(v) + l(n) = 20, implying I(¢) < o. This is impossible. Therefore v and 7 are not both shortest. O

Suppose that ([to, t1]) and 7([70, 71]) are OP(a,b)(c, ... c,)- We say that v equals 7 if at least one
path can be obtained from the other by a strictly increasing change of parameter. Clearly, if v equals 7,
then I(y) = I(n). If to < t1, 7o < 71, and ¥([to,1]) is an OP(a,b)(c, ... c,)- then there always exists
an OP(a,b)(c,,....,) defined on [1o, 71] that is equal to v, say 7 = y o o, where ¢ : [1g,71] — [to, 1]
defined by ¢(7) = (11 — 70) " (11 — T)to + (71 — 7o) "' (7 — 7o)t1. This equality relation is in fact an
equivalence relation on the family of OP(a, b)(el,‘.»,ew Whenever we identify ordered paths this way,
shortest ordered path joining two points with respect to a given sequence of line segments is unique. This

is stated in the following theorem which is also the main result in this section.

Theorem 3.2 Leta,b € E andlet ey, ..., ex be a sequence of line segments (these line segments are not

necessarily distinct and some of them may be singleton). There exists a shortest ordered path joining a to
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b with respect to the sequence e, . .., ex. Moreover, this shortest ordered path is unique in the family of

ordered paths satisfying assumption (A).

Proof. Existence Denote £ := e} X -+ X e C E*, 2y := a, and ZTr+1 = b. Consider the function
@ EF - R, &(zy,...,2) = Zf:o ||¢; —2i41]|- Foreachi = 0,1, ...k, the function (z1, ..., zx) —
|z; — 2i41]| is continuous on EX and so @ is continuous, too. As € is compact, there exists (z9,...,20) €
& such that &(z9,...,27) = 0 := ming &. Let xf := a, (., :=b, to:=0, & =1+
129, — 29, 1 < i < k+ 1 Clearly, {11 = S5 29, — 29| = 0. Consider the mapping
Y0 : [0,0] — E defined by vo(¢;) = 22,7 = 0,...,k + 1, and 7 is affine on each subinterval [£;, ;1 1].
Then 7y is a path with yo(;) € e; fori = 1,...,k, soitis an OP(a,b)(c,. .. ¢,)- Its length is I(70) =

k k
Zi:o l('YO\[t’,-,EHl]) = Zi:o ”179 - x?+1H = @(x% cee ,x%) =0.

Suppose now that 7 : [to, t1] — Eis an OP(a,b)(c,, . e,) and Z; := 3(¢;) € e;, 1 < i < k, where

to <t < - < {fp < t.Setio = a,Fpy1 = b, {y := to, and 441 := t1. Then, by Lemma [3.1]
k k

) = Z l(i/‘[fi}gprl]) > Z |Z; — Ziv1| = ®(F1,...,3%) > D(2Y,...,20) =1(y). Therefore vo
i=0 i=0

er,)- Observe further that -y is parametrized by arclength.

Uniqueness Suppose that 1([7o, 71]) is an SOP(a,b)(e,,....e,)» To = To < T1 < - < Tp < Tpgy 1=
Trand y; = n(T;) € e;, 1 < i < k. Setyy :=n(T0) = @, Yr+1 := N(Tx+1) = b.

We first consider the case when 7 is parametrized by arclength and 79 = 0. Then 7y = 71 — 79 =
l(n) = 0,50 [r9, 1] = [0, ).

Suppose now that the set I = {i : y; # x¥} is nonempty and m := minI. As yo = z3 = a and
Yer1 = 25,1 = b, 1 < m < k. Furthermore, by definition, yp,—1 = 20, ;. If 20, ¢ [z) |, 9] and

Y ¢ 20,1, 20 ], then Lemmasays that yo iz jand 7z, _, 7] arenotboth SOP(xy, _1,b)(e,......e0)-

m tm—1,t1

This and Lemma imply that 7o and 7 are not both SOP(a,b)(, ... .,). a contradiction. Therefore

T € [Ym—1,Ym| OF Y € [, 1,27, [ (since yp—1 = a7, _y).
m

If y, € [20, 1,20 [, by Theorem there exists t,, € [tm_1,tm| for which o (¢,,) = Y. Since

7o is parametrized by arclength, Theorem says that 7o is still affine on each subintervals [t,,_1,1.,]
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and [£),,, 1], and (|20, _y = ymll = LYoy, _,.27.1) = T — Tt [1ym — 21| =t — T, Thus

we can relabel £, := t/, and 29, := y,,,. Likewise, if %, € [y _1,Ym[, We can relabel y,,, := 20 . If
J = I\ {m} is nonempty, set n = min J. It follows that z° € [y,_1,yn[ or y, € [29_;,20[ and we

continue to reduce the number of elements of J. After finite steps we get y; = 2 for all i. Thus we can

assume y; = 2¥ forall i = 0,1,...,k + 1 and will prove that = o on [0, 7).
Observe that 741 — 75 = I(n)7,7,0)) = 120 — 2¥,4]| = tiq1 — & for i = 0,..., k. Condition
To = to = 0 implies that 7y = &1, T» = lo,...,Tkt1 = lpy1 = 0. Suppose Tj11 > 7;. Since 7 is

parametrized by arclength and l(m[ﬂ.fﬁl]) = |In(75) — n(Tj+1)lls Lemma says that 7 is affine on
[T, Tj+1]. Hence n(t) = v (t) on [T}, T;+1] and therefore n(t) = ~o(¢) on [0, o].

For the general case when |7, 71] is arbitrary and 7 is not necessarily parametrized by arclength but
satisfies assumption (A), we express n = (o), where 9 : [19, 71] — [0, o] is defined by ¢(7) = l(m[mr])
and ¢ : [0, 0] — E is parametrized by arclength (see [13]]). Let ¢} = 1 (7;). Since 1 is strictly increasing,
we have 0 = 9(70) < ¥(71) = 1) < -+ < P(Teq1) = t,, = 0. Hence ((0) = a, {(0) = b,
C(t;) =Cop(Ty) =n(7) =yifori=1,... n,ie., Cisan OP(a,b)(,, .. e,)- As ¢ is parametrized by
arclength, I({) = 0 — 0 = o, so that ( is an SOP(a, b)(c,,....c,)- By the proof above, = vo. Therefore,

1N = o o 1, i.e., the two paths 7 and v are equal. The proof is complete. O

We can apply the arguments in the proof of the first part of Theorem [3.2]to prove existence of solutions

of problems with variable endpoints.

Corollary 3.1 Let A, B be nonempty compact subsets of E and let e1, ..., ey be a sequence of line

segments.

(a) Let b € E be a fixed point. In the family of OP(a,b)(c,.....c,) Where a € A, there exists a shortest
path.
(b) Let a € E be a fixed point. In the family of OP(a,b)(, ... .,), where b € B, there exists a shortest

path.
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Proof. (a) The proof is similar to the first part of that of Theorem where @ is replaced with o :

EFY 5 R, &(x0, 21, .., xx) = (0 || — iy ) + |2k — b||, on the compact set A x e1 x - - - X ey
The proof for part (b) is similar. O
Corollary 3.2 Let A, B be nonempty compact subsets of E and let eq,. .., e, be a sequence of line

segments. In the family of OP(a, b)(e1 ,,,,, er)» Where a € A,b € B, there exists a shortest path.

Corollary 3.3 Let A be a nonempty compact subset of E and let ey, ..., e be a sequence of line seg-

ments. In the family of OP(a, a) where a € A, there exists a shortest path.

(€1,eerer)?
Observe that shortest ordered paths in Corollaries [3.1H3.3| may not be unique. Moreover, by Theorem
-1} all shortest paths in Corollaries [3.1H3.3| are always polylines.
Applying Corollary [3.3] to the problem of finding an inscribed polygon in a given convex polygon
P C R? with a minimum perimeter, we find that this problem has a solution. Some properties of angles

of this inscribed polygon will be derived in the next section.

Corollary 3.4 If y([to, t1]) and n([10,71]) are SOP(a,b)(c,.....c,) and parametrized by arclength, then
(1) = (T —710+to) and () = n(t —to+70). In addition, if 1o = to (hence 71 = t1), then n(t) = v(t)

Sforallt € [to, t1].

Proof. By Theorem [3.2] there is a strictly increasing and surjective function v : [7o, 71] — [to, 1] such
that n = v o ¢. We have ¢(79) = o and (m1) = t;. As «y and n are parametrized by arclength,
T =70 = 1(Mro,r1) = LW wro)w(r)) = U(T) — ¥(0) = ¥(T) —to forevery 7 € [r9, 71]. It follows
that ¢(7) = 7 — 7o + to, giving (1) = v(¢(7)) = v(T — 70 + to). Conversely, for each ¢ € [to, t1],
T:=t—1ty+ 19 € [10, 1] and so n(t — to + 10) = n(T) = (T — 10 + t0) = (). O
Corollary 3.5 Let D be a polytope in R® whose faces are convex. Let f1, ..., fr be a sequence of faces
of D such that f; N fiy1 isan edge fori =1,....,k — 1, a € f1, and b € fi. In the family of ordered
paths satisfying assumption (A), there exists uniquely a shortest ordered path lying on the surface of D,

Jjoining a to b, and going orderly through f1, ..., f.
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Asin Remark this shortest path is an SOP(a,b)(c,,. ey, Where e; = fin fipr,i=1,... k—1.
Applying Theoremto polytopes in R? and simple polygons on the plane R? we get the following

well-known results that are shown in [5], [6]].

Corollary 3.6 (a) Let a and b be any two points on a surface S in R? consisting of finite adjacent convex
polygons. In the family of paths joining a to b and lying totally on S, there exists a shortest path. This
shortest path is a polyline.

(b) Let a and b be any two points in a simple polygon P C R2. There exists a shortest path joining a to b

that lies totally in P and furthermore, it is a polyline.

Proof. (a) The case both a and b lie on the same polygon is trivial, so we assume that they belong different
polygons. Each path joining a to b and lying on S is an ordered path with respect to some sequence &
consisting of common edges of adjacent polygons in S. Let v¢ be an SOP(a, b) ¢). Since the family of
such sequences & is finite, the shortest path + in the family {~¢} is the required path. By Theorem (3.1
each ¢ is a polyline, so is .

(b) Partition P into nonoverlap convex polygons and apply part (a) to obtain the required result.

4 Conditions for Concatenation of Two Shortest Ordered Paths to be a Shortest Ordered Path

We have known in Theorem [3.1] that every shortest ordered path is a polyline. In this section we consider
some geometric characteristics of shortest ordered paths and represent conditions under which concate-
is

nation of two shortest ordered paths is a shortest ordered path. If j < i, then SOP(x,y),,.., e;)

understood to be SOP(z,y)y.

Lemma 4.1 Suppose v is an OP(a,b)c,....c,) and b € e, Nenq1N---Ney. v isan SOP(a,b)c, ... e,)
iffitisan SOP(a,b)(c, ..., ). Similarly, ifa € ey Neg N -+ N e, then yisan SOP(a,b) (... e, iff

itis an SOP(a,b)

Em41y--s ek)'
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This is derived from the fact that under the condition b € e, N eyy1 N --- N ek, a path is an

OP(a,b) y iffitis an OP(a, b) ex)- The other case is similar.

(€1, en—1 (TP

The following generalizes a part of Lemma[.T]

Lemma 4.2 Let v([to, t1]) be an SOP(a,b) e, ep), to < 01 < +++ <ty < t1, 7 := (L) € e for

i=1,...,k

(a) If e, is a line segment such that e, N [xj_1,x;] # 0,2 <j <k ande, # €j_1,ex # €j, then
7([t0,t1]) is an SOP(a,D) (e, ...c;_y,enresren) I ex N [a, 1] # 0, and e, # ey, then 'y([to,tl]) is
an SOP(a,b)(c, c,.....c,)- The case e, N [z, b] # 0 is similar.

(b) If ex1,. .., exm are line segments that contain the same point belonging to [xj_1,x;| for some j €

{2,...,k}, then y is also an SOP(a,b)(c, . The cases €41, - . . , €xn CONAIN

€515kl sy Cam €5y € )

the same point of [a, x1] or [y, b] are similar.

Proof. (a) We prove for the case 2 < j < k. Other cases are proved similarly. Suppose 17([70, 7'1]) is an

OP(a,b) 70< - <

Rl

(€1101€5—11€0,C5remsCh ) -1 < T« < 7; <. <7y osuch that y; i= (%) € e; for
1 <i < kandy,. = n(7) € e, Clearly, n is also an OP(a,)c,,....;)» 50 [(7) < I(n). Now take an
T € e, N[xj_1, 4] Since y([tj_1,¢;]) = [xj_1,2,], there is t. € [t;_1,t;] with v(¢,) = x,. Thus 7 is
also an OP(a, b)(

and therefore +y is an SOP(a,b) .en)- (b) follows

€154, —1,€x,€j5ee+,En) (e150+7€5—1,€5,€5,..

directly from (a). O

We now turn to our main problem of this section, the one of concatenation of two shortest paths. We
first consider the simplest case: the concatenation of a path and a line segment.

If v([to, t1]) is any path which joins a = ~(ty) to b = y(¢1), and ¢ is any point in E, for abbreviation,
we denote by v * [b, ¢| the concatenation of v and any one-to-one shortest path £ : [t1,t2] — E joining
band c. (If b = ¢, v * [b,c] = ~.) The notation [c,a] *  is defined similarly. Clearly (v * [b,c]) =
I(v) + |lc = bl| and I([c, a] * v) = I(y) + |lc — a||. Likewise, if v1 ([to, t1]), v2([t}, t2]) are paths which

join a to b and c to d, respectively, and t; < t}, b # ¢, the notation 7 * [, ¢] xy2 denotes the concatenation
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~1*&*y2, where & is defined on [t1, t]], one-to-one, and is a shortest path joining b to c. In these notations,
¢ is usually chosen to be affine.
The following lemma says that if we elongate the first or last line segment of a shortest ordered path,

we get a new shortest ordered path.

Lemma 4.3 Suppose ’y([to,tl]) is an SOP(a,b)(c,,....c,y and to < &y < --- < t, <ty such that

x; :=(t;) € ej for1 <i < n.

(a) If 2, # band q € E such that b € |z, q[, then y * [b, q] is an SOP(a, q) (e, ....c,.)-
(b) If v1 # a and p € E such that a € |p, x1[, then [p,a] x v is an SOP(p,b) (e, ... c,.)-
(c) Setxg = a. If Xty # Tpy1 = =2 =0, (0<m <n—1),and b €|x,,, q| then v * [b,q] is an

SOP(CL, Q)(El,mven)'

Proof. (a) Let n([10, 71]) be any OP(a, q)e,.....en)s To < 71 < -+ < Ty < 71, and y; := n(7;) € e; for
i=1,...,n. Suppose b = (1 — A\)z,, + Ag for some A €]0,1[. Set z; := (1 — Na; + Ay, 1 < i <

n, z0:=(1—-XNz1+Aa, zpy1:=1—-Nz,+A¢g=0>b.Thenfori=1,...,n—1,
lzi — zitall = [[(1 = M) (@i = ig1) + Myi — yir )| < A= Nl|2i — zigall + Mlyi — yigall- - S)

Let £ be the path going through zg, 21, . . ., 2,41 such that £ is an affine path joining z; and 2;11,0 <7 <
n. £ is an OP(z0,b)(e,.....c,.)- BY Theorem there exits a t* € [tg, 1] satisfying v(t*) = 2. Lemma

3.2[states that 7y« 4,1 1s an SOP(29,b) (e, ....c. y- According to Theorem|3.1{and (5] we have
I[t*,t1] (e1,-en)

n—1 n
lzo — 1l + Y @i = zigall + llzn = bl = L(Yje=0a)) S UE =D llzi — ziga |
=1 =0 (6)

n—1 n—1
< lz0 = 21|l + {(1 =)D Mz — | A My — yi+1ll] + [lzn = b]l.
i=1 1=1

Noting that [|z0 — z1[| = Alla = z1l,  [zn =0l = Allzn =4l |20 = 21l = Alla = v ll, {20 — bl =
Mlyn — all, we deduce from () that Alla — || + A7 |25 — ziva | + Mlzw — all < Mla =yl +

AT s = yirall + Mlyn — gll, Sinee |z, — gl = [lzn — bl + [|b — g]|, the above inequality yields
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A(L(y) + |Ib — ql) < Ni(n), which implies I(y * [b,q]) = [(7) + ||b — gq|| < I(n). Thus, v * [b, g] is an
SOP(a,q) (e, ....en)-

Part (b) is proved similarly. To prove (c) we observe that, by Lemma ~isan SOP(a, b)(e1 ,,,,, em)*
Applying part (a) we find that v * [b, q] is an SOP(a, ) (e, ....c,,)- That y* [b, q] is an SOP(a, q) (e, ....c,)

follows from Lemma O

We now study some characteristics of a shortest ordered path basing on properties of angles between
the path and line segments e;s. If u and v are nonzero vectors in E, we denote by Z(u,v) the angle

between v and v, which does not excess 7.

Theorem 4.1 Let ey, ..., ey be a sequence of line segments. Let y([to, t1]) be an SOP(a,b) ., .

€n—1)

and tg < t; < -+ < tpq1 <ty such that v; = y(t;) € e; and n < k. Set ©9 = a. Suppose
Tn—1 # b, b € e, N - Neyg, and each e; is nonsingleton for j = n,... k. Let ¢ € E, ¢ # b. Then
v * [b,q] is an SOP(a, q)(e,,....c,) iff for any y; € ej and y; # b, j = n, ..., k, we have 0 > 7, where

Proof. Suppose that y * [b, ¢] is an SOP(a, q)(c,,....c,) and that y; € e;, y; # b, j = n, ..., k. We show

that 6 > 7. By Lemma § = Y[ 1.ty * [0,q) is an SOP(xy_1,q)(e,,....e,)- SEUing ypy1 := q,
vji=y;—bj=mn,...,k+1 wehave 0 = Z(x,,—1 — b,v,) + Zf:n Z(vj,vj41). Let L; be the line
containing b and y;, n < j < k4 1. Let P be the plane containing L,, and =, (if ,,—1 € L, P is any
plane containing L,,).

Sety;, := yn.If L, # Ly41, denote by y;,,; € P the point such that Ax,,_1by,, and Ay, by, | do
not overlap (i.e., x,_1 and y;, ,, are on opposite sides of L,) and Ay, by, .1 = Aynbypy1:if -1 €
Ly, vy, lies on any side of L,. If L, = Ly 41, i.€., Yny1 — b = A(yn — b) for some A, then we choose
Yy, 1 satisfying y;, ., — b = A(y,, — b). Similarly, y,,,, € P is the point such that Ay, by, o, =

AYny10yn 2 and the triangles Ay, by;, 1 and Ay;, . by;, o do not overlap, and so on. We then obtain a

sequence yy,, . ., Y,y in P such that [[yj —yj [l = lly; —y54ll: lyj =0l = lly; =0l and £(v], v} 1) =
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Z(vj,vjy1), where v =y — bfor j > n. Then 0 = Z(xn—1 — b,v;,) + Zf:n L0l ). TE0 <,

there exist z,—1 €]z,—1,b[, 2, €y,,bl...., 23,11 €Y1, b[ that are near b and such that they are
collinear. Let z; € Jy;, b[ satisty [|z; —b| = ||z} —b||, j > n. We have ||z, 1 — zp ||+ - -+ |2 — zx 41| =
Vo=l 2= 2l = 2= 2 < 2t =Bl 0= 2| = 201 =B+ =21

and hence [, 1, Zn—1] * [Zn—1, 2n] * -+ - * 2k, Zk+1] * [2Zk+1, q] is an OP(x,,—1, q) .er) Whose length

(en,--
is less than that of £. This is impossible. Therefore 6 > .
Next suppose conversely that for any y; € e; and y; # b, 7 = n,...,k, we have 0 > . We first

observe that v x [b,q] is an OP(a,q)(c,,....e,)- Let n([70, 71]) be any SOP(a, q) e, 0 <7 <

k)
v < T < Tpyr =11, and y; = (%) € e;fori = 1,...,k, ypg1 := n(Te1) = ¢. If b € [y;,y;41]
for some j > n, then there is 7, € [T}, T;41] with n(7,) = b and so {(n) = l(nHde) + l(ﬁl[m,n]) >
1(v) + [Ib—ql| = (v = [b, q]), because 1,7, ] is also an OP(a,b) (e, .., ) and L(n)i,. ) = [1b—ql|.

Consider the case b ¢ [y;,yj41] (and so y; # b) forall j = n,... k. Lety,,...,y; ., be points
defined as in the first part of the proof. Set 0,,_1 = Z(z,—1 — b,y,, —b) and forn < j < k, 0; :=
L(Tn—1 = by, —b) + L(yy, — b,ypq —b) + -+ ZL(y; — b,yj —b). We have 0, = 0 > 7. Let
r=min{j >n:60; >} 10, =m,set Yy = Yry1 and y* = y, 41, T = T,41. Suppose 0, > .
Observe that Z(y,. — b,y .1 —b) = Z(yr — b,yr41 — b) < 7 since if this angle is 7, b €]y, yr41[, a

contradiction. As 0,1 < mand 6, = 0,_1 + Z(y,. — b, y,. ., — b) > m, there exists y*' €]y, y. [ such

that 0,1 +Z(y. —b,y*' —b) = 7. Let y* € |y,, Y41 satisty [|y* —y.|| = [[v*' —y.| and 7* €7, Tr i1

.....

Lo ,r1) = LMo 1) + 9 = gl + -+ lyrm1 = yell + [lyr — v
=1(Mpro,mn)) + 100 — vl + -+ oy = il + Nl — o
> (v + [b,y™]) = Um) + [|b—y*[| = Um) + [Ib— v

We deduce that (1) > 1(n)(r,7+) +ly* —all = 1(y)+b—y*[[+lv*—all = () +b—q| = L(y*[b, q)).

In all cases, I(n) > I(7y * [b, q]), showing that v  [b, g] is an SOP(a, q) e, ....c,)- O
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Theorem [-T] gives a criterion to recognize an ordered path to be shortest: we just measure the angles
between line segments of the path and e;s at points of intersection. To illustrate the theorem let us consider
a special case. Suppose that e; = [b,b;], ¢ = 1,...,r, are non-singleton line segments with the same
endpoint b. Let a,q € E\ {b}. If the sum £(a — b, by — b) + 371 Z(b; — b, biys —b) + (b, — b, q—b)

is not less than m, then [a, b] * [b, q] is an SOP(a, q)(e,.....,)- For instance, let a,q € R?\ {0}. Then

(e1,..
~ = [a, 0] %[0, g] is the shortest path that joins a and ¢ and meets the z-, y-, and z-axes. Indeed, suppose 1
is any path joining a and g and meets x-, y-, and z-axes at by = (X, 0,0), by = (0, 41,0), and b3 = (0,0, v).
If one of the points by, bo, b3 is coincident with b := 0 = (0,0, 0), then clearly, I(y) < I(n). Assume
b; # bforalli = 1,2,3 and nis an OP(a, q) (p,bs],[b,b1],[b,bs])- SiNCE Z(a—b, by —b) 4 L (by —b, by —b) +
Z(by —b,bg —b)+ ZL(bg —b,q—b) >, Theoremsays that, in the family O P (a, q) ([b,b,],[b,61],[b,b3])>
1) < U(n).

We now consider several consequences of Theorem 4.1}

Corollary 4.1 Suppose ([to, t1]) is an SOP(a,b) (e, .y and to < ty < --- < t, < ty such that
x; = (t;) €Eeiforl <i<mn,x, #b Lety € e,, y # Tn, and let q be any point in E such that
qF xpand L(y — Tn,q — Tn) = L(y — Tn, b — 1), Then Y, 7] * [Tn, q] is an SOP(a, q)(e,....e.)-
In particular, if we rotate the last line segment [x,,,b] about the line containing e, we then get a new

shortest ordered path with respect to e1, . . . , €.

Proof. Set xy := a.If xyg = 21 = --- = x,, then there is nothing to prove. So we assume that m =
max{i : x; # b} exists. By Theorem forany y; € e;, yi # . m—+1 <i < n, Z(Tm — Tny Ymt1 —
Tn) + Z(Yma1 — Tny Ymao — Tn) + -+ Z(Yn — Ty b — ) > 7. Hence L(z, — T, Yms1 — Tn) +
L(Ym+1—Tns Ymi2—Tn)++ +L(Yn—Tn, ¢—Tpn) = wsince L(Yn —Tn, ¢—Zn) = L(Yn—Tn,b—2p).

Applying Theoremonce more, we find that 7,1, 7.1 * [2n, q] is an SOP(a, q) (e, ,....c..)- O

Corollary 4.2 Suppose ([to,t1]) is an SOP(a,b)(c, ... ¢, and to < t; < --- < t, < t1 such that

z; =) € e; for1 <i<n, xg:=a, Tny1 = b. Suppose also that x;_1 # xj and xj1 # ;.
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(a) If y; € ej, yj # xj, then 0 = L(x;_1 — xj,y; — x;) + L(y; — xj,xj41 — ;) > 7. In particular, if
x; is an interior point of e;, then 0 = .

(b) Let L be the line containing e;. If xj_1 € L and xj 41 ¢ L, then x; is an end point of e; with
lz;—1 — x| = mingee, ||x;-1 — z|| and 6 > 7. The case w41 € L and x;_1 ¢ L is similar.

(¢c) Ifxj_1,xj41 € L, then either L(xj_1 —xj,j41 — ;) = wor L(xj_1 —xj,y; —xj) = L(Tj41 —
xj,yj—x;) =, wherey; € e;, y; # x;. Inthe latter case x; is an end point of e; with ||x;_1—x;|| =

minwEej ||33j_1 — l‘”

Proof. (a) Applying Theoremto V|[to,F;+.) and sequence ey, ..., e;, we get 0 > 7. If x; is an interior
point of e;, take y; € e; such that z; is an interior point of [y, y;]. We then also have 0’ := /(2,1 —
zj, Y — i) + L(Y; — x4, 2541 — x5) > m. Since 0 + 0" =27, 0 = ¢’ = .

(b) Suppose zj_1 € L and zj41 ¢ L. Since 6 # m, 6 > m and according to part (a), 2; must be an
endpoint. If ||z;_1 — ;|| > minge; ||2;-1 — ||, there exists T € e; with ||z;_y — Z| < [lz;-1 — z;]|.
Since z € [vj_1,z;[ and ;11 ¢ L, [|zj—1 — 2| + [lzj — 2511 = [lzj—1 — 2| + [[2 — 5| + ||z —
Tipall > llzj—1 — Z| + | — 254l e LY, -1 700)) > L([2j—1, Z] * [Z, 2541]) a contradiction. Thus
|21 — ;|| = mingee, [|zj-1 — |-

©Ifx; € [xj_1,2j41), then Z(z;—1 — xj,xj41 — x;) = 7. If otherwise, say z,_1 € [z}, Zj4+1],
then an analysis which is similar to that in part (b) shows that z; is an end point of e; with ||z;_1 — ;|| =

Mingee; |71 — || and Z(z;_1 — x5,y — ;) = L(xj 41 —35,y; —x5) = 7, fory; € ej,y; # x5 O

The following result is a converse of Corollary f.2] and it gives sufficient conditions for an ordered

path to be shortest.

Corollary 4.3 Let v([to,t1]) be an SOP(a,b)(c,,....c, 1) b € e, and to <ty < oo <ty <ty such

that v; := v(t;) € e;. Let ¢ € E, q # b. Set vy = a and suppose that m = max{i : x; # b} exits and

that there is y € e,y # b.

(a) If0 := L(xpy — b,y —b) + L(y —b,q —b) = 7, then v x [b, q] is an SOP(a, q)(c,,....c.)-
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(b) If bis an end point of e, and 0 > T, then ~  [b, q] is an SOP(a, q)(c,

,,,,, en)-

Part (a) is a generalization of Lemmaf.3]

Proof. (a)For any y € e, y # b, we always have Z(z,, — b,y' — b) + Z(y' — b, ¢ — b) = m. Thus by
Theorem [4.1]  * [b, ] is an SOP(a, q)(e,.....e,n.e,)- I 0 < 1 — 1, it follows from Lemma [4.2{b) that

v * [b,q] is an SOP(a, q) e, ....c,)- (b) is proved similarly. O

To illustrate Corollaries and let us consider a triangle in R? having acute angles (Fig. . For
u € ey fixed, Corollary 4.3|states that the triangle uvw has minimum perimeter because angles 6 at v and
w are 7. Fig. [2| shows that Z(w — u, 2y — u) + Z£(21 — u,v — u) # 7. Thus wvw is not the inscribed

triangle with minimum perimeter since the angles at u do not satisfy Corollary .2{a).

el z1 u

Fig. 2: SOP(u, ) (e, ey,e5) = [, V] * [0, w] ¥ [w, u]

We are now in a position to consider the general case of concatenation of two shortest ordered paths.
Roughly speaking, the following theorem says that if the last line segment of a shortest ordered path and

the first of the other overlap, the two paths can be joined to become a shortest ordered path.

Theorem 4.2 Letey, ..., ey be asequence of line segments. Suppose that 1 ([to, t1]) is an SOP(a,b) (e, ..., 1)
and o ([t*, t2]) is an SOP(c,d) (e, ,....cp) Where t* < ti < t, and y1(t1) = y2(t1) = b. Suppose also
that 1, ve satisfy assumption (A). If t1 < t, < -+« < & < to, m; := 12(t;) € €; forn < i < k, and if

there exists € > 0 such that v1([t1 — €,t1]) C 72([t*, t1]) then the concatenation -y of y1 and oy, 4,) is

an SOP(G, d)(el ,,,,, er)*
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Note that Lemma[4.3]is a particular case of this theorem.

Proof. Lettyg =: &g < 11 < - <ty 1 < t1,m = 7(t;) € ey fori =1,...,n—1,and g :=
~1(to) = a. We can also assume, by applying Lemma if necessary, that b = x,, € e, i.e., t, = t1.
Set tj41 := to and note that v is an OP(a,d)(c, ,....c,)- The proof is divided into three cases.

Case 1: k = n and e,, # {b}. Since 2 is an SOP(c,d)(c,), v2([t*, t1]) = [c, b], 2([t1, t2]) = [b,d],
and b # ¢, b # d (by assumption (A)). Set m = max{i < n : x; # b}. By virtue of Lemma we can
assume t* = t; — e and ¢ € [z, b[. Applying Theorem [4.1]to v we find that for every y € e,,, y # b,
Z(e—b,y —b) + Z(y — b,d — b) > . Thus this theorem also says that v is an SOP(a,d)(c,.....c,. e,
and hence it is an SOP(a, d) e, ....c,) by Lemma

Case2: k> n+1landalle;, j =n,...,k, are not singleton. Set 2341 := d, m = max{i < n :
x; # b}, r = min{j > n : x; # b}, and assume that ¢ = v, (t; — €) € [z, b[. Then, by Lemma 3.2}
Yo 7, = [¢: 0] % [b,z] is an SOP(c, 2y (e,,.....e,_1)- BY Theorem for yo(« 7,1, all angles 6 at b are
not less than m and hence, v1 * 2|14, 7,] is an SOP(a, xr)(el7,“,%75%7_“76”1). Ifm<n-—1, Lemma

again shows that v * 2, 7,1 is an SOP(a, T7)(es,....e,_,)- We continue in this fashion to obtain, after a

.....

finite number of times, that ~y is an SOP(a, d)

(e1,..,ex)"

Case 3: e; is singleton for some j > n. The particular case when e, is singleton, i.e., e, = {b}, is

derived immediately from the following lemma.

Lemma 4.4 Let (([cv, 1]) be an OP(p,u) (e, ....e;) and &([a1, az]) an OP(u, q) em)- Then ¢ =

(e141,--

.....

<*§ is an SOP(pa Q)(el,...,el,{u},el+1,...,em) lﬁcg is an SOP(p7 u)(el,...,el) andﬁan SOP(“;Q)(

€L+1’~~~,€m)'

Indeed, if ¢/ is a shortest ordered path, then so are ¢ and £ (Lemma 3.2)). Conversely, suppose ¢ and &

are shortest ordered paths. Let 1([70, 71]) be any OP(p, @) (e, .....e; {u}ersn,omsem) T0 < 71 < -0 <7 <

Tu <Ti41 < o+ < T <1, and y; := (7)) € e fori = 1,...,m, 1(7,) = u. Since n)[, 7,1 is an

OP(p, u)(ey,....ey A 17, 7y 18 a0 OP (U, Q) (e 4 ,.ooem)> 1) = L(irg,71) HL (M ma)) = LEO)HI(E) =

I(1)). Therefore v is an SOP(p, q)(e, ..., et {u}erstsenem):
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We now prove the theorem for the case s = min{j > n : e; is singleton} > n, say e, = {u}. If
t1=1fpi1 = =ty thenb = u € ;41N -Nes and by Lemma Y1 isalsoan SOP(a,b) e, e, 1)

and Y2y, 1,) a0 SOP (b, d) (e, ,.....c1)- Lemma states that y is an SOP(a,d) e, ... ¢,)- If ts > t1, by

yens

Cases 1 and 2 we find that £ = 1 %Yot 7.1 is an SOP(a,u)(c, ... e, ,)> We then apply Lemmaagain

to § and 7z, 1,] to obtain the required result. The proof of the theorem is complete. O

Corollary 4.4 Suppose v1([to,t1]) isan SOP(a,b) (e, ... ¢,y and y2([t1, t2]) is an SOP(b, C)(ensrren)
Suppose also that 1,2 satisfy assumption (A). Theny = 1 %72 is an SOP(a,c) e, ....,) iff there exists

€ > 0 such that 1[4, —c,1,] * V2|[t,,t, +¢] i @ shortest ordered path.

Proof. If v = 1 * 72 is an SOP(a,¢)(e,,....e;) then ¢ := Vi|(r,—e.t] * V2|[t1,t14e] = V[t1—c,ti+e] 15 A
shortest ordered path for each e < min{t; — tg,t2 — t1} (Lemma . Conversely suppose that ¢ is a
shortest ordered path and satisfies assumption (A). Since Vi|(t, —e,t,] = C|[t,—e,t1]> aPPlying Theorem
to 1 and ¢ we find that & = 71 * (|1, ,¢, 1 is a shortest ordered path. Applying Theorem again to £

and 2 we obtain that v = & * Vo[t 4e,t,] 1S an SOP(a, €)(c,,....cp)- O

Loosely speaking, the above result says that if the last segment of the first shortest ordered path and
the first segment of the second form a shortest ordered path, then their concatenation is also a shortest

ordered path.

5 Straightest Paths and a Discrete Initial Value Problem

Let S = (f1, f2,.-., fre1) be a sequence of (not necessary distinct) adjacent convex polygons in R? or
R3,ie.,e; = f; N fi+1 is an edge for 1 <4 < k. Polthier and Schimies [[16] presented a new concept of
geodesics: straightest geodesics are paths that have equal path angle on both sides at each point. In this
section we consider “straightest paths” which are lightly differ from the original and in fact are particular

shortest ordered paths.
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Definition 5.1 A straightest path v : [to, t1] — Ufill fi on the sequence S is a path that satisfies assump-

tion (A) and the following conditions:

(a) there exist integers 1 < m < n < k and a sequence of numbers ty =: ty,—1 < ty, < -+ < t,, <
tnt1 := by such that z; := (L) € e; form < i < nand zp—y :=Y(to) € fim, Tny1 = (1) €
frt1s

®) 15 71e)) = Il — 2ipa || form — 1 < < n;

(¢) For z; € e;, z; # @i, we have Z(zj1 — @i, 2i — i) + £(2i — @i, 2ip1 — x;) = wif 2; € e; is nota
common vertex, and £ (z;« _1—x;, 2;- —a?i)-l-Z;;il* L2 =iy 2j41—0)F L (2r—Tiy Ty —2i) = 7

ifl‘i*_l 7é Tijx = Tjrq1 = = = Tp 75587«4_1 and ¢* < ) <r.

It is conventional to define straightest path joining a to b on the same polygon (with respect to an empty

sequence of common edges) to be any path that joins a to b, one-to-one, and has length ||a — b||, i.e., an

SOP((J,, b)@.

Condition (a) states that a straightest path is an ordered path. Condition (b) and Lemma imply
that y([t;,ti41]) = |5, @ip1] C figr for m — 1 < i < n. We observe also that condition (c¢) does
not depend on the choice of z; € e;, m < i < n. Corollary @] and Theorem @] show that v is an
SOP(Zm—1,%n+1)(en,...,e,)- Note also that assumption (A), the conditions tg < ty,, t, < t1, and (b)
imply that zo # 1 and x,, # x,+1. These conditions do not restrict the definition of straightest paths
since if 2 belongs to a common edge then we choose m = max{j : o € f;}. Similarly, we can assume
that z,,4; does not belong to e,,.

There are reasons why we study straightest paths: First the shortest path joining two given points on
the surface of a polytope D whose angle at every vertex is strictly less than 27 does not go through any
vertex of D (see [6]). Thus, by Corollary the path is straightest. Second, every shortest ordered path

joining two points on a surface S consisting of convex polygons is composed of straightest paths joining

vertexes of S (Proposition[5.).
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Let v([to, t1]) be a straightest path on S = (f1, fa,.- ., fx+1)> 7(to) € fm, and v a nonzero vector
that is parallel to f,,. If there exists t* > to such that y([to, t*]) C f, and v(t*) — v(tg) = Av for some
A > 0 we say that y starts at (o) in the direction of v.

As usual, we first consider the problem of existence of straightest paths defined by a given starting

point and a direction.

Theorem 5.1 Let S = (f1, fo, ..., fr+1) be a sequence of adjacent convex polygons. Let a,p € fn,
a # p, and v = p — a. Then there exists uniquely a longest straightest path y([to,t1]) on S starting at
a and in the direction of v. Moreover, if n([10, T1]) is any straightest path on S starting at a and in the
direction of v, then 1 equals |1, +] for some to < t* < tq. Thus every straightest path on S can be

extended to a longest straightest path.

Proof. There is nothing to prove if k = 0, .S = { f1 }. Thus we assume, without loss of the generality, that
k>1,a,p€ fi,and a ¢ fs.

First we construct v. Denote e; = f; N fi11,i =1,...,k. Settg = 0and ¢; = max{t:a+tv € f1}.
Sincep=a+wv € f1,t; > 1. Define v1 : [0,#1] — f1 by 11(0) = a, v1(t1) = 21 := a+t1v € f1, and
~1 is affine on [0, %1]. If x1 ¢ e; we put ¢y :=¢; and v := ;.

Suppose z1 € e;. Choose any z1 € e, 21 # x1. If there exists p; € fo such that
Lla—x1,21 — 1) + L(21 — x1,p1 — 1) =, @)

set vy := p; — o1, 01 = max{t : x1 +tvy € fo} > 1,43 :=1; + 01, and 23 := x1 + o1v1 € fo. We
then define vo : [t1,%2] — fo by v2(t1) = 1, 12(t2) = 72, and o is affine on [t;, #5]. Clearly 71 * o
is a straightest path starting at a, in the direction of v, and joining a to x2. Observe that such a p; always
exists if 21 is an interior point of e;.

Suppose x; is an endpoint of e; and there is no p1 € fy satisfying (7). If z; is not a common
vertex of e; and e, set t; := t; and v := ~y;. Assume that z; is a common vertex of e; and es. Let

r = max{i : x1 € e, 1 < j < i}. Choose z; € €j, z; # x1,1 < j < r,and let 27, be a
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point on the second edge of f.,; that has an endpoint z; and 2’| # 1. Let 0, := Z(a — x1,21 —
x1) + L(z1 — @120 —x1) + -+ L(zm1 — @1, 2 — x1) + L2 — 21,25 — x1). We call 6 the
angle of incidence at x1. If 01 < m, sett; := t; and v := ~y;. Assume #; > w. Put s := max{i :
Zla—z1,21 — 1) + L(21 — x1,22 — @1) + - + L(2i-1 — T1,2; — x1) < 7}. Since there is no
p1 € fo satisfying (7), 2 < s < r and there exists ps € fs11 \ fs, such that Z(a — x1,21 — 21) +
(71 —w1,20 —x1) + -+ L(zs — 21,ps —x1) = 7. Setly = =1g =11, 19 = -+ = 35 := 17,
vs = ps—a1,and o5 ;= max{t : Ts+tvs € for1}, lsy1:=1s+0s, Tsi1:= Ts+0osvs. Asag > 1,
top1 > ts. Define v, @ [ti—1,t;] = fi, 7i(t) = 21,2 <40 < 8, Ysq1 ¢ [ts, tsgr] = Fsp1, Vot1(ls) = s,
Yo+1(tss1) = Tsi1, and sy is affine. From the construction we find that ; * g * -+ % Y541 iS a

straightest path joining a to x4 and starts at a in the direction of v.

We continue in this fashion and finally obtain a sequence of points x1, ..., z,+1 satisfying the fol-
lowing conditions: 1) Z,, € ey, Tnt1 € fat1 \ frr,and 1 = max{t > 0: z, +t(Tpi1 — Tpn) € frni1}; i)
either x,,11 ¢ e,+1 (for instance, when n = k) or iii) 2,41 € e,41 and the angle of incidence at ',
is less than 7. We then set t1 := ¢, 41 = ¢, + 0y, and define v, 11 @ [tn, 1] = fat1 BY Yna1(En) = Tns
Ynt1(t1) = Tpy1 = Ty + OnUy, and yy,41 is affine. Let v = 1 % ¥ % - - - % y,,4.1. We find that v satis-

fies assumption (A) and is an OP(a, x,11) . Moreover, « also satisfies conditions (b) and (c) of

(€1yemren)
Definition[5.1} Thus + is a straightest path starting at a and in the direction of v.

Suppose now that n([rg, 71]) is a straightest path on .S starting at a and in the direction of v. Let
¢ := n(71 ). The step-by-step construction of v shows that there exists t. € |to, t1] such that ¢ = ~(¢.) and
n and 7|[¢,,¢,] are shortest paths joining a to ¢ with respect to the same sequence of line segments. Thus
by the uniqueness of shortest ordered path (Theorem @, n equals ¢, ¢.1- This implies also that 7 can

be extended to «y and + is the unique longest straightest path. O

Remark 5.1 Notice that shortest ordered path joining two given points on a sequence of adjacent convex

polygons always exists but this may not be true for straightest path.
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In the problem of computing shortest paths on a polyhedral surface, a key geometric concept is the
notion of planar unfolding around a sequence of adjacent convex polygons S = (f1, fa, ..., fxe1) (see
[5). We unfold the sequence S as follow: Rotate f; around e; until its plane coincides with that of fs,
rotate fi; and f5 around es until their plane coincides with that of f3, continue this way until all faces
f1, f2, ..., fr lie on the plane of fi4 1. The idea of planar unfolding was used to prove Theorem [4.1] We

now investigate the image of a straightest path under a planar unfolding.

Suppose that y([to, t1]) is a straightest path joining a € fi; and b € fr11,t0 < 1 < -+ < T < 11,
x; = y(t;) € e; for 1 < i < k. For each 4, choose z; € ¢;, 2; # ;. Let a; be the image of a under
the planar unfolding around e;. Since a # x1, a; # x1. If x1 # x9, we have Z(a1 — x1,21 — 1) =
Z(a —x1,21 —x1) sothat Z(ay — x1,21 — x1) + £L(21 — 21,22 — 1) = 7. Hence x1 € ]ay, 23], i.e.,
a1,x1, o are collinear. Similarly, let as and x5 be the images of a; and x; under the planar unfolding
around eg, respectively. If zo # 3, then Z(x1 2 — T2, 20 — x2) = Z(x1 — X2, 22 — T2) Whence Z(x1 2 —
To, 2o —X2)+L(22— X2, T3—x2) = T, 1.., az, X1 2, T2, g are collinear. If 1 = x9 = -+ - = T, # Xy,

then by condition (c), a,, x1, x,4+1 are collinear, where a, is the image of a under the planar unfolding

around e, eo, ..., e,. Repeating this argument we finally find that the image of v under the planar
unfolding around ey, ..., ey is a line segment. Conversely, if the image of v under the planar unfolding
around ey, . . ., ey is a line segment, then the angles of ~y at edges are 7, so +y is a straightest path. We thus

arrive at the following result.

Lemma 5.1 Let v be an OP(a,b)(c,...c,) (@ € f1, b € fri1) on the sequence S in R3. Then ~ is

.....

straightest iff its planar unfolding around ey, . . . , ey, is a line segment.

Thus roughly speaking, straightest paths are ordered paths whose images under planar unfoldings are

line segments.
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A straightest path is a shortest ordered path. Hence if there exists a straightest path joining two given
points @ € f,,, and b € f,, 11 on the sequence S, (m < n), then it is the shortest path joining these points
that lies entirely in the polygons and passes through e,,, ..., e,.

Conversely, we have the following result, which was presented by O’Rourke et al. (see [[17]).

Proposition 5.1 Every shortest ordered path joining two vertexes on S = (f1, fa,. .., fx+1) is composed

of straightest paths joining vertexes of S.

Proof. Let v([to,t1]) be a shortest ordered path joining two vertexes a € fi and b € fr1 on S, tg <
t1 < - <t <t,m =) € e, 1 <1 < k. If v does not pass through any vertexes of S except
a and b, then each x; is an interior point of e;. By Corollary for z; € e;,2; # x5, 1 = 1,...,k,
L(wi—1 — x4, 2 — ) + L(2; — 4, i41 — x;) = m, where o := a and x4 := b. Thus 7 is straightest.

If -y passes through vertexes vy := a,v1 = (t}), ..., v = Y(¢]), vi+1 := b (in that order) and there
are no vertexes belonging y(Jto, t5[), v(1t5,¢5[), ..., v(]t;, t1[), then by Lemma 3.2} restrictions of ~
on [to,ti],...,[t], 1] are shortest ordered paths joining vertexes v; and v;41 of S. By the proof above,

each restriction is a straightest path. Thus v is composed of straightest paths joining vertexes of .S. O

Theorem 5.2 Let S = (f1, fo,- .., fr+1) be a sequence of adjacent convex polygons and let a, q1, q2, q3
be points in f,, such that g2 € |q1, qs3[ and a, q1, q3 are not collinear. Let v; = ¢; — a, i = 1,2, 3. Assume
that v1, 2 and s are straightest paths starting at a and in the directions of v1, v, v3, respectively, and
Y1, v3 cut a line segment e C f, (n > m) at y; and ys, respectively. If vo is the longest straightest path,

then it meets e at some point ys € |y1, y3|.

Proof. We prove for the case S is in R3, the other case is similar. Without restriction of generality we
assume that m = 1 and n = k£ 4 1. Let U/ be the planar unfolding around the sequence ey, ..., e;. By
Lemma|5.1] the images of 71, v2, 3 under U are line segments [, y;], [@/, y3], [@/, y3], respectively and
we have y; € [a/,y;] and y3 € [a/,y3i]. Let ¢, g5, ¢5 be the images of ¢1, gz, g3 under U. Since gz is

between ¢; and g3, g5 is between ¢} and ¢4. Assume ¢4 = aq¢} + Sq¢; where o, 8 > 0, a + § = 1.
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Letting v} := ¢} — o', ¢ = 1,2,3, we get v4 = av] + Bvj. Since ¢; lies on the path +y; and ¢; # a,
gh €ld’,y;), q1 €]a’ 1], and g5 €]a’,y3). Assume y; — o’ = ] and y3 — a’ = vvh, A, v > 0. Set
pi=Av/(av+pBA) > 0. We have yo := a’+pvh = o’ +pav) +ppoy = #ﬁb\yl—i—%yg €ly1, ys[-
Let S’ be the sequence of images of fi,..., fxr1 under the planar unfolding /. S’ is the sequence of
convex polygons with adjacent edges being images of eq,...,e; under U and the triangle o’y ys is
contained in the union of polygons in S’. As the image of -y, is [a’, y3], the longest line segment starting
at o’ in the direction of v4, we have [a/, y2] C [@/, y5]. This means that the line segment [a’, y3] meets

[y1,ys] at y2 €]y1, ys[, i.e., the longest straightest path vo meets e at ys. O

6 Conclusions

Recently, An et al. [14] presented a related work which is concerned to straightest paths. They proved
that straightest paths solve the boundary value problem on an processed domain which is extended from
a “funnel” and an alternative triangle face of that funnel.

We hope that some results in this paper could be used to study Steiner’s problem (see [[18]): Given a

convex polygon in the plane, find an inscribed polygon of minimal perimeter.
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