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Abstract We study the Sensor Cover Energy Problem (SCEP) in wireless communication
− a difficult nonconvex problem with nonconvex constraints. In [2] a local approach based on
DC programming called DCA was proposed for solving this problem. In the present paper,
we propose a global approach to SCEP based on the theory of monotonic optimization.
Using an appropriate reformulation of SCEP we propose an algorithm for finding quickly
a local optimal solution along with an efficient algorithm for computing a global optimal
solution. Computational experiments are reported which demonstrate the practicability of
the approach.
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1 Introduction

Wireless sensor network has become a subject of intensive study in recent years due to its
important applications in communication. An overview of the main fields of application,
the relevant factors in designing sensor devices and the main issues arising from adopting
different network topologies, has been given by Yick et al. in [12]. An important issue
in this research area is the Sensors Coverage Problem discussed in [8] about minimizing
the number of sensors from a given set in a network such that each target point in the
monitored region is sensed by at least one or more sensors. Various aspects of this problem
have been investigated by many authors. In particular, saving energy is one of the most
important issues attracting researchers. In the papers [1,3,5,6] the authors consider the
”energy-efficient” covers by finding disjoint sets of sensors to be activated in different time
periods. By this way the consumption energy of sensors can be saved when the different
covers are activated alternately. Another way to achieve energy efficiency as proposed in [4,
7], based on the adjustable sensing range property of the sensors, consists in finding the set
covers with minimum sensing range. Using the relationship between the energy cost of a
sensor and its sensing range, the problem studied in [2,13] is to determine the sensing range
so that the total consumption energy is minimized. Zhou et al. [13] proposed a heuristic
algorithm while Astorino et al.[2] treated the ”Sensor Cover Energy Problem” (SCEP) by
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selecting a set of sensing radii, covering a certain number of targets, so that the total energy
cost is minimized.

Mathematically, the problem (SCEP) can be stated as follows.

Consider a wireless network deployed in a certain geographical region, with n sensors at
points si ∈ Rp, i = {1, . . . , n}, and m target nodes at points tj ∈ Rp, j = {1, . . . ,m}, where
p is generally set to 2 or 3. The energy consumption per unit time of a sensor i, denoted by
Ei(ri), is a monotonically non decreasing function of its sensing radius ri. As assumed in
many studies,

Ei(ri) = αir
βi

i + γ, li ≤ ri ≤ ui,

where αi > 0, βi > 0 are constants depending on the specific device and γ represents the
idle-state energy cost. We wish to determine ri ∈ [li, ui] ⊂ R+, i = 1, . . . , n, such that
each target node tj , j = 1, . . . ,m, is covered by at least one sensor and the total energy
consumption is minimized. That is,

(SCEP )
min

∑n

i=1 Ei(ri)
s.t. max1≤i≤n(ri − ‖si − tj‖) ≥ 0 j = 1, . . . ,m,

l ≤ r ≤ u,

where the last inequalities are componentwise understood.

Setting xi = αir
βi

i , aij = αi‖si− tj‖βi and ai = αil
βi

i , bi = αiu
βi

i we can rewrite (SCEP )
in the form

minimize f(x) =
∑n

i=1 xi subject to
gj(x) := max1≤i≤n(xi − aij) ≥ 0, j = 1, . . . ,m,
a ≤ x ≤ b.

∣

∣

∣

∣

∣

∣

(1)

Clearly each gj(x), j = 1, . . . ,m, is a convex function, so the problem is a linear optimiza-
tion under a reverse convex constraint and can in principle be solved by currently available
methods of reverse convex programming (see [Tuy, 2016], Chapter 7, Section 7.3). In [As-
torino and Miglionico, 2014], the authors use a penalty function to shift the reverse convex
constraint to the objective function, transforming (SCEP) into an equivalent dc optimiza-
tion problem which is then solved by the DCA algorithm of P. D. Tao. Aside from the need
of a penalty factor which is not easy to determine even approximately, a drawback of this
method is that it can at best provide an approximate local optimal solution which is not
guaranteed to be global.

In this paper we propose a global approach to problem SCEP based on monotonic op-
timization. In fact, each gj(x), j = 1, . . . ,m, is an increasing function, i.e. gj(x) ≥ gj(x

′)
whenever x ≥ x′, so the problem is actually a standard monotonic optimization prob-
lem: minimize the increasing function f(x) =

∑n

i=1 xi under the monotonic constraints
gj(x) ≥ 0, j = 1, . . . ,m.

Using an appropriate discrete reformulation of the problem we propose a new solution
method for problem SCEP. This includes an algorithm for quickly finding a local optimal
solution and an efficient algorithm for computing a global optimal solution.

The practicality of the algorithms is demonstrated by numerical tests on instances of
problems with up to 1000 variables for finding a local optimal solution and instances of
problems with up to 75 variables for computing a global optimal solution.

The paper is organized as follows. After a review in Section 2 of the basic concepts of
monotonic optimization we show in Section 3 that the problem SCEP can be reformulated
and studied as a discrete monotonic optimization. Solution methods based on this approach
are proposed and numerical results are reported in Section 4. Finally, the paper is closed
with some conclusions in Section 5.
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2 Preliminaries: Basic Concepts of Monotonic optimization

We first review the basic concepts of monotonic optimization as has been developed in the
works [10] and [11].

Throughout the sequel, for any two vectors x, y ∈ Rn we write x ≤ y (x < y, resp.) to
mean xi ≤ yi (xi < yi, resp.) for every i = 1, ..., n. If a ≤ b then the box [a, b] ((a, b], resp.)
is the set of all x ∈ Rn satisfying a ≤ x ≤ b (a < x ≤ b, resp.). We write u = x ∨ y, to mean
ui = max{xi, yi}, i = 1, ..., n and v = x ∧ y, to mean vi = min{xi, yi}, i = 1, ..., n; As usual
ei denotes the ith unit vector of Rn, i.e., a vector such that eii = 1, eij = 0 ∀j 6= i, while

e ∈ Rn is a vector of all ones, i.e., e =
n
∑

i=1

ei. The symbol 0 will denote the zero number or

the zeros vector in Rn, depending upon the context.

A function f : [a, b] → R is said to be increasing (decreasing, resp.) if

a ≤ x ≤ y ≤ b ⇒ f(x) ≤ f(y) (f(x) ≥ f(y), resp.) (2)

A function which is either increasing or decreasing is said to be monotonic.

A set G ⊂ [a, b] is said to be normal if x ∈ G ⇒ [a, x] ⊂ G. A set H ⊂ [a, b] is said to be
conormal if x ∈ H ⇒ [x, b] ⊂ H. Thus, with g(x), h(x) increasing functions in [a, b] the set
G = {x ∈ [a, b]|g(x) ≤ 0} is normal and H = {x ∈ [a, b]|h(x) ≤ 0} is conormal.

Given a set A ⊂ [a, b], the normal hull of A, written A⌉, is the smallest normal set
containing A. The conormal hull of A, written ⌊A, is the smallest conormal set containing
A.

The normal hull P of a finite set T ⊂ [a, b] is called a polyblock with vertex set T. It
is easily seen that P = ∪z∈T [a, z]. A vertex z of a polyblock is called proper if there is no
vertex z′ 6= z dominating z, i.e., such that z′ ≥ z. An improper vertex is a vertex which is not
proper. Obviously, a polyblock is fully determined by its proper vertex set; more precisely,
a polyblock is the normal hull of its proper vertices.

Analogously, the conormal hull Q of a finite set T ⊂ [a, b] is called a copolyblock with
vertex set T. It is easily seen that P = ∪z∈T [a, z]. A vertex z of a copolyblock is called
proper if there is no vertex z′ 6= z dominated by z, i.e., such that z′ ≤ z. An improper vertex
is a vertex which is not proper. Obviously, a copolyblock is fully determined by its proper
vertex set; more precisely, a copolyblock is the normal hull of its proper vertices.

Proposition 1 (i) The intersection of finitely many polyblocks is a polyblock.

(ii) The intersection of finitely many copolyblocks is a copolyblock.

Proof (i) It suffices to consider the case of 2 polyblocks; the case for more than 2 polyblocks
is derived by induction. If P1 = ∪y∈T1

[a, y], P2 = ∪z∈T2
[a, z] then we have P = P1 ∩ P2 =

∪y∈T1,z∈T2
[a, y ∧ z]. Thus P is a polyblock with vertex set {y ∧ z, y ∈ T1, z ∈ T2}.

(ii) Similarly, if V1, V2 are the vertex sets of copolyblocks Q1, Q2 then Q1 ∩ Q2 is a
copolyblock with vertex set {y ∨ z, y ∈ V1, z ∈ V2}. ⊓⊔

Proposition 2 (i) The maximum of an increasing function f(x) over a polyblock is achieved
at a proper vertex of this polyblock.

(ii) The minimum of an increasing function f(x) over a copolyblock is achieved at a
proper vertex of this copolyblock.

Proof It suffices to prove (i). The maximum of an increasing function f(x) over a box [0, z]
is obviously achieved at z. Hence the maximum of f(x) over a polyblock P = ∪z∈T [a, z] is
achieved at an element of T, i.e. at a vertex of the polyblock. Moreover, if a point y ∈ [a, b] is
dominated by a point z ∈ [a, b] then [a, y] ⊂ [a, z], so the maximum of f(x) over [a, y]∪ [a, z].
Therefore the maximum of f(x) over a polyblock P is achieved at a proper vertex. ⊓⊔
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Lemma 1 (i) If a ≤ x ≤ b then the set [a, b] \ (x, b] is a polyblock with vertices

ui = b+ (xi − bi)e
i, i = 1, ..., n. (3)

In other words, [a, b] \ (x, b] = ∪n
i=1[a, u

i].
(ii) If a ≤ x ≤ b then the set [a, b] \ [a, x) is a copolyblock with vertices

vi = a+ (xi − ai)e
i, i = 1, ..., n. (4)

In other words, [a, b] \ [a, x) = ∪n
i=1[v

i, b].

Proof If there exists i such that bi = xi then (x, b] = ∅ and ui = b + (xi − bi)e
i = b, hence

[a, b] \ (x, b] = [a, b] = ∪n
i=1[a, u

i]. Otherwise, a ≤ x < b. Let Ki = {z ∈ [a, b]|xi < zi}.
Since (x, b] = ∩n

i=1Ki we have [a, b] \ (x, b] = ∪n
i=1([a, b] \Ki), proving assertion (i) because

[a, b] \Ki = {z|ai ≤ zi ≤ xi, aj ≤ zj ≤ bj∀j 6= i} = [a, ui]. The proof of (ii) is analogous. ⊓⊔

For our purpose we should also note the following property:

Proposition 3 Let f(x) be an increasing function in [a, b].
(i) Any proper vertex of a polyblock P in [a, b] is a local optimal solution of the problem

max{f(x)| x ∈ P}.
(ii) Any proper vertex of a copolyblock Q in [a, b] is a local optimal solution of the problem

min{f(x)| x ∈ Q}.

Proof We need only prove (i). Let z be an arbitrary proper vertex of P. Since the set of
proper vertices of P is finite, there exists a ball B(z, ε) of radius ε around z not containing
any proper vertex. Noting that z achieves the maximum of f(x) on the box [a, z] we must
have f(y) ≤ f(z) for all y ∈ B(z, ε) ∩ [a, z] = B(z, ε) ∩ P. So z is a local minimum of f(x)
over P. ⊓⊔

3 The Sensor cover energy problem (SCEP)

By translating if necessary we can assume that a = 0 in problem (1). So the problem we are
concerned with is

min f(x) =
n
∑

i=1

xi, (5)

s.t. gj(x) = max
1≤i≤n

(xi − aij) ≥ 0, j = 1, . . . ,m, (6)

0 ≤ x ≤ b.

For every j = 1, . . . ,m let aj := (a1j , . . . , anj), Hj := {x ∈ [0, b]| gj(x) ≥ 0}.

Proposition 4 (i) We have Hj = [0, b]\[0, aj) and H = ∩j∈JHj with J = {j ∈ {1, . . . ,m}| aj ≥
0};

(ii) If J1 denotes the set of all j ∈ J for which there is no k ∈ J \ {j} satisfying aj ≤ ak

then also H = ∩j∈J1
Hj = {x ∈ [0, b]|gj(x) ≥ 0, j ∈ J1}.

(iii) For every j ∈ J we have Hj = ∪n
i=1[s

ij , b] with sij = {(aij − ai)e
i, i = 1, . . . , n}.

Proof (i) If j ∈ J then clearly Hj = {x ∈ [0, b]| max1≤i≤n(xi − aij) ≥ 0} = [0, b] \ [0, aj)].
If j /∈ J then since gj(0) ≥ 0 while gj(x) is increasing, we must have {x ∈ [0, b]|gj(x) ≥ 0} =
[0, b]. So Hj = [0, b] for j /∈ J, hence H = ∩j∈JHj .

(ii) If j1 ∈ J \J1 there exists j2 ∈ J, j2 6= j1 such that aj1 ≤ aj2 , hence, [0, aj1) ⊂ [0, aj2).
From (i) we then have

{x ∈ [0, b]|gj2(x) ≥ 0} = [0, b] \ [0, aj2) ⊂ [0, b] \ [0, aj1) = {x ∈ [0, b]|gj1(x) ≥ 0}.
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That is, every constraint gj1 ≥ 0 with j1 ∈ J \ J1 is implied by some constraint gj2(x) ≥ 0.
Therefore H = {x ∈ [0, b]|gj(x) ≥ 0, j ∈ J} = {x ∈ [0, b]|gj(x) ≥ 0, j ∈ J1}.

(iii) Since Hj = [0, b] \ [0, aj), it follows from Proposition 1 that Hj = ∪n
i=1[s

ij , b] with
sij = ai + (aij − ai)e

i, i = 1, . . . , n. ⊓⊔

Proposition 5 (i) The set H := {x ∈ [0, b]|gj(x) ≥ 0, j ∈ J1} is a copolyblock with vertex

set S = {∨j∈J1
yj | yj ∈ Sj}, where z = ∨j∈J1

yj means that zi = minj∈J1
yji for every

i = 1, . . . , n.
(ii) Every proper vertex of H is a local optimal solution of (SCEP).

Proof This follows from Propositions 1 and 3. ⊓⊔

4 Solution method for (SCEP)

Proposition 5 shows that a simple procedure for computing a whole set of local optimal
solutions of the problem is to generate the proper vertex set of the copolyblock H. Finally
the problem is reduced to the following discrete monotonic optimization problem

minimize f(x) =
∑n

i=1 xi subject to
gj(x) := max1≤i≤n(xi − aij) ≥ 0, j ∈ J1,
x ∈ S ⊂ [0, b].

∣

∣

∣

∣

∣

∣

(7)

where S = {∨j∈J1
yj | yj ∈ Sj}, and Sj = {sij = {(aij − ai)e

i, i = 1, . . . , n}.
We now apply the branch-reduce-and-bound (BRB) algorithm proposed in [11] for solving

this discrete monotonic optimization problem. As a byproduct, the bounding operation in
this BRB algorithm will provide a procedure for finding quickly a local solution of problem
(7).

To discribe our algorithm in detail, we need first to define a basic operation called
S-adjustment operation devised for accommodating the discrete constraint x ∈ S to the
continuous structure of the problem.

Definition 1 (The S-adjustment operation [11]) Consider a box [p, q] ⊂ [a, b]. Given any
point x ∈ [p, q], the lower S-adjustment of x is the point

⌊x⌋S = x̃, with x̃i = max{yi|y ∈ S ∪ {p}, yi ≤ xi}, i ∈ I

= max{yi|yi ∈ {pi, 0, aij , j ∈ J1}, yi ≤ xi}, i ∈ I (8)

and the upper S-adjustment of x is the point

⌈x⌉S = x̂, with x̂i = min{yi|y ∈ S ∪ {q}, yi ≥ xi}, i ∈ I

= min{yi|yi ∈ {qi, 0, aij , j ∈ J1}, yi ≥ xi}, i ∈ I. (9)

Next we define the branching, reduction and bounding operations involved in our BRB
algorithm.

I. Branching

This is the operation of subdividing a boxB = [p, q] (the current most promising box) into
two or more subboxes. The most popular (though not always the most efficient) subdivision
method is the standard bisection: determine the index iB ∈ {1, . . . , n} such that qiB −piB =
maxi=1,...,n(qi − pi); set riB = (qiB + piB )/2 and divide B into two subboxes

B+ = {x ∈ B|xiB ≥ riB},

B− = {x ∈ B|xiB ≤ riB}.

In other words, divide the box B = [p, q] into two equal subboxes by the hyperplane per-
pendicular to a longest edge of the box at its midpoint.
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II. Reduction

Let B = [p, q] be any box that remains for exploration at the current iteration. Before
computing a lower bound of f(x) over the box it is important to reduce it as far as possible
without losing any feasible point better than the current best. Specifically, if γ is the current
best value (CBV) of f(x), i.e. the value of f(x) at the best feasible point known so far, then
replace the box [p, q] by a smaller box [p′, q′] = redγ [p, q] still containing all feasible solutions

of B satisfying f(x) ≤ γ; after that, perform an S-adjustment to get redSγ [p, q] = [p̃, q̃], where
p̃ = ⌈p′⌉S and q̃ = ⌊q′⌋S .

The following Proposition shows how to determine the box [p′, q′] = redγ [p, q].
For convenience set g(x) := minj∈J1

gj(x) = minj∈J1
maxni=1(xi − aij).

Proposition 6 There exists a feasible solution x ∈ [p, q] such that f(x) ≤ γ only if g(q) ≥ 0
and f(p) ≤ γ. Any such x must be contained in the box [p′, q′] defined by

p′ = q −
n
∑

i=1

ηi(qi − pi)e
i, q′ = p′ +

n
∑

i=1

µi(qi − p′i)e
i, (10)

where, for i = 1, ..., n

ηi = sup{η|0 ≤ η ≤ 1, g(q − ηi(qi − pi)e
i) ≥ 0} (11)

µi = sup{µ|0 ≤ µ ≤ 1, f(p′ + µi(qi − p′i)e
i) ≤ γ} (12)

Proof Consider any x ∈ [p, q] satisfying g(x) ≥ 0 and f(x) ≤ γ. Since f(x), g(x) are increas-
ing then g(q) ≥ g(x) ≥ 0 and f(p) ≤ f(x) ≤ γ.

If x � p′ there exists an index i such that xi < p′i = qi−ηi(qi−pi), i.e., xi = qi−η(qi−pi)
with some η > ηi. Clearly then x ≤ q− η(qi − pi)e

i, hence g(x) ≤ g(q− η(qi − pi)e
i) < 0 by

definition of ηi. Consequently x ≥ p′. Similarly, x ≤ q′.

So we get

p′i =

{

pi if g(q − (qi − pi)e
i) ≥ 0,

max
j∈J1

{aij |q + (aij − qi)e
i ∈ [0, aj]} otherwise.

q′i =

{

qi if f(p′ + (qi − p′i)e
i) ≤ γ,

p′i + γ − f(p′) otherwise.

III. Bounding

This is the operation of computing a lower bound and an upper bound of f(x) over the
box B = [p, q]. Of course, this box is supposed to have been reduced by the above defined
procedure, so p, q must be in S.

Clearly if g(q) < 0 then no point x ∈ [p, q] is feasible and min{f(x)| x ∈ [p, q] = +∞; if
g(p) ≥ 0 then every x ∈ [p, q] is feasible and min{f(x)| x ∈ [p, q]} = f(p). If f(p) > γ then
f(x) > γ ∀x ∈ [p, q]. Barring these trivial cases we can state

Proposition 7 Assume that g(q) ≥ 0 > g(p) and f(p) ≤ γ.
(i) Let x(B) be the intersection of the line joining p and q with the surface g(x) = 0.

Then x(B) = p+ λ(q − p) where λ = max
j∈Jp

min
i=1,...,n
qi−pi 6=0

aij − pi
qi − pi

, Jp = {j ∈ J1|p ∈ [0, aj)} = {j ∈

J1|gj(p) < 0}).
(ii) Let x1 be any point in [p, q] satisfying g(x1) = 0. Setting yi = p + (x1

i − pi)e
i, i =

1, . . . , n let I = {i| redSγ [y
i, q] = [ỹi, q̃i] 6= ∅}. If I = ∅ there is no feasible point in [p, q]

satisfying f(x) < γ. Otherwise, a lower bound of f(x) over B is given by

β(B) = min
i∈I

f(ỹi) (13)
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(iii) Let x̃1 := ⌊x1⌋S be the lower S-adjustment of x1 in [p, q], i.e. x̃1
i = max{yi|yi ∈

{pi, a, aij , j ∈ J1}, yi ≤ x1
i }, i = 1, . . . , n. Then x̃1 ∈ [p, q] ∩ S and g(x̃1) = 0.

(iv) Let I1 = {i|x̃1
i > 0} and wi = max{yi|yi ∈ {a, aij , j ∈ J1}, yi < x̃1

i }, i ∈ I1. We shall
refer to each z̄i = x̃1 + (wi − x̃1

i )e
i, i ∈ I1, as the ith point around x̃1. If g(z̄i) < 0 ∀i ∈ I1

then x̃1 is a proper vertex of H, i.e., x̃1 ∈ S.

Proof (i) It is easily checked that λ is a solution of the equation g(p+ λ(q − p) = 0.
(ii) It suffices to show that every feasible point y in the box B belongs to some box

[yi, q], i ∈ {1, . . . , n}. Indeed, otherwise for any i = 1, . . . , n one would have yj < yij ∀j =

1 . . . , n, hence yi < yii = x1
i and then

g(y) = min
j∈J1

max
i=1,...,n

(yi − aij) < min
j∈J1

max
i=1,...,n

(x(B)i − aij) = g(x(B)) = 0,

contradicting the feasibility of y. Thus {x ∈ B|g(x) ≥ 0} ⊂ ∪i=1,...,n[y
i, q], whence,

{x ∈ B ∩ S|g(x) ≥ 0, f(x) ≤ γ} ⊂ ∪i=1,...,nred
S
γ [y

i, q] = ∪i∈Ī [ỹ
i, q̃i].

Consequently, β(B) = min
i∈I

f(ỹi) is a lower bound of f(x) over B if I 6= ∅ and

{x ∈ B ∩ S|g(x) ≥ 0, f(x) ≤ γ} = ∅

if I = ∅.
(iii) If g(x̃1) < 0 there is an index j1 ∈ J1 such that gj1(x̃

1) = maxi=1,...,n(x̃
1
i −aij1) < 0,

i.e., x̃1
i < aij1 ∀i = 1, . . . , n. Since g(x1) = 0, we have gj1(x

1) ≥ 0. So maxi=1,...,n(x
1
i −aij1) ≥

0, therefore there exists i1 ∈ I such that x1
i1

≥ ai1j1 . On the other hand, from the definition
x̃1
i := max{yi|yi ∈ {0, aij, j ∈ J1}, yi ≤ x1

i }, i = 1, . . . , n, it follows that x̃1
i1

≥ ai1j1 ,
conflicting with x̃1

i < aij1 for all i = 1, . . . , n. Thus 0 ≤ g(x̃(B)) ≤ g(x1) = 0, hence
g(x̃1) = 0.

(iv) From (iii), because g(x̃1) = 0 we have x̃1 ∈ H = ∪z∈S [z, b]. Consequently, there is
an z1 ∈ S such that x̃1 ∈ [z1, b]. This implies z1 ≤ x̃1. For i = 1, . . . , n \ I1, 0 ≤ z1i ≤ x̃1

i = 0
clearly z1i = x̃1

i = 0. Now assume there exists i1 ∈ I1 satisfying z1i1 < x̃1
i1
. Because z1 ∈ S

there exists j1 ∈ J1 such that z1i1 = ai1j1 ≤ wi1 by the definition of wi1 . We have z̄i1 ,

z̄i1i = x̃1
i ≥ z1i ∀i 6= i1 and z̄i1i1 = wi1 ≥ z1i1 . So g(z̄i1) ≥ g(z1) = 0, a contradicition.

Therefore, x̃1 = z1 ∈ S. ⊓⊔

Remark 1 (i) Based on Proposition 7 (iv), starting from x̃1 ∈ S ∩ [p, q] satisfying g(x̃1) = 0
we can find a better feasible point z ∈ [p, q] ∩ S as follows.
– Step 1: We first construct the function [l, y] = arround(x̃1, p, q) defined by

l := 0;
for i = 1 : n do
if x̃1

i > 0 then compute z̄i as ”the ith arround point of x̃1”;
if g(z̄i) = 0 and z̄i ≥ p then

y := z̄i; l := 1;
end if

end if
if l = 1 then exit the ”for” loop;

end for
The value of l shows the albility of improvement of x̃1. If l = 1, i.e we can substitute
the first feasible point arround x̃1 belonging to [p, q] from the index 1, z̄i (i.e., the
first index i ∈ I from 1 satisfying p ≤ z̄i, g(z̄i) = 0) for x̃1 and it is obvious that
z̄i is really better than x̃1, i.e., f(z̄i) < f(x1). After that we exit the loop ”for”
and stop considering the indices after i. Otherwise, l = 0, i.e., any arround point of
x̃1 belonging to [p, q] is not feasible and we can not improve it to a better point in
[p, q] ∩ S. As a result, when [p, q] = redSγ0

[0, b] (γ0 is the first CBV) by using Lemma
7 (iv) we obtain x̃1 to be a proper vertex if l = 0.
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– Step 2: Next, the following function leads us to z
z = pro− ver(x̃1, p, q) (we mean ”proper vertex”)
[l, z] = arround(x̃1, p, q);
while l > 0 do
[l, z] = arround(z, p, q);
end while

With the function pro− ver(x̃1, p, q) we move x̃1 to z ∈ [p, q]∩S by carrying out the
function arround successively until l = 0. The obtained point z obviously satisfies:
there doesn’t exist any arround point of z in [p, q] so that it is a feasible point.
Analogously, if [p, q] = redSγ0

[0, b] (γ0 is the first CBV) then we get a proper vertex z
from x̃1 after using the above procedures.

(ii) Besides, if we find a proper vertex z by using the mentioned procedures with [p, q] =
redSγ0

[0, b] we can adjust it to get a better feasible point z′ as follows:
– Step 1: Firstly, if zi1 > 0 for some i1 ∈ I, choose an index j1 ∈ J1 satisfying ai1j1 = zi1 .

Let i2 ∈ I such that ai2j1 = mini∈I aij1 . If ai2j1 < ai1j2 then go to Step 2.
– Step 2: Define z′ by z′i = zi ∀i ∈ I \ {i1, i2}, z′i1 = 0, z′i2 = ai2j1 . If g(z

′) ≥ 0 then z′

is a feasible point and better than z in sense that f(z′) < f(z).
In fact, in some few cases such z′ might not be proper vertex. So we should continue
using the function pro− ver(z′, p, q) to get a better new proper vertex.

Implementation: From Proposition 7 and Remark 1 we see that: to find a lower bound
and an upper bound of a box B we first need finding a point x1 ∈ B satisfying g(x1) = 0 and
then find a lower bound by applying Lemma 7 (ii) and an upper bound by using Remark 1
for x̃1 = ⌊x1⌋S . The first candidate for x1 is x(B) obtained from Lemma 7 (i). We may find
an other point x2 in B to increase the quality of lower bound and upper bound by using
the following way. The main idea of this way is to find a vertex u of C belonging to B, then
determine x2 as the intersection of the line segment {p+α(u− p), 0 ≤ α ≤ 1} and the facet
g(x) = 0. We consider two cases:

– Case 1: If T
[p,q]
j = {vkj = akje

k, k ∈ I|pk ≤ akj ≤ qk} 6= ∅ for all j ∈ J1 then we take

uj = argmin{||z||, z ∈ T
[p,q]
j }, j ∈ J1 and u = ∨j∈J1

uj ∈ [p, q] is a vertex of C. We next

compute x2 by using Lemma 7 (i) to find the intersection of {p+ α(u − p), 0 ≤ α ≤ 1}
and the facet g(x) = 0.

– Case 2: If the set J2 = {j ∈ J1|T
[p,q]
j = ∅} 6= ∅ then we take uj = argmin{||z||, z ∈

T
[p,q]
j }, j ∈ J1 \ J2 and u = ∨j∈J1\J2

uj ∈ [p, q]. Because we miss the indices in J2 hence
u may not feasible solution, that why we need to check the condition g(u) ≥ 0. If this is
true then we can use u, otherwise we can’t use it to find x2.

If we can find x2 from the above way, we get the lower of B by getting the maximum of
two lower bounds taking from x1 and x2, converserly, the upper bound of B obtained by
choosing the minimum of two upper bounds taking from x1 and x2.

Finally, we give the local algorithm (LA) and global algorithm (GA) (or BRB algorithm)
for solving problem (??). As a matter of fact, the local algorithm is process of finding a proper
vertex of Q, or carrying out procedure of searching an upper bound discribed in Remark 1
with the box redSγ0

[0, b].
Local algorithm (LA) for problem (7)
If g(b) < 0 then problem (7) is infeasible. Otherwise, g(b) ≥ 0 then γ0 := g(b) as the first

CBV of our problem. Apply process of finding a feasible solution for the box redSγ0
[0, b]. As

said before, this feasible point is a proper vertex of Q, in other words, it is a local solution
of problem (??) by Proposition 3.

Global algorithm BRB (GA) for problem (7)
Initialization. If g(b) < 0 then problem (7) is infeasible. Otherwise, g(b) ≥ 0 set γ =

γ0 := g(b) as the first CBV of our problem. Let P1 := {B1}, B1 = [0, b], R1 = ∅. Set
k := 1, lb := 0, x := b.
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Step 1. For each box B ∈ Pk we consider three cases:
- Case 1: If g(q) < 0 or f(p) > γ then delete B.
- Case 2: If g(q) ≥ g(p) ≥ 0 and f(p) ≤ γ then updating the new feasible solution x = p

and new CBV = f(p) and delete B.
- Case 3: If g(q) ≥ 0 > g(p) and f(p) ≤ γ then reducing [p, q] to be [p̃, q̃] by reduction

procedure.
Let P ′

k be the resulting collection of reduced boxes.
Step 2. Apply bounding procedure for each box B of P ′

k to have β(B). Updating the
new CBV ≤ γ and the new feasible solution corresponding.

Step 3. Reset γ := CBV and set Rk+1 = {B ∈ Rk∪P ′
k|β(B) ≤ γ}, lb := min{β(B)|B ∈

Rk+1}.
Step 4. If Rk+1 6= ∅ then choosing Bk ∈ argmin {β(B)|B ∈ Rk+1}. Divide Bk into two

boxes Bk1
and Bk2

according to branching procedure. Let Pk+1 = {Bk1
, Bk2

}. Increment k
and return to Step 1.

Step 5. If Rk+1 = ∅ then Stop and x is an optimal solution of our problem with optimal
value γ.

Theorem 1 GA for problem (7) terminates after finitely many iterations, yielding an glob-
ally optimal solution of the problem.

Proof It follows from the fact that the set S is finite, therefore since S−adjustment reduction,
the total number of nodes of the branch and bound tree is finite, which implies finiteness of
the algorithm itself. ⊓⊔

5 Computational results

In [2] the authors tested on generated randomly problems satisfying some conditions:
- the sensor and target nodes are randomly located in a 100× 100 area;
- 5 different values of n, the number of sensors, have been considered: 25, 75, 125, 175, 225;
- the number of targets m is calculated by considering the two cases of ”Nondense” and

”Dense” areas. In the former case n = 5m, while in the latter m = 2n;
- the values of the maximum and minimum sensing radius are respectively rmax

i = ui = 30
and rmin

i = li = 0.
- the values of αi, βi are: αi = 1, βi = 2 for all i ∈ I.
However, their work only give a local solution based on DCA. In this paper, we test

our local algorithm (LA) for not only all instances randomly generated similar to [2] but
also other ones in larger dimension (with up to 1000). The results are shown in Table 5
and inlustrated by figures from L.Fig1 to L.Fig12. We see that LA is efficient even for large
scales. Especially, in ”Nondense” cases LA give a local solution in a small time.

For comparision purposes we test global algorithm BRB (GA) and local algorithm (LA)
in three cases: n = 25,m = 5;n = 25,m = 50;n = 75,m = 15, where each case includes
five problems randomly generated. To reduce running times for GA we add a terminating
condition that is re < ε, where re := γ−lb

γ
is relative error and ε = 0.05. The results are

shown in Table 1, 2, 3 and attached figures. Bold numbers mean that the optimal value
of GA is really better than optimal value of LA although GA is certainly more expensive
than LA. We inlustrate these cases by corresponding pairs of figures. Some other ones with
italic numbers indicate that GA and LA provide the same optimal values. We have such two
problems P2, P3 in case n = 25,m = 5 and P2, P5 in case n = 75,m = 15. These are belong
to ”Nondense” cases. Is this true that in these cases LA sometimes gives us a global optimal
solution? In Table 2 we obtain the infeasibility of P1, P2 immediately by checking whether
g(b) should be negative.

We coded our algorithms in Matlab R2012a, Win7-64 bit and Laptop Dell (RAM 8G,
Intel core i7 2.26 GHz).
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Table 1 n = 25, m = 5

Prob |J1| GA LA
Opt.val #Iter Time(s) Fig. Opt.val Time(s) Fig.

P1 5 462.9994 11 0.4992 G.Fig1.P1 824.9991 0.0312 L.Fig1.P1
P2 5 842.9992 11 0.3276 - 842.9992 0.0156 -
P3 5 468.9988 8 0.2028 - 468.9988 0.0312 -
P4 5 554.9985 6 0.2028 G.Fig1.P4 713.9988 0.0000 L.Fig1.P4
P5 5 649.9983 12 0.2808 G.Fig1.P5 903.0002 0.0312 L.Fig1.P5
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Table 2 n = 25, m = 50.

Prob |J1| GA LA
Opt.val #Iter Time(s) Fig. Opt.val Time(s) Fig.

P1 39 infeasible - - - infeasible - -
P2 47 infeasible - - - infeasible - -
P3 46 3105.0027 843 121.7744 G.Fig2.P3 4497.0046 0.1248 L.Fig2.P3
P4 40 2984.9956 256 35.5838 G.Fig2.P4 4046.9989 0.1248 L.Fig2.P4
P5 38 2946.9961 1196 247.8856 G.Fig2.P5 3784.9955 0.1716 L.Fig2.P5

Table 3 n = 75, m = 15.

Prob |J1| GA LA
Opt.val #Iter Time(s) Fig. Opt.val Time(s) Fig.

P1 14 657.9996 655 195.8749 G.Fig3.P1 1080.0013 0.0468 L.Fig3.P1
P2 15 499.0025 2863 954.5857 - 499.0025 0.0468 -
P3 15 376.9991 76 36.3950 G.Fig3.P3 422.9998 0.0468 L.Fig3.P3
P4 15 816.9986 816 337.3210 G.Fig3.P4 1461.9977 0.0780 L.Fig3.P4
P5 15 637.9994 106 38.7506 - 637.9994 0.0624 -
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Table 4 Numerical results for local algorithm (LA)

LA

n m |J1| Opt.val Time(s) Fig.

75 150 137 2494.0047 1.5756 L.Fig1
125 25 25 640.0011 0.0780 L.Fig2
125 250 243 3058.0048 6.1308 L.Fig3
175 35 35 468.9988 0.1248 L.Fig4
175 350 343 2857.0123 21.6373 L.Fig5
225 45 45 756.0011 0.3120 L.Fig6
225 450 436 2981.0108 48.0015 L.Fig7
500 100 100 615.0027 1.7472 L.Fig8
500 1000 953 2924.0077 388.0681 L.Fig9
750 150 149 574.0034 5.9592 L.Fig10
750 1000 951 2316.0118 356.5871 L.Fig11
1000 500 492 1232.0070 123.8804 L.Fig12
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6 Conclusion

We propose new solution methods for solving (SCEP) by using theory of monotonic opti-
mization. We determine the conditions so that our problem is feasible and give the set of
local solutions in this case. Global and local algorithms are proposed and verified throughout
many problems with up to 75 variables for first one and 1000 variables for second one. The
numerical results show the efficience of these algorithms. Naturally, this paper provides a
solution for general problem of minimizing an increasing function over the intersection of
finitely given copolyblocks in a box.
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