
Noname manuscript No.
(will be inserted by the editor)

Well-posedness for the Navier-Stokes equations with
datum in the Sobolev spaces

D. Q. Khai

Received: date / Accepted: date

Abstract In this paper, we study local well-posedness for the Navier-Stokes equa-
tions with arbitrary initial data in homogeneous Sobolev spaces Ḣs

p(Rd) for d ≥
2, p > d

2 , and d
p − 1 ≤ s < d

2p . The obtained result improves the known ones for

p > d and s = 0 (see [4,6]). In the case of critical indexes s = d
p−1, we prove global

well-posedness for Navier-Stokes equations when the norm of the initial value is
small enough. This result is a generalization of the one in [5] in which p = d and
s = 0.
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1 Introduction

We consider the Navier-Stokes equations (NSE) in d dimensions in special setting
of a viscous, homogeneous, incompressible fluid which fills the entire space and is
not submitted to external forces. Thus, the equations we consider are the system

∂tu = ∆u−∇ · (u⊗ u)−∇p,
∇ · u = 0,
u(0, x) = u0,

which is a condensed writing for
1 ≤ k ≤ d, ∂tuk = ∆uk −

∑d
l=1 ∂l(uluk)− ∂kp,∑d

l=1 ∂lul = 0,
1 ≤ k ≤ d, uk(0, x) = u0k.
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The unknown quantities are the velocity u(t, x) = (u1(t, x), . . . , ud(t, x)) of the
fluid element at time t and position x and the pressure p(t, x).
A translation invariant Banach space of tempered distributions E is called a
critical space for NSE if its norm is invariant under the action of the scaling
f(.) −→ λf(λ.). One can take, for example, E = Ld(Rd) or the smaller space

E = Ḣ
d
2
−1(Rd). In fact, one has the chain of critical spaces given by the continu-

ous embeddings

Ḣ
d
2
−1(Rd) ↪→ Ld(Rd) ↪→ Ḃ

d
p
−1

p,∞ (Rd)(p<∞) ↪→ BMO−1(Rd) ↪→ Ḃ−1
∞,∞(Rd). (1.1)

It is remarkable feature that NSE are well-posed in the sense of Hadarmard (exis-
tence, uniqueness and continuous dependence on the data) when the initial datum
is divergence-free and belongs to the critical function spaces (except Ḃ−1

∞,∞) listed

in (1.1) (see [4] for Ḣ
d
2
−1(Rd), Ld(Rd), and Ḃ

d
p
−1

p,∞ (Rd), see [22] for BMO−1(Rd),
and the recent ill-posedness result [1] for Ḃ−1

∞,∞(Rd)).
In the 1960s, mild solutions were first constructed by Kato and Fujita [9,19] that
are continuous in time and take values in the Sobolev space
Hs(Rd), (s ≥ d

2 − 1), say u ∈ C([0, T );Hs(Rd)). In 1992, a modern treatment

for mild solutions in Hs(Rd), (s ≥ d
2 − 1) was given by Chemin [7]. In 1995, us-

ing the simplified version of the bilinear operator, Cannone proved the existence
for mild solutions in Ḣs(Rd), (s ≥ d

2 − 1), see [4]. Results on the existence of

mild solutions with value in Lp(Rd), (p > d) were established in the papers of
Fabes, Jones and Rivière [8] and of Giga [10]. Concerning the initial datum in
the space L∞, the existence of a mild solution was obtained by Cannone and
Meyer in [4,6]. Moreover, in [4,6], they also obtained theorems on the existence of
mild solutions with value in the Morrey-Campanato space Mp

2 (Rd), (p > d) and
the Sobolev space Hs

p(Rd), (p < d, 1p −
s
d < 1

d ). NSE in the Morrey-Campanato

space were also treated by Kato [21] and Taylor [24]. In 1981, Weissler [25] gave
the first existence result of mild solutions in the half space L3(R3

+). Then Giga
and Miyakawa [11] generalized the result to L3(Ω), where Ω is an open bounded
domain in R3. Finally, in 1984, Kato [20] obtained, by means of a purely ana-
lytical tool (involving only the Hölder and Young inequalities and without using
any estimate of fractional powers of the Stokes operator), an existence theorem in
the whole space L3(R3). In [4,5], Cannone showed how to simplify Kato’s proof.
The idea is to take the advantage of the structure of the bilinear operator in
its scalar form. In particular, the divergence ∇ and heat et∆ operators can be
treated as a single convolution operator. Recently, the authors of this article have
considered NSE in Sobolev spaces, Sobolev-Lorentz spaces, mixed-norm Sobolev-
Lorentz spaces, and Sobolev-Fourier-Lorentz spaces, see [15], [16], [12], and [13]
respectively. In [17], we prove some results on the existence and decay proper-
ties of high order derivatives in time and space variables for local and global
solutions of the Cauchy problem for NSE in Bessel-potential spaces. In [18], we
prove some results on the existence and space-time decay rates of global strong
solutions of the Cauchy problem for NSE equations in weighed L∞(Rd, |x|βdx)
spaces. In [14], we considered the initial value problem for the non stationary NSE
on torus T3 = R3/Z3 and showed that NSE are well-posed when the initial da-
tum belongs to Sobolev spaces Vα := D(−∆)α/2 with 1

2 < α < 3
2 . In this paper,

we construct mild solutions in the spaces C([0, T ); Ḣs
p(Rd)) to the Cauchy prob-
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lem for NSE when the initial datum belongs to the Sobolev spaces Ḣs
p(Rd), with

d ≥ 2, p > d
2 , and d

p − 1 ≤ s < d
2p . We obtain the existence of mild solutions with

arbitrary initial value when T is small enough; and existence of mild solutions for

any T < +∞ when the norm of the initial value in the Besov spaces Ḃ
s−d( 1

p
− 1
q̃
),∞

q̃ ,

(q̃ > max{p, q}, where 1
q = 1

p−
s
d ) is small enough. In the case p > d and s = 0, this

result is stronger than that of Cannone and Meyer [4,6] but under a weaker condi-
tion on the initial data. In the case of critical indexes (p > d

2 , s = d
p−1), we can take

T =∞ when the norm of the initial value in the Besov spaces Ḃ
d
q̃
−1,∞

q̃ (Rd), (q̃ >
max{d, p}) is small enough. This result when s = 0 and p = d is the theorem of
Cannone [5]. The content of this paper is as follows: in Section 2, we state our
main theorem after introducing some notations. In Section 3, we first establish
some estimates concerning the heat semigroup with differential. We also recall
some auxiliary lemmas and several estimates in the homogeneous Sobolev spaces
and Besov spaces. Finally, in Section 4, we will give the proof of the main theorem.

2 Statement of the results

Now, for T > 0, we say that u is a mild solution of NSE on [0, T ] corresponding
to a divergence-free initial datum u0 when u solves the integral equation

u = et∆u0 −
∫ t

0

e(t−τ)∆P∇ ·
(
u(τ, .)⊗ u(τ, .)

)
dτ.

Above we have used the following notation: for a tensor F = (Fij) we define the
vector ∇·F by (∇·F )i =

∑d
j=1 ∂jFij and for two vectors u and v, we define their

tensor product (u⊗v)ij = uivj . The operator P is the Helmholtz-Leray projection
onto the divergence-free fields

(Pf)j = fj +
∑

1≤k≤d

RjRkfk,

where Rj is the Riesz transforms defined as

Rj =
∂j√
−∆

i.e. R̂jg(ξ) =
iξj
|ξ| ĝ(ξ).

The heat kernel et∆ is defined as

et∆u(x) = ((4πt)−d/2e−|.|
2/4t ∗ u)(x).

For a space of functions defined on Rd, say E(Rd), we will abbreviate it as E.
We denote by Lq := Lq(Rd) the usual Lebesgue space for q ∈ [1,∞] with the
norm ‖.‖Lq , and we do not distinguish between the vector-valued and scalar-
valued spaces of functions. Given a Banach space E with norm ‖.‖E , we denote
by Lp([0, T ], E), 1 ≤ p ≤ +∞, set of functions f(t) defined on (0, T ) with val-

ues in E such that
∫ T
0
‖f(t)‖pEdt < +∞. Let BC([0, T );E) denote the bounded

continuous functions defined on (0, T ). For vector-valued f = (f1, ..., fM ), we de-

fine ‖f‖E =
(∑m=M

m=1 ‖fm‖
2
E

) 1
2 . We define the Sobolev space by Ḣs

q := Λ̇−sLq
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equipped with the norm
∥∥f∥∥

Ḣs
q

:= ‖Λ̇sf‖Lq . Here Λ̇s := F−1|ξ|sF , where F and

F−1 are the Fourier transform and its inverse, respectively. Λ̇ =
√
−∆ is the

homogeneous Calderon pseudo-differential operator. Throughout the paper, we
sometimes use the notation A . B as an equivalent to A ≤ CB with a uniform
constant C. The notation A ' B means that A . B and B . A. Now we can
state our results

Theorem 1 Let p and s be such that

p >
d

2
and

d

p
− 1 ≤ s < d

2p
.

Set
1

q
=

1

p
− s

d
.

(a) For all q̃ > max{p, q}, there exists a positive constant δq,q̃,d such that for all
T > 0 and for all u0 ∈ Ḣs

p(Rd) with div(u0) = 0 satisfying

T
1
2
(1+s− d

p
)

sup
0<t<T

t
d
2
( 1
p
− s
d
− 1
q̃
)∥∥et∆u0

∥∥
Lq̃
≤ δq,q̃,d, (2.1)

NSE has a unique mild solution u ∈ BC([0, T ); Ḣs
p). Moreover, we have

t
d
2
( 1
q
− 1
r
)
u(t) ∈ BC([0, T );Lr), for all r > max{p, q}.

In particular, the condition (2.1) holds for arbitrary u0 ∈ Ḣs
p(Rd) when

T = T (u0) is small enough.
(b) If s = d

p − 1 then for all q̃ > max{p, d} there exists a constant σq̃,d > 0 such

that if
∥∥u0∥∥

Ḃ
d
q̃
−1,∞

q̃

≤ σq̃,d and T = +∞ then the condition (2.1) holds.

In the case of critical indexes (s = d
p − 1, p > d

2 ), we obtain the following conse-
quence.

Proposition 1 Let p > d
2 . Then for any q̃ > max{p, d}, there exists a posi-

tive constant δq̃,d such that for all T > 0 and for all u0 ∈ Ḣ
d
p
−1

p (Rd) with
div(u0) = 0 satisfying

sup
0<t<T

t
1
2
(1− d

q̃
)∥∥et∆u0

∥∥
Lq̃
≤ δq̃,d, (2.2)

NSE has a unique mild solution u ∈ BC([0, T ); Ḣ
d
p
−1

p ). Moreover, we have

t
d
2
( 1
d
− 1
r
)u(t) ∈ BC([0, T );Lr), for all r > max{p, d}.

Denoting w = u− et∆u0 then w ∈ BC([0, T ); Ḣ
d
p̃
−1

p̃ ) for all p̃ > 1
2max{p, d}.

In particular, the condition (2.2) holds for arbitrary u0 ∈ Ḣ
d
p
−1

p (Rd) when T =
T (u0) is small enough, and there exists a positive constant σq̃,d such that
if ∥∥u0∥∥

Ḃ
d
q̃
−1,∞

q̃

≤ σq̃,d and T = +∞,

then the condition (2.2) holds.
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Remark 1 If p = d then Proposition 1 is the theorem of Canone [5].

In the case of supercritical indexes p > d
2 and d

p −1 < s < d
2p , we get the following

consequence.

Proposition 2 Let p > d
2 and d

p − 1 < s < d
2p . Then for any q̃ be such that

q̃ > max{p, q}, where
1

q
=

1

p
− s

d
,

there exists a positive constant δq,q̃,d such that for all T > 0 and for all
u0 ∈ Ḣs

p(Rd) with div(u0) = 0 satisfying

T
1
2
(1+s− d

p
)∥∥u0∥∥

Ḃ
s−( d

p
− d
q̃
),∞

q̃

≤ δq,q̃,d, (2.3)

NSE has a unique mild solution u ∈ BC([0, T ); Ḣs
p). Moreover, we have

t
d
2
( 1
q
− 1
r
)
u(t) ∈ BC([0, T );Lr), for all r > max{p, q}.

Remark 2 Proposition 2 is the theorem of Canone and Meyer [4,6] if s = 0, p > d,
and the condition (2.3) is replaced by the condition

T
1
2
(1− d

p
)∥∥u0∥∥Lp ≤ δp,d.

Note that in the case s = 0 and p > d, the condition (2.3) is weaker than the
above condition because of the following elementary imbedding maps

Lp(Rd) ↪→ Ḃ
−( d

p
− d
q̃
),∞

q̃ (Rd), (q̃ > p ≥ d),

but these two spaces are different. Indeed, we have
∣∣x∣∣− d

p /∈ Lp(Rd). On the other

hand by using Lemma 3, we can easily prove that
∣∣x∣∣− d

p ∈ Ḃ
−( d

p
− d
q̃
),∞

q̃ (Rd) for all
q̃ > p.

3 Tools from harmonic analysis

In this section we prepare some auxiliary lemmas.
The main property we use throughout this paper is that the operator Λ̇set∆P∇ is
a matrix of convolution operators with bounded integrable kernels.

Lemma 1 Let s > −1. Then the kernel function of Λ̇set∆P∇ is the function

Kt(x) = t−
d+1+s

2 K
( x√

t

)
,

where the function K is the kernel function of Λ̇se∆P∇ which satisfies the following
inequality

|K(x)| . 1

1 + |x|d+1+s
.

Proof See Proposition 11.1 [23], p. 107.
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Lemma 2 (Sobolev inequalities).
If s1 > s2, 1 < q1, q2 < ∞, and s1 − d

q1
= s2 − d

q2
, then we have the following

embedding mapping
Ḣs1
q1 ↪→ Ḣs2

q2 .

In this paper we use the definition of the homogeneous Besov space Ḃs,pq in [2,
3]. The following lemma will provide a different characterization of Besov spaces
Ḃs,pq in terms of the heat semigroup and will be one of the staple ingredients of
the proof of Theorem 1.

Lemma 3
Let 1 ≤ p, q ≤ ∞ and s < 0. Then the two quantities(∫ ∞

0

(t−
s
2

∥∥et∆f
∥∥
Lq

)p
dt

t

) 1
p
and

∥∥f∥∥
Ḃs,pq

are equivalent.

Proof See Theorem 5.4 in ([23], p. 45).

Lemma 4 Let θ < 1 and γ < 1 then∫ t

0

(t− τ)−γτ−θdτ = Ct1−γ−θ, where C =

∫ 1

0

(1− τ)−γτ−θdτ <∞.

The proof of this lemma is elementary and may be omitted. ut
Let us recall following result on solutions of a quadratic equation in Banach

spaces (Theorem 22.4 in [23], p. 227).

Theorem 2 Let E be a Banach space, and B : E × E → E be a continuous
bilinear map such that there exists η > 0 so that

‖B(x, y)‖ ≤ η‖x‖‖y‖,

for all x and y in E. Then for any fixed y ∈ E such that ‖y‖ ≤ 1
4η , the equation

x = y −B(x, x) has a unique solution x ∈ E satisfying ‖x‖ ≤ 1
2η .

4 Proof of Theorem 1

In this section we shall give the proof of Theorem 1.
We now need four more lemmas. In order to proceed, we define an auxiliary space
N s
p,T which is made up of the functions u(t, x) such that

u ∈ C([0, T ); Ḣs
p),
∥∥u∥∥N s

p,T

:= sup
0<t<T

∥∥u(t, .)
∥∥
Ḣs
p

<∞,

and
lim
t→0

∥∥u(t)
∥∥
Ḣs
p

= 0, (4.1)

with p > 1 and s ≥ d
p − 1.

We define the auxiliary space Kq̃q,T which is made up of the functions u(t, x) such
that

t
α
2 u ∈ C([0, T );Lq̃),

∥∥u∥∥Kq̃q,T := sup
0<t<T

t
α
2

∥∥u(t, .)
∥∥
Lq̃
<∞,

and
lim
t→0

t
α
2

∥∥u(t)
∥∥
Lq̃

= 0, (4.2)

with q̃ ≥ q ≥ d and α = d(1
q −

1
q̃ ).
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Remark 3 The auxiliary space Kq̃ := Kq̃d,T (q̃ ≥ d) was introduced by Weissler
and systematically used by Kato [20] and Cannone [5].

Lemma 5 Suppose that u0 ∈ Ḣs
p(Rd) with p > 1 and d

p − 1 ≤ s < d
p . Then for all

q̃ satisfying

q̃ > max{p, q},

where
1

q
=

1

p
− s

d
,

we have

et∆u0 ∈ Kq̃q,∞.

Proof First, we consider the case p ≤ q. In this case s ≥ 0, applying Lemma 2, we
have u0 ∈ Lq. We will prove that

sup
0<t<∞

t
α
2

∥∥et∆u0
∥∥
Lq̃

.
∥∥u0∥∥Lq , for all q̃ ≥ q.

Set
1

h
= 1 +

1

q̃
− 1

q
.

Applying Young’s inequality we obtain∥∥et∆u0
∥∥
Lq̃

=
1

(4πt)d/2

∥∥e
−|.|2
4t ∗ u0

∥∥
Lq̃

.
1

td/2

∥∥e
−|.|2
4t

∥∥
Lh

∥∥u0∥∥Lq
= t−

α
2

∥∥e
−|.|2

4

∥∥
Lh

∥∥u0∥∥Lq ' t−α
2

∥∥u0∥∥Lq . (4.3)

This proves the result. We now prove that

lim
t→0

t
α
2

∥∥et∆u0
∥∥
Lq̃

= 0, for all q̃ > q.

Set Xn(x) = 0 for x ∈ {x : |x| < n}∩ {x : |u0(x)| < n} and Xn(x) = 1 otherwise.
We have

t
α
2

∥∥et∆u0
∥∥
Lq̃
≤ C

(
t
α−d

2

∥∥e
−|.|2
4t ∗ (Xnu0)

∥∥
Lq̃

+ t
α−d

2

∥∥e
−|.|2
4t ∗ ((1−Xn)u0)

∥∥
Lq̃

)
.

Applying Young’s inequality, we have

Ct
α−d

2

∥∥e
−|.|2
4t ∗ (Xnu0)

∥∥
Lq̃
≤ C1

∥∥e
−|.|2

4

∥∥
Lh

∥∥Xnu0∥∥Lq ≤ C2

∥∥Xnu0∥∥Lq . (4.4)

For any ε > 0, we can take n large enough that C2

∥∥Xnu0∥∥Lq < ε
2 .

Fixed one of such n and applying Young’s inequality, we have

Ct
α−d

2

∥∥e
−|.|2

4t ∗ ((1−Xn)u0)
∥∥
Lq̃
≤ C3t

α−d
2

∥∥e
−|.|2
4t

∥∥
L1

∥∥(1−Xn)u0
∥∥
Lq̃

≤ C3t
α
2

∥∥e
−|.|2

4

∥∥
L1

∥∥n(1−Xn)
∥∥
Lq̃

= C4(n)t
α
2 <

ε

2
, for t < t0 (4.5)

with small enough t0 = t0(n). From estimates (4.4) and (4.5), we have

t
α
2

∥∥et∆u0
∥∥
Lq̃
≤ C2

∥∥Xnu0∥∥Lq + C5(n)t
α
2 < ε, for t < t0.
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Finally, we consider the case p > q. In this case s < 0, we will prove that

sup
0<t<∞

t
α
2

∥∥et∆u0
∥∥
Lq̃

.
∥∥u0∥∥Ḣs

p

, for q̃ ≥ p.

We have

et∆u0 = et∆Λ̇−sΛ̇su0 =
1

t
d−s
2

K
( .√

t

)
∗ (Λ̇su0),

where

K̂(ξ) =
1

(2π)
d
2

e−|ξ|
2

|ξ|−s, |K(x)| . 1

(1 + |x|)d−s .

Set
1

h
= 1 +

1

q̃
− 1

p
.

Applying Young’s inequality to obtain∥∥et∆u0
∥∥
Lq̃

. t−
α
2

∥∥K∥∥
Lh

∥∥Λ̇su0∥∥Lp ' t−α
2

∥∥u0∥∥Ḣs
p

.

This proves the result. We now claim that

lim
t→0

t
α
2

∥∥et∆u0
∥∥
Lq̃

= 0, for all q̃ > p.

Set Xn,s(x) = 0 for x ∈ {x : |x| < n} ∩ {x : |Λ̇su0(x)| < n} and Xn,s(x) = 1
otherwise. From the above proof we deduce that, for any ε > 0, there exist a
sufficiently large n and a sufficiently small t0 = t0(n) such that

t
α
2

∥∥et∆u0
∥∥
Lq̃
≤

C1

∥∥K∥∥
Lh

∥∥Xn,sΛ̇su0∥∥Lp + C2nt
d
2
( 1
p
− 1
q̃
)∥∥K∥∥

L1

∥∥1−Xn,s
∥∥
Lq̃
< ε, for t < t0.

In the following lemmas a particular attention will be devoted to the study of the
bilinear operator B(u, v)(t) defined by

B(u, v)(t) =

∫ t

0

e(t−τ)∆P∇ ·
(
u(τ)⊗ v(τ)

)
dτ. (4.6)

Lemma 6 Let p and s be such that

p >
d

2
and

d

p
− 1 ≤ s < d

2p
.

Then the bilinear operator B is continuous from Kq̃q,T ×K
q̃
q,T into N s

p,T , where

1

q
=

1

p
− s

d
, q < q̃ ≤ 2p,

and the following inequality holds∥∥B(u, v)
∥∥
N s
p,T

≤ CT
1
2
(1+s− d

p
)∥∥u∥∥Kq̃q,T ∥∥v∥∥Kq̃q,T , (4.7)

where C is a positive constant and independent of T.
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Proof By Lemma 1, we have∥∥B(u, v)(t)
∥∥
Ḣs
p

≤
∫ t

0

∥∥Λ̇se(t−τ)∆P∇ ·
(
u(τ)⊗ v(τ)

)∥∥
Lp

dτ

=

∫ t

0

∥∥∥ 1

(t− τ)
d+1+s

2

K
( .√

t− τ

)
∗
(
u(τ)⊗ v(τ)

)∥∥∥
Lp

dτ. (4.8)

Applying Young’s inequality, we have∥∥∥ 1

(t− τ)
d+1+s

2

K
( .√

t− τ

)
∗
(
u(τ)⊗ v(τ)

)∥∥∥
Lp

.
1

(t− τ)
d+1+s

2

∥∥∥K( .√
t− τ

)∥∥∥
Lr

∥∥u(τ)⊗ v(τ)
∥∥
L
q̃
2
, (4.9)

where

1

r
= 1 +

1

p
− 2

q̃
, (4.10)

Applying Hölder’s inequality, we have∥∥u(τ)⊗ v(τ)
∥∥
L
q̃
2
≤
∥∥u(τ)

∥∥
Lq̃

∥∥v(τ)
∥∥
Lq̃
. (4.11)

Since the equality (4.10) and Lemma 1 it follows that∥∥∥K( .√
t− τ

)∥∥∥
Lr

= (t− τ)
d
2r

∥∥K∥∥
Lr
' (t− τ)

d
2
(1+ 1

p
− 2
q̃
)
. (4.12)

From the inequalities (4.9), (4.11), and (4.12) we deduce that∥∥e(t−τ)∆P∇ ·
(
u(τ)⊗ v(τ)

)∥∥
Ḣs
p

. (t− τ)
d
2p
− d
q̃
− s+1

2

∥∥u(τ)
∥∥
Lq̃

∥∥v(τ)
∥∥
Lq̃
. (4.13)

By the inequalities (4.8), (4.13), and Lemma 4, we have∥∥B(u, v)(t)
∥∥
Ḣs
p

.
∫ t

0

(t− τ)
d
2p
− d
q̃
− s+1

2

∥∥u(τ)
∥∥
Lq̃

∥∥v(τ)
∥∥
Lq̃

dτ

≤
∫ t

0

(t− τ)
d
2p
− d
q̃
− s+1

2 τ−α sup
0<η<t

η
α
2

∥∥u(η)
∥∥
Lq̃

sup
0<η<t

η
α
2

∥∥v(η)
∥∥
Lq̃

dτ

= sup
0<η<t

η
α
2

∥∥u(η)
∥∥
Lq̃

sup
0<η<t

η
α
2

∥∥v(η)
∥∥
Lq̃

∫ t

0

(t− τ)
d
2p
− d
q̃
− s+1

2 τ−αdτ

' t
1
2
(1+s− d

p
)

sup
0<η<t

η
α
2

∥∥u(η)
∥∥
Lq̃

sup
0<η<t

η
α
2

∥∥v(η)
∥∥
Lq̃
. (4.14)

The estimate (4.7) is deduced from the inequality (4.14).
Let us now check the validity of condition (4.1) for the bilinear term B(u, v)(t).
In fact, from the estimate (4.14) it follows that

lim
t→0

∥∥B(u, v)(t)
∥∥
Ḣs
p

= 0, (4.15)

whenever
lim
t→0

t
α
2

∥∥u(t)
∥∥
Lq̃

= lim
t→0

t
α
2

∥∥v(t)
∥∥
Lq̃

= 0.

Finally, the continuity at t = 0 of B(u, v)(t) follows from the equality (4.15). The

continuity elsewhere follows from carefully rewriting the expression
∫ t+ε
0
−
∫ t
0

and
applying the same argument.
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Lemma 7 Let q and q̃ be such that q̃ > q ≥ d. Then the bilinear operator B is
continuous from Kq̃q,T ×K

q̃
q,T into Kq̃q,T and the following inequality holds∥∥B(u, v)
∥∥
Kq̃q,T

≤ CT
1
2
(1− d

q
)∥∥u∥∥Kq̃q,T ∥∥v∥∥Kq̃q,T , (4.16)

where C is a positive constant and independent of T.

Proof Applying the estimate (4.13) for s = 0 and p = q̃, we have∥∥e(t−τ)∆P∇ ·
(
u(τ)⊗ v(τ)

)∥∥
Lq̃

. (t− τ)
− d

2q̃
− 1

2

∥∥u(τ)
∥∥
Lq̃

∥∥v(τ)
∥∥
Lq̃
.

Applying Lemma 4, we have

∥∥B(u, v)(t)
∥∥
Lq̃

.
∫ t

0

(t− τ)
− d

2q̃
− 1

2

∥∥u(τ)
∥∥
Lq̃
.
∥∥v(τ)

∥∥
Lq̃

dτ

≤
∫ t

0

(t− τ)
− d

2q̃
− 1

2 τ−α sup
0<η<t

η
α
2

∥∥u(η)
∥∥
Lq̃

sup
0<η<t

η
α
2

∥∥v(η)
∥∥
Lq̃

dτ

= sup
0<η<t

η
α
2

∥∥u(η)
∥∥
Lq̃

sup
0<η<t

η
α
2

∥∥v(η)
∥∥
Lq̃

∫ t

0

(t− τ)
− d

2q̃
− 1

2 τ−αdτ

' t−
α
2 t

1
2
(1− d

q
)

sup
0<η<t

η
α
2

∥∥u(η)
∥∥
Lq̃

sup
0<η<t

η
α
2

∥∥v(η)
∥∥
Lq̃
.

Thus

t
α
2

∥∥B(u, v)(t)
∥∥
Lq̃

. t
1
2
(1− d

q
)

sup
0<η<t

η
α
2

∥∥u(η)
∥∥
Lq̃

sup
0<η<t

η
α
2

∥∥v(η)
∥∥
Lq̃
. (4.17)

The estimate (4.16) is deduced from the inequality (4.17).
Now we check the validity of condition (4.2) for the bilinear term B(u, v)(t). From
the estimate (4.17) it follows that

lim
t→0

t
α
2

∥∥B(u, v)(t)
∥∥
Lq̃

= 0,

whenever

lim
t→0

t
α
2

∥∥u(t)
∥∥
Lq̃

= lim
t→0

t
α
2

∥∥v(t)
∥∥
Lq̃

= 0.

Finally, the continuity at t = 0 of t
α
2 B(u, v)(t) follows from the equality (4.15).

The continuity elsewhere follows from carefully rewriting the expression
∫ t+ε
0
−
∫ t
0

and applying the same argument.

The following lemma, the proof of which is omitted, is a generalization of Lemma
7.

Lemma 8 Let d ≤ q ≤ q̃2 <∞ and q < q̃1 <∞ be such that one of the following
conditions is satisfied.

q < q̃1 < 2d, q ≤ q̃2 <
dq̃1

2d− q̃1
,

or

2d ≤ q̃1 ≤ 2q, q ≤ q̃2 <∞,



On the initial value problem for the Navier-Stokes equations 11

or

2q < q̃1 <∞,
q̃1
2
< q̃2 <∞.

Then the bilinear operator B is continuous from Kq̃1q,T × K
q̃1
q,T into Kq̃2q,T , and we

have the inequality ∥∥B(u, v)
∥∥
Kq̃2q,T

≤ CT
1
2
(1− d

q
)∥∥u∥∥Kq̃1q,T ∥∥v∥∥Kq̃1q,T ,

where C is a positive constant and independent of T.

Proof of Theorem 1

(a) From Lemma 7, B is continuous from Kq̃q,T × K
q̃
q,T to Kq̃q,T and we have

the inequality∥∥B(u, v)
∥∥
Kq̃q,T

≤ Cq,q̃,dT
1
2
(1− d

q
)∥∥u∥∥Kq̃q,T ∥∥v∥∥Kq̃q,T = Cq,q̃,dT

1
2
(1+s− d

p
)∥∥u∥∥Kq̃q,T ∥∥v∥∥Kq̃q,T ,

where Cq,q̃,d is a positive constant independent of T . From Theorem 2 and the
above inequality, we deduce that for any u0 ∈ Ḣs

p satisfying

T
1
2
(1+s− d

p
)∥∥et∆u0

∥∥
Kq̃q,T

= T
1
2
(1+s− d

p
)

sup
0<t<T

t
α
2

∥∥et∆u0
∥∥
Lq̃
≤ 1

4Cq,q̃,d
,

where

α = d
(1

q
− 1

q̃

)
= d

(1

p
− s

d
− 1

q̃

)
,

NSE has a solution u on the interval (0, T ) so that u ∈ Kq̃q,T .
We prove that u ∈

⋂
r>max{p,q}

Krq,T . We consider three cases q < q̃ < 2d and

2d ≤ q̃ ≤ 2q, and 2q < q̃ <∞ separately.
Note that if max{p, q} ≥ 2d then there does not exist q̃ satisfying the condition of
the first case, and if p ≥ 2q then there does not exist q̃ satisfying the condition of
the second case. Therefore the number of cases that can occur depends on s and
p.
First, we consider the case q < q̃ < 2d. There are two possibilities q̃ > 4d

3 and

q̃ ≤ 4d
3 . In the case q̃ > 4d

3 , we apply Lemmas 5 and 8 to obtain u ∈ Krq,T for all

r satisfying max{p, q} < r < q̃1 where q̃1 = dq̃
2d−q̃ > 2d. Thus, u ∈ K2d

q,T . Applying

again Lemmas 5 and 8, we deduce that u ∈ Krq,T for all r > max{p, q}. In the

case q̃ ≤ 4d
3 , we set up the following series of numbers {q̃i}0≤i≤N by induction.

Set q̃0 = q̃ and q̃1 = dq̃0
2d−q̃0 . We have q̃1 > q̃0. If q̃1 >

4d
3 then set N = 1 and stop

here. In the case q̃1 ≤ 4d
3 set q̃2 = dq̃1

2d−q̃1 . We have q̃2 > q̃1. If q̃2 >
4d
3 then set

N = 2 and stop here. In the case q̃2 ≤ 4d
3 , set q̃3 = dq̃2

2d−q̃2 . We have q̃3 > q̃2, and

so on, there exists k ≥ 0 such that q̃k ≤ 4d
3 , q̃k+1 = dq̃k

2d−q̃k >
4d
3 . We set N = k+ 1

and stop here, and we have

q̃0 = q̃, q̃i =
dq̃i−1

2d− q̃i−1
, q̃i > q̃i−1 for i = 1, 2, 3, .., N,

2d ≥ q̃N >
4d

3
≥ q̃N−1.
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From u ∈ Kq̃0q,T , applying Lemmas 5 and 8 to obtain u ∈ Krq,T for all r satisfying
max{p, q} < r < q̃1. Then applying again Lemmas 5 and 8 to get u ∈ Krq,T
for all r satisfying max{p, q} < r < q̃2, and so on, finishing we have u ∈ Krq,T
for all r satisfying max{p, q} < r < q̃N . Therefore u ∈ Krq,T for all r satisfying
4d
3 < r < q̃N . From the proof of the case q̃ > 4d

3 , we have u ∈ Krq,T for all
r > max{p, q}.
We now consider the case 2d ≤ q̃ ≤ 2q. We show that u ∈ Krq,T for all r >
max{p, q}. This is easily deduced by applying Lemmas 5 and 8.
Finally, we consider the case 2q < q̃ <∞. Let i ∈ N be such that

q̃

2i−1
≥ max{2q, p} > q̃

2i
.

From q̃ > max{p, q} and q̃ > 2q, we have q̃ > max{2q, p}, hence i ≥ 1. Applying
Lemmas 5 and 8 to obtain u ∈ Krq,T for all r > q̃

2 . Applying again Lemmas 5

and 8 to get u ∈ Krq,T for all r > q̃
22 , and so on, finishing we have u ∈ Krq,T

for all r > q̃
2i−1 . Applying again Lemmas 5 and 8 to obtain u ∈ Krq,T for all

r > max{p, q, q̃2i }. If max{p, q} ≥ q̃
2i then we have u ∈ Krq,T for all r > max{p, q}.

If max{p, q} < q̃
2i then 2q > q̃

2i . Thus u ∈ Krq,T for all r satisfying r > q̃
2i , hence

u ∈ K2q
q,T . Applying Lemmas 5 and 8 to obtain u ∈ Krq,T for all r > max{p, q}.

This proves the result.
We now prove that u ∈ BC([0, T ); Ḣs

p). Indeed, from u ∈ Krq,T for all r >

max{p, q}, applying Lemma 6 to obtain B(u, u) ∈ N s
p,T ⊆ BC

(
[0, T ); Ḣs

p

)
. On

the other hand, since u ∈ Ḣs
p , it follows that et∆u0 ∈ BC

(
[0, T ); Ḣs

p

)
. Therefore

u = et∆u0 −B(u, u) ∈ BC
(
[0, T ); Ḣs

p

)
.

Finally, we will show that the condition (2.1) is valid when T is small enough.
Indeed, from the definition of Kq̃q,T and Lemma 5, we deduce that the left-hand
side of the condition (2.1) converges to 0 when T goes to 0. Therefore the condition
(2.1) holds for arbitrary u0 ∈ Ḣs

p(Rd) when T (u0) is small enough.

(b) From Lemma 3, the two quantities
∥∥u0∥∥

Ḃ
d
q̃
−1,∞

q̃

and sup
0<t<∞

t
1
2
(1− d

q̃
)∥∥et∆u0

∥∥
Lq̃

are equivalent. Thus, there exists a positive constant σq̃,d such that the condition
(2.1) holds for T =∞ whenever

∥∥u0∥∥
Ḃ
d
q̃
−1,∞

q̃

≤ σq̃,d. ut

Proof of Proposition 1

By Theorem 1, we only need to prove that w ∈ N
d
p̃
−1

p̃,T for all p̃ > 1
2max{p, d}.

Indeed, applying Lemma 6, we deduce that the bilinear operator B is continuous

from Krd,T × Krd,T into N
d
p̃
−1

p̃,T for all p̃ > d
2 and r satisfying d < r ≤ 2p̃, hence

from u ∈
⋂

r>max{p,d}
Krd,T and 2p̃ > max{p, d}, we have w = −B(u, u) ∈ N

d
p̃
−1

p̃,T .

The proof Proposition 1 is complete. ut

Proof of Proposition 2
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By Lemma 3, we deduce that the two quantities
∥∥u0∥∥

Ḃ
s−( d

p
− d
q̃
),∞

q̃

and sup
0<t<∞

t
d
2
( 1
p
− s
d
− 1
q̃
)∥∥et∆u0

∥∥
Lq̃

are equivalent. Therefore

sup
0<t<T

t
d
2
( 1
p
− s
d
− 1
q̃
)∥∥et∆u0

∥∥
Lq̃

.
∥∥u0∥∥

Ḃ
s−( d

p
− d
q̃
),∞

q̃

.

Proposition 2 is proved by applying the above inequality and Theorem 1. ut
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