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1. Introduction

Throughout this note, all rings are nonzero, associative with identity and all
modules are unitary, unless otherwise stated. The categories of left modules over
a ring R is denoted by R-Mod.

Given a (row-finite) directed graph E and a field k, Abrams and Aranda Pino
in [2], and independently Ara, Moreno, and Pardo in [7], introduced the Leavitt
path algebra Lk(E). These Leavitt path algebras generalize the Leavitt alge-
bras Lk(1, n) of [18], and also contain many other interesting classes of algebras.
In addition, Leavitt path algebras are intimately related to graph C∗-algebras
(see [21]). Later, in [23] Tomforde generalized the construction of Leavitt path
algebras by replacing the field with a commutative ring.

In [7, Theorem 3.5] Ara, Moreno and Pardo established an important result
that the global dimension of the Leavitt path algebra of a finite graph with coeffi-
cients a field is at most equal 1, by using Bergman’s nice machinery [10]. Contin-
uously of this research direction, in this paper, we establish sharp bounds of the
homological dimensions of Leavitt path algebras of finite graphs with coefficients
in commutative rings, as well as calculate exactly the homological dimensions of
those Leavitt path algebras with coefficients in commutative unital algebras over
fields. Here our method is different from Ara et. al.’s method, since Bergman’s
machinery can not work on algebras over commutative rings in general. As an
application of the obtained result, we may cover Ara et. al.’s result cited above.
More precisely, the paper is organized as follows. In Section 2, we note that the
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classical Composition–Diamond lemma for free associate algebras over fields has,
in some cases, the same form for free associate algebras over an arbitrary ring
(Theorem 2.1). For the reader’s convenience, all subsequently necessary notions
and notations on graph, Leavitt path algebras are included in Section 3. Also,
in this section, as an application of Theorem 2.1, we express an analog of Zel-
manov et. al.’s result [6, Theorem 1] for Leavitt path algebras with coefficients in
commutative rings (Theorem 3.7). Applying the obtained result, we establish an
analogous of Abrams, Aranda Pino and Siles Molina’s theorem [3, Theorems 3.8
and 3.10] for the structure of the Leavitt path algebra of a finite no-exit graph
with coefficients in a commutative ring (Corollary 3.9).

In Section 4, we give sharp bounds for the homological dimensions of the Leav-
itt path algebra of a finite graph with coefficients in a commutative ring, by using
W. Dicks’s interesting result [13, Corollary 7] and Morita equivalence (Theorem
4.7). Also, we provide a formula for calculating the homological dimensions of the
Leavitt path algebra of a finite graph with coefficients in a commutative unital
algebra over a field (Theorem 4.8).

2. Composition–Diamond lemma for associative algebras

Here we present the concepts of Composition–Diamond lemma and Gröbner–
Shirshov basis, see the survey [11]. In the classical version of Composition–
Diamond lemma, it assumed that considered algebras is over a field, here we
consider the general case.

Let Λ be an arbitrary ring, Λ〈X〉 the free associative algebra over Λ generated
by X, and let X∗ be the free monoid generated by X, where empty word is the
identity, denoted by 1X∗ . Assume that X∗ is a well-ordered set. Take f ∈ Λ〈X〉
with the leading word (term) f and f = λf + rf , where 0 6= λ ∈ Λ and rf < f .
We call f is monic if λ = 1. We denote by deg(f) the degree of f .

A well ordering 6 on X∗ is called monomial if for u, v ∈ X∗, we have:

u 6 v =⇒ w
∣∣
u
6 w

∣∣
v
, ∀w ∈ X∗,

where w
∣∣
u

:= w
∣∣
x→u and x’s are the same individuality of the letter x ∈ X in w.

A standard example of monomial ordering on X∗ is the deg-lex ordering (i.e.,
degree and lexicographical), in which two words are compared first by the degree
and then lexicographically, where X is a well-ordering set.

Fix a monomial ordering 6 on X∗, and let ϕ and ψ be two monic polynomials
in Λ〈X〉. There are two kinds of compositions:

(i) If w is a word (i.e, it lies in X∗) such that w = ϕb = aψ for some a, b ∈ X∗
with deg(ϕ) + deg(ψ) > deg(w), then the polynomial

(ϕ,ψ)w := ϕb− aψ

is called the intersection composition of ϕ and ψ with respect to w.
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(ii) If w = ϕ = aψb for some a, b ∈ X∗, then the polynomial

(ϕ,ψ)w := ϕ− aψb

is called the inclusion composition of ϕ and ψ with respect to w.

We then note that (ϕ,ψ)w ≤ w and (ϕ,ψ)w lies in the ideal (ϕ,ψ) of Λ〈X〉
generated by ϕ and ψ.

Let S ⊆ Λ〈X〉 be a monic set (i.e., it is a set of monic polynomials). Take
f ∈ Λ〈X〉 and w ∈ X∗. We call f is trivial modulo (S, w), denoted by

f ≡ 0 mod (S, w),

if f =
∑
s∈S

λasb, where λ ∈ Λ, a, b ∈ X∗, and asb 6 w.

A monic set S ⊆ Λ〈X〉 is called a Gröbner–Shirshov basis in Λ〈X〉 with respect
to the monomial ordering ≤ if every composition of polynomials in S is trivial
modulo S and the corresponding w.

The following Composition–Diamond lemma was first proved by Shirshov [22]
(see also the survey [11]) for free Lie algebras over fields (with deg-lex ordering).
For commutative algebras, this lemma is known as Buchberger’s theorem [9].

Theorem 2.1 (Composition–Diamond Lemma for associative algebras).
Let Λ be an arbitrary ring, 6 a monomial ordering on X∗ and let I(S) be the ideal
of Λ〈X〉 generated by the monic set S ⊆ Λ〈X〉. Then the following statements
are equivalent.

(1) S is a Gröbner–Shirshov basis in Λ〈X〉;
(2) The set of irreducible words

Irr(S) := {u ∈ X∗ : u 6= asb, s ∈ S, a, b ∈ X∗}

is a linear basis of the algebra Λ〈X
∣∣S〉 := Λ〈X〉/I(S).

Proof. The formal proof of the Composition–Diamond lemma for free associative
algebras over field is found in [11, Theorem 1]. We essentially follow the ideas in
this proof, and just for the readers convenience, we briefly sketch it here.

(1) =⇒ (2). Let S be a set of monic polynomials and let us assume that S

is a Gröbner–Shirshov basis. Using the same argument given in [11, Theorem
1], we get that if f ∈ I(S), then f = asb, where a, b ∈ X∗, s ∈ S. Using this
observation, we obviously get for each f ∈ Λ〈X〉,

I(S) 3 f ⇐⇒ f − asb ∈ I(S),

for some a, b ∈ X∗ and s ∈ S. Continuing this line of reasoning, we see that

I(S) 3 f ⇐⇒ f (i) := f (i−1) − a′s′b′ ∈ I(S),

for some a′, b′ ∈ X∗ and s′ ∈ S. By using the process at finitely many times, we
immediately obtain that

I(S) 3 f ⇐⇒ f (`f ) = 0 for some positive integer `f .
3



Since S is a Gröbner–Shirshov basis, then for any s ∈ S there exists a positive
integer `s ∈ N such that s(`s) = 0. From these notes, we immediately get that if
f /∈ I(S), then we may find a positive integer tf such that

f (tf ) =
∑

λf̂ ,

where 0 6= λ ∈ Λ, and f̂ 6= asb for any a, b ∈ X∗ and any s ∈ S, which shows (2).
(2) =⇒ (1). Let S ⊆ Λ〈X〉 be a set of monic polynomials, and let f ∈ Λ〈X〉

be a polynomial. Using the same argument given in [11, Lemma 2], we have

f =
∑
u6f

λu+
∑
asb6f

λ′asb,

where λ, λ′ ∈ Λ, and u ∈ Irr(S). From this observation and Irr(S) is a linear
basis for Λ〈X〉/I(S), we get that (s, s′)w ≡ 0 mod (S, w) for any s, s′ ∈ S, and
hence, S is a Gröbner–Shirshov basis, finishing the proof. �

Example 2.2. Let Λ be an arbitrary ring and consider the following algebra
A = Λ〈x, y〉/(x2−y2). Let us consider the polynomials ϕ = x2−y2, ψ = xy2−y2x,
and let y 6 x. It is not hard to see that the set S = {ϕ,ψ} is a Gröbner–Shirshov
basis of A. Indeed,

(ϕ,ϕ)w = ϕx− xϕ = x3 − y2x− (x3 − xy2) = ψ, w = xxx

(ϕ,ψ)w = ϕy2 − xψ = x2y2 − y2y2 − (x2y2 − xy2x) w = x2y2,

= ψx+ y2ϕ.

Since the set S is monic, then the set

Irr(S) =
⋃

n,m>0

{
1, x, yn, ymx

}
is the Λ-basis for A, by Theorem 2.1. �

3. A basis of Leavitt path algebras with coefficients in

commutative rings

The main goal of this section is to give a basis of the Leavitt path algebra of
a row-finite graph with coefficients in a commutative ring, which is an analog of
Zelmanov et. al.’s result [6, Theorem 1].

We begin by recalling some general notions of graph theory: A (directed) graph
E = (E0, E1, s, r) (or shortly E = (E0, E1)) consists of two disjoint sets E0 and
E1, called vertices and edges respectively, together with two maps s, r : E1 −→
E0. The vertices s(e) and r(e) are referred to as the source and the range of
the edge e, respectively. The graph is called row-finite if |s−1(v)| < ∞ for all
v ∈ E0. All graphs in this paper will be assumed to be row-finite. A graph
E is finite if both sets E0 and E1 are finite (or equivalently, when E0 is finite,
by the row-finite hypothesis). A vertex v for which s−1(v) is empty is called a
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sink ; a vertex v for which r−1(v) is empty is called a source; and a vertex v is
regular iff 0 < |s−1(v)| < ∞. A path p = e1 . . . en in a graph E is a sequence
of edges e1, . . . , en such that r(ei) = s(ei+1) for i = 1, . . . , n − 1. In this case,
we say that the path p starts at the vertex s(p) := s(e1) and ends at the vertex
r(p) := r(en), and has length |p| := n. We consider the vertices in E0 to be
paths of length 0. If p is a path of positive length in E, and if v = s(p) = r(p),
then p is a closed path based at v. A closed path based at v, p = e1 . . . en, is
a closed simple path based at v if s(ei) 6= v for every i > 1. If p = e1 . . . en
is a closed path and all vertices s(e1), . . . , s(en) are distinct, then the subgraph
(s(e1), . . . , s(en); e1, . . . , en) of the graph E is called a cycle. An edge f is an exit
for a path p = e1 . . . en if s(f) = s(ei) but f 6= ei for some 1 ≤ i ≤ n. A graph
E is acyclic if it has no cycles; and the graph E is said to be a no-exit graph if
no cycle in E has an exit. We say that a graph E satisfies Condition (L) if every
cycle in E has an exit.

Given a (row-finite) directed graph E and a field k, Abrams and Aranda Pino
in [2], and independently Ara, Moreno, and Pardo in [7], introduced the Leavitt
path algebra LK(E). These Leavitt path algebras generalize the Leavitt algebras
LK(1, n) of [18], and also contain many other interesting classes of algebras.
In addition, Leavitt path algebras are intimately related to graph C∗-algebras
(see [21]). Later, in [23] Tomforde generalized the construction of Leavitt path
algebras by replacing the field with a commutative ring.

Definition 3.1 (cf. [2, Definition 1.3] and [23, Definition 2.4]). Let R be a
commutative ring and E = (E0, E1, s, r) be a graph. The Leavitt path algebra
LR(E) of the graph E with coefficients in R is the R-algebra presented by the
set of generators E0 ∪ E1 ∪ (E1)∗ – where E1 → (E1)∗, e 7→ e∗, is a bijection
with E0, E1, (E1)∗ pairwise disjoint – satisfying the following relations:

(1) vv′ = δv,v′v for all v, v′ ∈ E0;
(2) s(e)e = e = er(e), r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1;
(3) e∗f = δe,fr(e) for all e, f ∈ E1;
(4) v =

∑
s(e)=v

ee∗ whenever v ∈ E0 is a regular vertex.

Let us present a list of examples of some known algebras which can be described
as a Leavitt path algebra. For more examples see [1].

Example 3.2 (Full matrix algebras). Let An denote the graph which is shown
in fig.1

•v1
e1 // •v2

e2 // . . . •vn−1
en−1 // •vn

Figure 1. The graph An is shown
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Then LR(An) ∼= Mn(R), the full n × n matrix algebra. Let us describe this
isomorphism. Let Ei,j be the standard matrix units, here 1 ≤ i, j ≤ j, then the
isomorphism LR(An) ∼= Mn(R) can be described as follows:

vi ↔ Ei,i, 1 ≤ i ≤ n,
ei ↔ Ei,i+1, 1 ≤ i ≤ n− 1,

e∗i ↔ Ei+1,i, 1 ≤ i ≤ n− 1.

�

Example 3.3 (The Laurent polynomial algebra). Let Ω1 denote the graph

•v ehh

Then LR(Ω) ∼= R[t, t−1], the Laurent polynomial algebra. The isomorphism is
clear:

v ↔ 1,

e↔ t,

e∗ ↔ t−1.

�

Example 3.4 (Leavitt algebra). For 1 ≤ ` ≤ ∞, let Ω` denote the graph with
` edges and with one vertex v (see fig.2).

e1e` e2

Figure 2. The graph Ω` is shown.

Then LR(Ω`) ∼= LR(1, `), the Leavitt algebra of order `, which is an R-algebra,
defined by the generators {xi, yi : 1 ≤ i ≤ `}, and relations

yixi = δi,j ,
∑̀
i=1

xiyi = 1.

�
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Example 3.5 (The Toeplitz algebra). For any field k, the Jacobson algebra,
described in [16], is the k-algebra:

A = k〈x, y : xy = 1〉.

This algebra was the first example appearing in the literature of an algebra which
is not directly finite, that is, in which there are elements x, y for which xy = 1
but yx 6= 1. Let T denote the “Toeplitz graph”, which is shown on the fig.3

•ve 66
f // •u

Figure 3. The Toeplitz graph T is shown.

Then Lk(T ) ∼= A. The isomorphism is described as follows:

v ↔ yx,

u↔ 1− yx,

e↔ y2x,

f ↔ y − y2x,

e∗ ↔ yx2,

f∗ ↔ x− yx2.

�

Notice that if the graph E is finite, then LR(E) is a unital ring having identity
1 =

∑
v∈E0

v (see, e.g., [2, Lemma 1.6] and [23, Subsection 4.2]). It is easy to see

that the mappings given by v 7→ v, for v ∈ E0, and e 7−→ e∗, e∗ 7−→ e for e ∈ E1,
produce an involution on the algebra LR(E), and for any path p = e1 . . . en
there exists p∗ := e∗n . . . e

∗
1. Also, LR(E) has the following universal property:

If A is an R-algebra generated by a family of elements {av, be, ce∗ | v ∈ E0, e ∈
E1, e∗ ∈ (E1)∗} satisfying the analogous to (1) – (4) relations in Definition 2.1,
then there always exists a unique R-algebra homomorphism ϕ : LR(E) → A

given by ϕ(v) = av, ϕ(e) = be and ϕ(e∗) = ce∗ .

In [6, Theorem 1] Zelmanov et. al. found a basis of the Leavitt path algebra
of a finite graph with coefficients in a field. Here we note that the result extends
to the case of Leavitt path algebras with coefficients in a commutative ring.

Namely, for an arbitrary vertex v ∈ E0 which is not a sink, choose an edge
e ∈ E1 such that s(e) = v. We will refer to this edge as special. In other words,
we fix a function γ : E0 \ {sinks} −→ E1 such that s(e) = v for an arbitrary
vertex v ∈ E0 \ {sinks}.

As in [6, Theorem 1] we consider the the order < on the set of generators
X := E0 ∪ E1 ∪ (E1)∗. Chose an arbitrary well-ordering on the set of vertices
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E0. If e, f are edges and s(e) < s(f), then e < f . It remains to order the edges
that have the same source. Let v be a vertex which is not a sink. Let e1, . . . , e`
be all the edges that originate from v. Suppose e1 is a special edge. We order the
edges as follows: e1 > e2 > . . . > e`. Choose an arbitrary well-ordering on the
set E1. For arbitrary elements v ∈ E0, e ∈ E1, f∗ ∈ (E1)∗, we let v < e < f∗.
Thus the set E0 ∪ E1 ∪ (E1)∗ is well-ordered. Let X∗ be the set of all words in
the alphabet X. The length-lex order makes X∗ a well-ordered set. With respect
to this order, we have the follow useful fact.

Lemma 3.6. Let E be a row-finite graph and R a commutative ring. Then, the
Gröbner–Shirshov basis S of the Leavitt path algebra LR(E) can be described as
follows

S = S1 ∪S2 ∪S3 ∪S4,

where

S1 =
⋃

v,u∈E0, e∈E1

{
vu− δv,uv, ve− δv,s(e)e, ev − δv,r(e)e

}
,

S2 =
⋃

v∈E0, e,f∈E1

{
ve∗ − δv,r(e)e∗, e∗v − δv,s(e)e∗, e∗f − δe,fr(e)

}
,

S3 =
⋃

e,f∈E1

ee∗ − s(e) +
∑

s(f)=s(e)

ff∗ : γ(s(e)) 6= f

 ,

S4 =
⋃

e,f∈E1

(
{ef : r(e) 6= s(f)} ∪ {e∗f∗ : r(f) 6= s(e)} ∪ {ef∗ : r(e) 6= r(f)}

)
.

Proof. Let us consider the polynomials

ϕ = e∗g − δe,gr(e), ρ = ee∗ − s(e) +
∑

s(f)=s(e)
γ(s(e))6=f

ff∗.

We have

(ϕ, ρ)ee∗g =

ee∗ +
∑

s(f)=s(e)
γ(s(e)) 6=f

ff∗ − s(e)

 g − e
(
e∗g − δe,gr(e)

)
=

= δe,ger(e) + δf,ggr(g)− δs(e),s(g)g − δe,ger(e) + δe,ger(e) =

= δe,ge+ δf,gg − δs(e),s(g)g,

it follows that

(ϕ, ρ)ee∗g ≡ 0 (S, ee∗g) .

The straightforward computations show that the set of another polynomials is
closed with respect to compositions. �
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Theorem 3.7 (cf. [6, Theorem 1]). For any graph E = (E0, E1, s, r) and any
commutative ring R, the following elements form a basis of the Leavitt path alge-
bra LR(E) :

(i) the set of all vertices E0;
(ii) p, p∗, where p is a path of positive length in E;
(iii) pq∗, where p = e1 · · · en, q = f1 · · · fm, ei, fj ∈ E1, are paths of positive

length that end at the same vertex r(en) = r(fm), with the condition that the last
edges en and fm are either distinct or equal, but not special.

Proof. By Theorem 2.1 and Lemma 3.6, the set of irreducible words (not con-
taining the leading words of relators in Lemma 3.6 as subwords) is an R-basis of
LR(E), which finishes the proof. �

As an application of Theorem 3.7, we get the following useful facts.

Corollary 3.8. Let E = (E0, E1) be a finite graph, R a commutative ring and
R0 =

∏
v∈E0 R. Let {av | v ∈ E0} be the standard basis of the free R-module R0.

Then the following statements hold:
(1) The ring homomorphism ϕ : R0 −→ LR(E), defined by ϕ(av) = v for all

v ∈ E0, is injective.
(2) Im(ϕ) is a direct summand of LR(E) as an R0-module.
(3) LR(E) is a projective R0-module.

Proof. The statements (1) and (2) follow immediately from Theorem 3.7.
(3) For any v ∈ E0 we denote by πv the v-th canonical surjection from R0 onto

R. We then have that

LR(E) =
⊕
v∈E0

Im(πv)LR(E)

as R0-modules. For any v ∈ E0, by Theorem 3.7, Im(πv)LR(E) is a free R-module
with a basis consisting the following elements:

(i) p, where p is a path in E starting at v;
(ii) q∗, where q is a path of positive length in E ending at v;
(iii) pq∗, where p = e1 · · · en, q = f1 · · · fm, ei, fj ∈ E1, are paths of positive

length that end at the same vertex r(en) = r(fm) and s(p) = v, with the condition
that the last edges en and fm are either distinct or equal, but not special.
Furthermore, R is clearly a projective R0-module by pullback along πv, and
hence, Im(πv)LR(E) is also a projective R0-module. From these observations, we
immediately get that LR(E) is a projective R0-module, finishing the proof. �

The structure of the Leavitt path algebra of a finite no-exit graph with coeffi-
cients in a field is given in [3, Theorems 3.8 and 3.10] (see, also, [8, Theorem 2.1])
by Abrams, Aranda Pino and Siles Molina. Using Theorem 3.7 and repeating
verbatim the proofs of [3, Theorems 3.8 and 3.10], we note that the result extends
to the case of Leavitt path algebras with coefficients in a commutative ring.
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Corollary 3.9. Let R be a commutative ring, E a finite no-exit graph, {c1, . . . , cl}
the set of cycles, and {v1, . . . , vk} the set of sinks. Then LR(E) is isomorphic to

l⊕
i=1

k⊕
j=1

Mmi

(
R[x, x−1]

)
⊕Mnj (R)

where for each 1 ≤ i ≤ l, mi is the number of paths ending in a fixed (although
arbitrary) vertex of the cycle ci which do not contain the cycle itself, and for each
1 ≤ j ≤ k, nj is the number of paths ending in the sink vj.

4. The homological dimensions of Leavitt path algebras

The main goal of this section is to give sharp bounds for the homological
dimensions of the Leavitt path algebra LR(E) of a finite graph E with coefficients
in a commutative ring R, as well as establish a formula for the homological
dimensions of LR(E) when R is a commutative unital algebra over a field.

We begin by recalling some general notions of the theory of homological di-
mensions. We shall say that the left R-module M has projective dimension ≤ n

if M has a projective resolution 0 → Pn → · · · → P0 → M → 0, where each
Pi (i = 0, . . . , n) is a projective left R-module. The least such integer n is called
the projective dimension of M and denoted by pdR(M). If no such integer exists
the dimension is denoted to be∞. The left global dimension of a ring R is defined
to be

l.gl.dim(R) = sup{pdR(M) : M ∈ |R-Mod|} ≤ ∞.
The right global dimension of R, denoted by r.gl.dim(R), is defined similarly.
If R is a commutative ring, we shall write gl.dim(R) for the common value of
l.gl.dim(R) and r.gl.dim(R).

We next go on define the flat dimensions of left R-modules. We shall say that
the left R-module M has flat dimension ≤ n if M has a resolution 0 → Fn →
· · · → F0 → M → 0, where each Fi (i = 0, . . . , n) is a flat left R-module. The
least such integer n is called the flat dimension of M and denoted by fdR(M).
If no such integer exists the dimension is denoted to be ∞. The left weak global
dimension of a ring R is defined to be

w.gl.dim(R) = sup{fdR(M) : M ∈ |R-Mod|} ≤ ∞.

The right weak global dimension of R is defined similarly, by using right R-
modules. It is well-known that the left and right weak global dimensions of R
are the same (see, e.g., [17, Theorem 5.63, page 185]). The weak global dimen-
sion of the ring R is at most equal to its left or right global dimension. For
another properties of the homological dimensions we may refer to [12] and [17],
for example.

The following lemma provides us with a sharp lower bound for the homological
dimensions of Leavitt path algebras.
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Lemma 4.1. Let R be a commutative ring and E a finite graph. Then we have

gl.dim(R) ≤ l.gl.dim(LR(E)) and w.gl.dim(R) ≤ w.gl.dim(LR(E)).

Proof. We start to an R-algebra

R0 =
∏
v∈E0

R.

By Corollary 3.8 (i) and (ii), the ring R0 may be considered as be to a subring of
LR(E) such that R0 is a direct summand of LR(E) as an R0-module. Therefore,
we may write LR(E) = R0 ⊕M for some R0-module M .

Take any R0-module A, and set B = HomR0(LR(E), A). Then B carries the
structure of a left LR(E)-module, and B ∼= A⊕ HomR0(M,A) (as R0-modules).
This implies that

pdR0(A) ≤ pdR0(B) and fdR0(A) ≤ fdR0(B),

by [12, Exercises 7, page 123]. Since Corollary 3.8 (3), LR(E) is a projective
R0-module, so

pdR0(B) ≤ pdLR(E)(B) and fdR0(B) ≤ fdLR(E)(B),

by [12, Exercises 10, page 123]. But then

pdR0(A) ≤ pdLR(E)(B) and fdR0(A) ≤ fdLR(E)(B).

Passing to the homological dimensions, we get that

gl.dim(R) = gl.dim(R0) ≤ l.gl.dim(LR(E))

and
w.gl.dim(R) = w.gl.dim(R0) ≤ w.gl.dim(LR(E)),

finishing the proof. �

Our next goal is to give a sharp upper bound for the homological dimensions
of Leavitt path algebras. To do so, we first need the following important lemma.

Lemma 4.2. Let R be a commutative ring and E = (E0, E1, r, s) a finite graph
with that {v1, v2, . . . , vk} ⊆ E0 is the set of regular vertices. For each 1 ≤ i ≤ k,
let Ei denote the graph with the same vertices as E and vi emits the same edges
as it does in E, but all other vertices do not emit any edge. Then the following
statements hold:

(1) l.gl.dim(LR(E)) ≤ max{gl.dim(R) + 1, l.gl.dim(LR(Ei)) | i = 1, k},

(2) w.gl.dim(LR(E)) ≤ max{w.gl.dim(R) + 1, w.gl.dim(LR(Ei)) | i = 1, k}.

Proof. Let R0 =
∏
v∈E0 R and we denote by {av | v ∈ E0} the standard basis

of the free R-module R0. Let ϕi : R0 −→ LR(Ei) and ψi : LR(Ei) −→ LR(E)
(1 ≤ i ≤ k) be the ring homomorphisms which are defined respectively by:
ϕi(av) = v, and ψi(v) = v, ψi(e) = e and ψi(e∗) = e∗.

We claim that the following diagram
11



LR(E1)
ψ1

((PPPPPPPPPPPPP

R0

ϕ1

77oooooooooooooo

ϕk ''OOOOOOOOOOOOOO
... LR(E)

LR(Ek)
ψk

66nnnnnnnnnnnnn

is a pushout in the category of rings. Indeed, it is easy to see that the above
diagram is commutative, that means, ψiϕi = ψjϕj for all i, j = 1, . . . , k.

Assume that S is a ring and αi : LR(Ei) −→ S (1 ≤ i ≤ k) are ring homomor-
phisms such that the following diagram

LR(E1)
α1

''NNNNNNNNNNNNNN

R0

ϕ1

77oooooooooooooo

ϕk ''OOOOOOOOOOOOOO
... S

LR(Ek)

αk

77pppppppppppppp

is commutative, that means, αiϕi = αjϕj for all i, j = 1, . . . , k. We then have
that αi(v) = αj(v) (1 ≤ i, j ≤ k),

∑
v∈E0

i

αi(v) = 1 and αi(v)αi(v′) = δv,v′αi(v).

For any v ∈ E0, let xv = α1(v) and we have a family {xv | v ∈ E0} of
orthogonal idempotents in S such that

∑
v∈E0

xv = 1.

For any 1 ≤ i ≤ k and any e ∈ s−1(vi), let ye = αi(e) and ze∗ = αi(e∗). We
then have that

xs(e)ye = α1(s(e))αi(e) = αi(s(e))αi(e) = αi(s(e)e) = αi(e) = ye,

yexr(e) = αi(e)α1(r(e)) = αi(e)αi(r(e)) = αi(er(e)) = αi(e) = ye.

Similarly
xr(e)ze∗ = ze∗ and ze∗xs(e) = ze∗ .

Take any e and f ∈ E1. If there exists a regular vertex vi such that s(e) =
vi = s(f), then

ze∗yf = αi(e∗)αi(f) = αi(e∗f) = αi(δe,fr(e)) = δe,fαi(r(e)) = δe,fxr(e).

Otherwise, we get that s(f) 6= s(e). But then

ze∗yf =
(
ze∗xs(e)

) (
xs(f)yf

)
= ze∗

(
xs(e)xs(f)

)
yf = 0.

For any regular vertex vi, we have that∑
e∈s−1(vi)

yeze∗ =
∑

e∈s−1(vi)

αi(e)αi(e∗) = αi
∑

e∈s−1(vi)

ee∗ = αi(vi) = xvi .

12



From these observations, we have a family{
xe, ye, ze∗ | v ∈ E0, e ∈ E1, e∗ ∈ (E1)∗

}
of elements in S satisfying the relations (1) - (4) of Definition 3.1. By the universal
property of LR(E), there exists a unique ring homomorphism α : LR(E) −→ S

such that α(v) = xv, α(e) = ye and α(e∗) = ze∗ . Also, it is easy to check that
αi = αψi (1 ≤ i ≤ k), thereby establishing the claim.

Using this observation, Corollary 3.8 (3) and [13, Theorem 9 (iii)], we im-
mediately have that LR(E) is a flat left LR(Ei)-module, so we get the desired
conclusions, by [13, Corollary 7, and Remarks (i) and (ii), pape 567]. �

For clarification, we illustrate the ideas which arise in Lemma 4.2 by presenting
the following example.

Example 4.3. Let E be the graph

•v1
++
•v2kk // •v3

��
.

Clearly, vi’s are regular vertices, and hence, we have the graphs Ei (1 ≤ i ≤ 3)
as follows:

E1 = •v1 // •v2 •v3

E2 = •v1 •v2oo // •v3

E3 = •v1 •v2 •v3
��
.

For any commutative ring R, by Corollary 3.9, we obtain that

LR(E1) ∼= M2(R)⊕R, LR(E2) ∼= M2(R)⊕M2(R)

and
LR(E3) ∼= R⊕R⊕R[x, x−1].

But then, as the homological dimensions are Morita invariants, the first two
displayed ring isomorphisms yield that

l.gl.dim(LR(E1)) = gl.dim(R) = l.gl.dim(LR(E2))

and
w.gl.dim(LR(E1)) = w.gl.dim(R) = w.gl.dim(LR(E2)).

Also, using [14, Theorem 1.7] and [13, Theorem 2], we immediately get that
gl.dim

(
R[x, x−1]

)
= gl.dim(R) + 1 and w.gl.dim

(
R[x, x−1]

)
= w.gl.dim(R) + 1,

respectively. From these observations and the last displayed ring isomorphism
yield that

l.gl.dim(LR(E3)) = gl.dim(R) + 1, w.gl.dim(LR(E3)) = w.gl.dim(R) + 1.
13



From these observations, and Lemmas 4.1 and 4.1, we get that

gl.dim(R) ≤ l.gl.dim(LR(E)) ≤ gl.dim(R) + 1

and
w.gl.dim(R) ≤ w.gl.dim(LR(E)) ≤ w.gl.dim(R) + 1.

�

Lemma 4.2 allows us to reduce calculating the homological dimensions of the
Leavitt path algebra LR(E) to calculating the homological dimensions of LR(F ),
where F is the graph with the same vertices as E and its all edges are only edges
emitting from some regular vertex v ∈ E0 (other vertices do not emit any edge).
Notice that F is a no-exit graph if and only if E contains a loop based at v, which
has no an exit. In this case, we may calculate easily the homological dimensions of
LR(F ), by using Corollary 3.9, [14, Theorem 1.7] and [13, Theorem 2]. Therefore,
the difficulty is how to calculate the homological dimensions of LR(F ) when F

contains a loop having an exit. To remedy this problem, our idea is based on
Abrams, Louly, Pardo and Smith’s useful result [4, Proposition 1.8]. But, we first
recall the following notion.

Definition 4.4 (cf. [4, Definition 1.6]). Let E = (E0, E1, r, s) be a graph, and
let v ∈ E0. Let v∗ and f be symbols not in E0 ∪ E1. We form the expansion
graph Ev from E at v as follows:

E0
v = E0 ∪ {v∗},

E1
v = E1 ∪ {f},

sEv(e) =



v if e = f,

v∗ if sE(e) = v,

sE(e) otherwise,

rEv(e) =


v∗ if e = f,

rE(e) otherwise.

Example 4.5. Let E be the graph

•v
��

// •w
��
.

Then the expansion graph Ev is

•v
f

++
•v∗jj // •w

��
.

�
14



In [4, Proposition 1.8], Abrams, Louly, Pardo and Smith showed that if K is
a field and E is a finite graph such that LK(E) is simple, then LK(E) is Morita
equivalent to LK(Ev). In the following proposition, we extend this result to the
Leavitt path algebra of a finite graph satisfying Condition (L) with coefficients
in a commutative ring. Recall a graph E is said to satisfy Condition (L) if every
cycle in E has an exit.

Proposition 4.6. Let R be a commutative ring, E a finite graph satisfying Con-
dition (L), and let v ∈ E0. Then LR(E) is Morita equivalent to LR(Ev).

Proof. We essentially follow the ideas in the proof of [4, Proposition 1.8].
For each w ∈ E0, define Qw = w. For each e ∈ s−1(v), define Te = fe and

Te∗ = f∗e∗. For e ∈ E1 otherwise, define Te = e and Te∗ = e∗. It is easy to check
that {Qw, Te, Te∗ | w ∈ E0, e ∈ E1, e∗ ∈ (E1)∗} is a family of elements in LR(Ev)
satisfying the relations (1) - (4) of Definition 3.1. Note that∑

e∈s−1(v)

TeTe∗ = f
∑

e∈s−1(v)

ee∗f∗ = fvf∗ = ff∗ = r(f) = v = Qv.

Therefore, by the universal property of LR(E), there is an R-algebra homomor-
phism π : LR(E) −→ LR(Ev) such that π(w) = Qw, π(e) = Te, and π(e∗) = Te∗ .
Repeating verbatim the proof of [4, Proposition 1.8], we get that

π(LR(E)) = π
(
1LR(E)

)
LR(Ev)π

(
1LR(E)

)
,

where π
(
1LR(E)

)
=
∑

w∈E0

w. Furthermore, we always have

v∗ = f∗f = f∗
∑
w∈E0

wf = f∗π
(
1LR(E)

)
f ∈ LR(Ev)π

(
1LR(E)

)
LR(Ev),

so LR(Ev)π
(
1LR(E)

)
LR(Ev) = LR(Ev). This implies that LR(Ev) is Morita

equivalent to π
(
1LR(E)

)
LR(Ev)π

(
1LR(E)

)
.

On the other hand, by [23, Proposition 3.4], π(rw) = rQw = rw 6= 0 for all
w ∈ E0 and 0 6= r ∈ R. From this observation and E is a graph satisfying
Condition (L), we get that the homomorphism π is injective, by [23, Theorem
6.5]. Therefore, LR(Ev) is Morita equivalent to LR(E), finishing our proof. �

Using Proposition 4.6, Lemmas 4.1 and 4.2, we establish sharp bounds for the
homological dimensions of Leavitt path algebras.

Theorem 4.7. Let R be a commutative ring and E a finite graph. Then the
following statements hold:

(1) gl.dim(R) ≤ l.gl.dim(LR(E)) ≤ gl.dim(R) + 1;

(2) w.gl.dim(R) ≤ w.gl.dim(LR(E)) ≤ w.gl.dim(R) + 1.

Proof. By Lemma 4.1, we immediately get that

gl.dim(R) ≤ l.gl.dim(LR(E)) and w.gl.dim(R) ≤ w.gl.dim(LR(E)).
15



We denote by {v1, v2, . . . , vk} ⊆ E0 the set of regular vertices. For each 1 ≤ i ≤ k,
let Ei denote the graph with the same vertices as E and vi emits the same edges
as it does in E, but all other vertices do not emit any edge. Then, by Lemma
4.2, we obtain that

l.gl.dim(LR(E)) ≤ max{gl.dim(R) + 1, l.gl.dim(LR(Ei)) | i = 1, . . . , k}

and

w.gl.dim(LR(E)) ≤ max{w.gl.dim(R) + 1, w.gl.dim(LR(Ei)) | i = 1, . . . , k}.

We next calculate the homological dimensions of LR(Ei) (1 ≤ i ≤ k). To do
so, we consider the following cases:

Case 1. E has no any loop f such that s(f) = vi. Then it is easy to see

that Ei is acyclic, and hence, LR(Ei) ∼=
ki⊕
j=1

Mnj (R), by Corollary 3.9. Fur-

thermore, since the homological dimensions are Morita invariants, we have that
l.gl.dim(Mnj (R)) = gl.dim(R) and w.gl.dim(Mnj (R)) = w.gl.dim(R). These ob-
servations imply

l.gl.dim(LR(Ei)) = gl.dim(R) and w.gl.dim(LR(Ei)) = w.gl.dim(R).

Case 2. E contains a loop f having no an exit such that s(f) = vi. We then
have that Ei contains a unique cycle f , and its other vertices are isolated, so

LR(Ei) ∼=
n−1⊕
j=1

Mnj (R)⊕R[x, x−1],

where n = |E0|, by Corollary 3.9. Also, by [14, Theorem 1.7] and [13, Theorem
2], gl.dim(R[x, x−1]) = gl.dim(R) + 1 and w.gl.dim(R[x, x−1]) = w.gl.dim(R) + 1,
respectively. From these observations, we immediately get that

l.gl.dim(LR(Ei)) = gl.dim(R) + 1

and
w.gl.dim(LR(Ei)) = w.gl.dim(R) + 1.

Case 3. E contains a loop f having an exit such that s(f) = vi. Let F be the
subgraph of Ei as follows:

F 0 = {vi, r(f) | f ∈ s−1(vi)} and F 1 = s−1(vi).

We then have that each vertex w ∈ E0 \F 0 is an isolated vertex in Ei, and hence,

LR(Ei) ∼=
⊕

w∈E0\F 0

R⊕ LR(F ).

It implies that l.gl.dim(LR(Ei)) = l.gl.dim(LR(F )) and w.gl.dim(LR(Ei)) =
w.gl.dim(LR(F )), by Lemma 4.1.

By F satisfies Condition (L) and Proposition 4.6, LR(F ) is Morita equiva-
lent to LR(Fvi), so l.gl.dim(LR(F )) = l.gl.dim(LR(Fvi)) and w.gl.dim(LR(F )) =
w.gl.dim(LR(Fvi)). Furthermore, it is easy to see that Fvi has no any loop, and
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vi and v∗i are only its regular vertices. Then, applying Lemma 4.2 and Case 1, we
immediately get that l.gl.dim(LR(Fvi)) ≤ gl.dim(R)+1 and w.gl.dim(LR(Fvi)) ≤
w.gl.dim(R) + 1, and hence,

l.gl.dim(LR(Ei)) ≤ gl.dim(R) + 1

and

w.gl.dim(LR(Ei) ≤ w.gl.dim(R) + 1.

From these observations, we get the statements, finishing the proof. �

We next consider a criterion for equalities in Theorem 4.7 can be achieved. No-
tice that if R is a commutative ring such that gl.dim(R) =∞ (resp., w.gl.dim(R)
=∞), then we always have that gl.dim(LR(E)) =∞ (resp., w.gl.dim(LR(E)) =
∞), by Lemma 4.1. So, we only consider this problem for the case when R is a
commutative ring of finite homological dimensions. The following result provides
us with an answer to the problem.

Theorem 4.8. Let R be a commutative unital algebra over the field K such that
gl.dim(R) < ∞, and let E be a finite graph. Then the following conditions are
equivalent:

(1) l.gl.dim(LR(E)) = gl.dim(R);
(2) E is acyclic.

Proof. (1)=⇒(2). Assume that l.gl.dim(LR(E)) = gl.dim(R). We will prove that
E is acyclic. Indeed, we first have that LR(E) ∼= R⊗K LK(E) as R-algebras, by
[23, Theorem 8.1]. But then, by [15, Proposition 10(2)], which is an immediate
consequence of [12, Theorem XI. 3.1, page 209], we get that

l.gl.dim(LR(E)) = l.gl.dim(R⊗K LK(E)) ≥ gl.dim(R) + w.gl.dim(LK(E)),

so w.gl.dim(LK(E)) = 0. This implies that LK(E) is a (von Neumann) regular
ring (see, e.g., [17, Example 5.62a, page 185]). Therefore, E is an acyclic graph,
by using [5, Theorem 1].

(2)=⇒(1). Assume that E is an acyclic graph. Then, by Corollary 3.9, LR(E)

is isomorphic to
k⊕
j=1

Mnj (R), where k is the number of all sinks (say {v1, . . . , vk}),

and nj is the number of paths ending in the sink vj . Furthermore, it is known
that l.gl.dim(Mnj (R)) = gl.dim(R), and hence, l.gl.dim(LR(E)) = gl.dim(R),
finishing the proof.

�

Remark 4.9. (i) The analogous of Theorem 4.8 is equally true for weak global
dimension. It is done similarly to the proof of Theorem 4.8 and using the fact that
if k is a field and S and T are unital k-algebras, then w.gl.dim(S)+w.gl.dim(T ) ≤
w.gl.dim(S ⊗k T ), which is an immediate consequence of [15, Remark 1].
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(ii) Let R be a commutative ring as in Theorem 4.8, and E a finite graph.
Theorem 4.8 then shows that

l.gl.dim(LR(E)) =


gl.dim(R) if E is acyclic,

gl.dim(R) + 1 otherwise.

The analogous result holds for weak global dimension.
(iii) In [7, Theorem 3.5], the authors proved that if K is a field and E is a

finite graph, then l.gl.dim(LK(E)) ≤ 1, by using the nice machinery developed
by Bergman [10, Theorem 5.2]. As an immediate consequence of Theorem 4.7,
we may give another proof for this result.
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