WEAK SOLUTION OF PARABOLIC COMPLEX MONGE-AMPÈRE EQUATION II

DO HOANG SON

ABSTRACT. We study the equation $\dot{u} = \log \det(u_{\alpha\bar{\beta}}) - Au + f(z,t)$ in $\Omega \times (0,T)$, where $A \ge 0, T > 0$ and Ω is a bounded strictly pseudoconvex domain in \mathbb{C}^n , with the boundary condition $u = \varphi$ and the initial condition $u = u_0$. In this paper, we consider the case where φ is smooth and u_0 is an arbitrary plurisubharmonic function in a neighbourhood of $\overline{\Omega}$ satisfying $u_0|_{\partial\Omega} = \varphi(.,0)$.

CONTENTS

Introduction	2
1. Coherent analytic sheaves on pseudoconvex domains	3
2. Demailly's approximation	5
3. Parabolic complex Monge-Ampère equation	7
4. Proof of Theorem 0.2	9
References	14

The author is supported by Vietnam Academy of Science and Technology, under the program "Building a research team and research trends in complex analysis", decision VAST.CTG.01/16-17.

INTRODUCTION

Let Ω be a bounded smooth strictly pseudoconvex domain of \mathbb{C}^n , i.e., there exists a smooth strictly plurisubharmonic function ρ defined on a bounded neighbourhood of $\overline{\Omega}$ such that

$$\Omega = \{\rho < 0\}.$$

Let $A \ge 0, T > 0$. We consider the equation

(1)
$$\begin{cases} \dot{u} = \log \det(u_{\alpha\bar{\beta}}) - Au + f(z,t) & \text{on } \Omega \times (0,T), \\ u = \varphi & \text{on } \partial\Omega \times [0,T), \\ u = u_0 & \text{on } \bar{\Omega} \times \{0\}, \end{cases}$$

where $\dot{u} = \frac{\partial u}{\partial t}$, $u_{\alpha\bar{\beta}} = \frac{\partial^2 u}{\partial z_{\alpha} \partial \bar{z}_{\beta}}$, u_0 is a plurisubharmonic function in a neighbourhood of $\bar{\Omega}$ and φ , f are smooth in $\bar{\Omega} \times [0, T]$.

If u_0 is a smooth strictly plurisubharmonic function in $\overline{\Omega}$ and some compatibility conditions are satisfied on $\partial\Omega \times \{0\}$, then (1) admits a unique solution $u \in C^{2;1}(\overline{\Omega} \times [0,T))$, and then u is smooth outside $\partial\Omega \times \{0\}$ ([HL10], see also Section 3.1). In more general cases, we define the weak solution

Definition 0.1. The function $u \in USC(\bar{\Omega} \times [0,T))$ (upper semicontinuous function) is called a weak solution of (1) if there exist $u_m \in C^{\infty}(\bar{\Omega} \times [0,T))$ satisfying

(2)
$$\begin{cases} u_m(.,t) \in SPSH(\Omega), \\ \dot{u}_m = \log \det(u_m)_{\alpha\bar{\beta}} - Au_m + f(z,t) & on \,\Omega \times (0,T), \\ u_m \searrow \varphi & on \,\partial\Omega \times [0,T) \\ u_m \searrow u_0 & on \,\bar{\Omega} \times \{0\}, \\ u = \lim_{m \to \infty} u_m, \end{cases}$$

where $SPSH(\Omega) = \{ strictly \ plurisubharmonic \ functions \ on \ \Omega \}.$

The equation (1) always admits a unique weak solution, and the weak solution has been described in case u_0 has zero Lelong numbers or $u \ge N \sum \log |z - a_j| + O(1)$ ([Do15a, Do15b], see also Section 3.3). In this article, we will consider the general case where u_0 has positive Lelong numbers.

The corresponding problem in compact Kähler manifolds was considered and solved by Di Nezza anh Lu [DL14]. The maximal solution (as weak solution in case of domains) is smooth outside $D_t \times \{t\}$, where D_t is an analytic set. In case of domains on \mathbb{C}^n , by condition $u_0 = \varphi(., 0)$ on $\partial\Omega$ (and φ is smooth), $(u_0 - \sup_{\Omega} u_0 - 1)$ can be approximated as in Theorem 2.1 by functions contained in Cegrell's class $\mathcal{E}(\Omega)$ and then for any $\epsilon > 0$, the set $\{z \in \Omega : \nu(u_0, z) \ge \epsilon\}$ contains a finite number of points [Ceg04]. Hence we can describe more precisely the singular set of the weak solution: $\Omega \times \{t\}$ contains only finitely many singular points of the weak solution, for any 0 < t < T. In the domain $\Omega \times [0, T)$, the set of singular points of the weak solution is $\cup \{a_j\} \times (0, \epsilon_j)$, where $\nu(u_0, a_j) > 0$ and ϵ_j is a positive number which is bounded by constants depending on A and $\nu(u_0, a_j)$. For the convenience, we denote by ϵ_A the functions

(3)
$$\begin{cases} \epsilon_A(x) = \frac{x}{2n} \text{ if } A = 0, \\ \epsilon_A(x) = \frac{1}{A} (\log(Ax + 2n) - \log(2n)) \text{ if } A > 0. \end{cases}$$

where x > 0 and 0 < t < T.

Our main result is following

Theorem 0.2. Let $A \ge 0, T > 0$ and Ω be a bounded smooth strictly pseudoconvex domain of \mathbb{C}^n . Let φ , f be smooth functions in $\overline{\Omega} \times [0, T]$ and u_0 be a plurisubharmonic function in a neighbourhood of $\overline{\Omega}$ such that $u_0(z) = \varphi(z, 0)$ for any $z \in \partial \Omega$. Then the weak solution u of (1) satisfies

- (i) If $m > \frac{1}{T}$ and $\{z \in \Omega : \nu_{u_0}(z) \ge \frac{2}{m}\} = \{a_{m,1}, ..., a_{m,N(m)}\}$ then there exist nonegetive numbers $\epsilon_{m,1}, ..., \epsilon_{m,N(m)} \in (0,T]$ such that (a) $\epsilon_A(\nu(u_0, a_{m,j})) \le \epsilon_{m,j} \le \epsilon_A(n\nu(u_0, a_{m,j}))$ for any j = 1, ..., N(m).
 - (b) $\nu(u(.,t), a_{m,j}) > 0$ for any j = 1, ..., N(m) and $t < \epsilon_{m,j}$. Moreover, if $\epsilon_{m,j} < T$ then $\nu(u(.,t), a_{m,j}) \searrow 0$ as $t \nearrow \epsilon_{m,j}$.
 - (c) $u \in C^{\infty}(Q_m)$, where $Q_m = \overline{\Omega} \times (\frac{1}{m}, T) \setminus \bigcup_{j \leq N(m)} \{a_{m,j}\} \times (\frac{1}{m}, \epsilon_{m,j}]$.
 - (d) $\dot{u} = \log \det(u_{\alpha\bar{\beta}}) Au + f(z,t)$ on Q_m .

(ii) $u = \varphi$ on $\partial \Omega \times [0,T)$ and $\lim_{t \to 0} u(z,t) = u_0(z)$ for any $z \in \Omega$. In particular, $u(z,t) \xrightarrow{L^1} u_0(z)$ as $t \to 0$.

Let us first recall some preliminaries.

1. Coherent analytic sheaves on pseudoconvex domains

In this section, we recall some properties of coherent analytic sheaves on pseudoconvex domains in \mathbb{C}^n . The readers can find more details in [Hor90] (chap VI and chap VII). Corollary 1.10 will be used to prove Proposition 2.2.

If Ω is a domain in \mathbb{C}^n , we let $\mathcal{O}(\Omega)$ denote the set of holomorphic functions on Ω . If $z \in \mathbb{C}^n$, we let $\mathcal{O}_z(\mathbb{C}^n)$ or \mathcal{O}_z for short denote the set of equivalence classes of functions f which are holomorphic in some neighbourhood of z, under the equivalence relation $f \sim g$ if f = g in some neighbourhood of z. If f is holomorphic in a neighbourhood of z, we write f_z for the residue class of f in \mathcal{O}_z , which is called the germ of f at z.

It follows from Theorem 6.3.3 and Theorem 6.3.5 in [Hor90] that:

Theorem 1.1. Let $a \in \mathbb{C}^n$. Then \mathcal{O}_a is a Noetherian ring. If \mathfrak{I} is a ideal of \mathcal{O}_a , and $\mathfrak{I} \ni f_j \xrightarrow{j \to \infty} f \in \mathcal{O}_a$ in sense of simple convergence, then $f \in \mathfrak{I}$. Here $f_j \longrightarrow f$ means that the coefficient of $(z - a)^{\alpha}$ in f_j converges to the coefficient of $(z - a)^{\alpha}$ in f for every α .

By the same argument, we also have:

Theorem 1.2. Let Ω be a neighbourhood of $0 \in \mathbb{C}^n$. Then for any $\{f_j\}_{j=1}^{\infty} \subset \mathcal{O}(\Omega)$, there exist M > 0 and $0 < r < d(0, \partial \Omega)$ such that the ideal \mathfrak{I} of $\mathcal{O}(\Delta_r^n)$ which is generated by $\{f_j\}_{j=1}^{\infty}$ is also generated by $\{f_j\}_{j=1}^M$. Moreover, \mathfrak{I} is closed in the topology of uniform convergence on compact subsets of Δ_r^n .

Definition 1.3. Let X and \mathcal{F} be two topological spaces and π be a mapping $\mathcal{F} \to X$ such that

- (i) π maps \mathcal{F} onto X.
- (ii) π is a local homeomorphism, that is, every point in \mathcal{F} has an open neighbourhood which is mapped homeomorphically by π on an open set in X.

Then \mathfrak{F} is called a sheaf on X and π is called the projection on X. If U is a subset of X, a section of \mathfrak{F} over U is a continuous map $\varphi : U \to \mathfrak{F}$ such that $\pi \varphi = Id$ on U. The set of all sections of \mathfrak{F} over U is denoted by $\Gamma(U, \mathfrak{F})$. If $x \in X$, then $\mathfrak{F}_x = \pi^{-1}\{x\}$ is called the stalk of \mathfrak{F} at x.

Example 1.4. Let Ω be a open subset of \mathbb{C}^n . The sheaf \mathcal{O}_{Ω} (or \mathcal{O} for short) of germs of holomorphic functions (analytic functions) on $\Omega \subset \mathbb{C}^n$ is the topological space defined by

- (i) $\mathcal{O} = \bigcup_{z \in \Omega} \mathcal{O}_z$.
- (ii) The topology in \mathfrak{O} is the strongest topology such that for every open subset $U \subset \Omega$ and for every $f \in \mathfrak{O}(U)$, the map $U \ni z \mapsto f_z \in \mathfrak{O}$ is continuous.

The projection on Ω is the map $\pi : \mathfrak{O} \to \Omega$ defined by $\pi(\mathfrak{O}_z) = \{z\}$. The set of sections of \mathfrak{O} over U is $\Gamma(U, \mathfrak{O}) = \mathfrak{O}(U)$ and the stalk of \mathfrak{O} at z is the set of germs at z of holomorphic functions in some neighbourhood of z.

Definition 1.5. Let Ω be an open subset of \mathbb{C}^n . A sheaf \mathfrak{F} on Ω is called an analytic sheaf if it is a sheaf of \mathfrak{O} -modules, i.e., \mathfrak{F}_z is an \mathfrak{O}_z module for every $z \in \Omega$ and the product of a section of \mathfrak{O} and a section of \mathfrak{F} is a section of \mathfrak{F} .

Definition 1.6. An analytic sheaf \mathcal{F} on Ω is called coherent if

- (i) F is locally finitely generated, i.e., for every z ∈ Ω there exists a neighbourhood U ⊂ Ω and a finite number of sections f₁, ..., f_q ∈ Γ(U, F) so that F_z is generated by (f₁)_z, ..., (f_q)_z as O_z module for every z ∈ Ω.
- (ii) If U is an open subset of Ω and $f_1, ..., f_q \in \Gamma(U, \mathcal{F})$, then the sheaf of relations $\mathcal{R}(f_1, ..., f_q)$ is locally finitely generated.

Theorem 1.7. Every locally finitely generated subsheaf of O^p is coherent.

Corollary 1.8. Let $\{f_j\}_{j=1}^{\infty} \subset \mathcal{O}(\Omega)$. Assume that \mathcal{F} is the analytic sheaf generated by $\{f_j\}_{j=1}^{\infty}$ over Ω , i.e., the germs $(f_1)_z, ..., (f_q)_z$... generate \mathcal{F}_z for every $z \in \Omega$. Then \mathcal{F} is coherent.

Theorem 1.9. Let Ω be a Stein manifold, K an Ω -holomorphically convex compact subset of Ω , and \mathcal{F} a coherent analytic sheaf on a neighbourhood of K. Then

(i) There exist finitely many sections $f_1, ..., f_q$ of \mathcal{F} over a neighbourhood of K which generate \mathcal{F} there.

(ii) If $f_1, ..., f_q$ are sections of \mathcal{F} over a neighbourhood of K which generate \mathcal{F} there and if f is an arbitrally section of \mathcal{F} over a neighbourhood of K, then one can find $c_1, ..., c_q$ analytic in a neighbourhood of K so that $f = \sum_{i=1}^q c_j f_j$ there.

Corollary 1.10. Let W be a pseudoconvex domains in \mathbb{C}^n and Ω be a open subset of $W, \overline{\Omega} \subset W$. Let $\{f_j\}_{j=1}^{\infty} \subset \mathcal{O}(W)$. Assume that \mathfrak{I} is the ideal of $\mathcal{O}(\Omega)$ generated by $f_1|_{\Omega}, ..., f_j|_{\Omega}$... Then there exist finitely many functions $f_1, ..., f_q$ such that \mathfrak{I} is generated by $f_1|_{\Omega}, ..., f_q|_{\Omega}$.

2. Demailly's approximation

We recall Demailly's approximation theorem, which allows to approximate plurisubharmonic functions by multiples of logarithms of holomorphic functions. The readers can find the proof of this theorem in [Dem92] (or [Dem14]).

Theorem 2.1. Let φ be a plurisubharmonic function on a bounded pseudoconvex open set $\Omega \subset \mathbb{C}^n$. For every m > 0, let $\mathcal{H}_{\Omega}(m\varphi)$ be the Hilbert space of holomorphic functions f on Ω such that $\int_{\Omega} |f|^2 e^{-2m\varphi} dV_{2n} < +\infty$ and let $\varphi_m = \frac{1}{2m} \log \sum |g_{m,l}|^2$ where $(g_{m,l})$ is an orthonormal basis of $\mathcal{H}_{\Omega}(m\varphi)$. Then there are constants $C_1, C_2 > 0$ independent of m such that

(a) $\varphi(z) - \frac{C_1}{m} \le \varphi_m(z) \le \sup_{|\zeta - z| < r} \varphi(\zeta) + \frac{1}{m} \log \frac{C_2}{r^n}$ for every $z \in \Omega$ and $r < d(z, \partial \Omega)$.

In particular, φ_m converges to φ pointwise and in L^1_{loc} topology on Ω when $m \to \infty$.

(b) $\nu(\varphi, z) - \frac{n}{m} \le \nu(\varphi_m, z) \le \nu(\varphi, z)$ for every $z \in \Omega$.

Using Theorem 2.1, we will prove the following proposition, which will be use to prove the main theorem.

Proposition 2.2. Under the assumptions of Theorem 2.1, for any open subset $U \subseteq \Omega$, the following properties hold

- (a) $\int_{U} e^{2m(\varphi_m \varphi)} < \infty.$
- (b) If $z \in U$ and $\nu(\varphi, z) < \frac{1}{m}$ then φ_m is smooth in a neighbourhood of z.
- (c) If there exist only finitely many points $a_1, ..., a_l$ in $\{z \in \overline{U} : \nu(\varphi, z) \ge \frac{1}{m}\}$, then there exist C, N > 0 such that

$$\varphi_m \ge N \sum_{j=1}^l \log |z - a_j| - C \text{ on } U.$$

Proof. (a) There is a corresponding result in the case of compact Kähler manifolds, which was proved in [Dem10, p.164], [Dem14, p.10]. The same arguments can be applied for the case of domains in \mathbb{C}^n .

Set
$$f_j: \Omega \times \Omega \to \mathbb{C}$$
, $f_j(z, w) = g_{m,j}(z)g_{m,j}(\bar{w})$. We have, for any $z, w \in V$ and $l > 0$,

$$\sum_{j \le l} |f_j(z, w)| \le (\sum_{j \le l} |g_{m,j}(z)|^2)^{1/2} (\sum_{j \le l} |g_{m,j}(\bar{w})|^2)^{1/2} \le e^{m(\varphi_m(z) + \varphi(\bar{w}))}.$$

Then the series $\sum_{j=1}^{\infty} f_j(z, w)$ converges uniformly on compact subsets of $\Omega \times \Omega$. Let $U \Subset V \Subset \Omega$. We denote by \mathcal{J} the ideal of $\mathcal{O}(V \times V)$ generated by $\{f_i\}_{i=1}^{\infty}$. It

follows from Theorem 1.2 that $f = \sum_{j=1}^{\infty} f_j \in \mathcal{J}$.

Moreover, by Corollary 1.10 we can choose $M \gg 1$ such that \mathcal{J} is generated by $f_1, ..., f_M$. Hence,

$$f = \sum_{j=1}^{M} a_j f_j,$$

where $a_j \in \mathcal{O}(V \times V)$. Then there exists C > 0 such that

$$e^{2m\varphi_m} = f(z, \bar{z}) \le \sum_{j=1}^M |a_j(z, \bar{z})| |g_{m,j}(z)|^2 \le C \sum_{j=1}^M |g_{m,j}(z)|^2,$$

for any $z \in U$. Thus

$$\int_{U} e^{2m(\varphi_m - \varphi)} \le CM < \infty.$$

(b) If $\in U$ and $\nu(\varphi, z) < \frac{1}{m}$, then $2m\varphi$ is intergrable in a neighborhood of z (see [Sko72]). Hence, there exists $g \in \mathcal{H}_{\Omega}(m\varphi)$ such that $g(z) \neq 0$. Hence $\varphi_m(z) \neq -\infty$. Thus φ_m is smooth in a neighbourhood of z.

(c) This is a corollary of Lemma 2.3.

Lemma 2.3. Let $g_1, ..., g_M \in \mathcal{O}(\Delta^n)$ such that

$$\{g_1 = \dots = g_M = 0\} = \{0\}.$$

Then there exist C, N > 0 such that, on $\Delta_{1/2}^n$,

$$|g_1|^2 + \dots + |g_M|^2 \ge C(|z_1|^2 + \dots + |z_n|^2)^N.$$

Proof. It follows from Hilbert's Nullstellensatz theorem (see [Huy05, p.19]) that there exist N > 0, 1 > r > 0 and holomorphic functions $f_{jk} \in \mathcal{O}(\Delta_r^n)$ satisfying, on Δ_r^n ,

$$z_k^N = \sum_{j=1}^m g_j \cdot f_{ij},$$

for k = 1, ..., n. Then there exists $C_1 > 0$ such that, on $\Delta_{r/2}^n$,

$$|g_1|^2 + \dots + |g_M|^2 \ge C_1(|z_1|^2 + \dots + |z_n|^2)^N$$

In the other hand, $\inf_{\Delta_{1/2}^n \setminus \Delta_{r/2}^n} (|g_1|^2 + ... + |g_M|^2) > 0$. Then there exists $C_2 > 0$ such that, on $\Delta_{1/2}^n \setminus \Delta_{r/2}^n$,

$$|g_1|^2 + \dots + |g_M|^2 \ge C_2(|z_1|^2 + \dots + |z_n|^2)^N.$$

Denote $C = \max\{C_1, C_2\}$, we have, on $\Delta_{1/2}^n$,

$$|g_1|^2 + \dots + |g_M|^2 \ge C(|z_1|^2 + \dots + |z_n|^2)^N.$$

Lemma 2.3 is also an immediate corollary of Lojasiewicz inequality:

Theorem 2.4. Let $f: U \to \mathbb{R}$ be a real-analytic function on an open set U in \mathbb{R}^n , and let Z be the zero locus of f. Assume that Z is not empty. Then, for any compact set K in U, there are positive constants C and α such that, for every $x \in K$

$$dist(x,Z)^{\alpha} \le C|f(x)|.$$

We refer the reader to [Loj59, Mal66, JKS92] for more details. Now we recall some previous results on Parabolic complex Monge-Ampère equation.

3. PARABOLIC COMPLEX MONGE-AMPÈRE EQUATION

3.1. Hou-Li theorem.

The Hou-Li theorem [HL10] states that equation (1) has a unique smooth solution when the conditions are good enough. We state the precise problem to be studied:

(4)
$$\begin{cases} \dot{u} = \log \det(u_{\alpha\bar{\beta}}) + f(t, z, u) & \text{on } \Omega \times (0, T), \\ u = \varphi & \text{on } \partial\Omega \times [0, T), \\ u = u_0 & \text{on } \bar{\Omega} \times \{0\}. \end{cases}$$

We first need the notion of a subsolution to (4).

Definition 3.1. A function $\underline{u} \in C^{\infty}(\overline{\Omega} \times [0,T))$ is called a subsolution of the equation (4) if and only if

(5) $\begin{cases} \underline{u}(.,t) \text{ is a strictly plurisubharmonic function,} \\ \underline{\dot{u}} \leq \log \det(\underline{u})_{\alpha\bar{\beta}} + f(t,z,\underline{u}), \\ \underline{u}|_{\partial\Omega\times(0,T)} = \varphi|_{\partial\Omega\times(0,T)}, \\ \underline{u}(.,0) \leq u_0. \end{cases}$

Theorem 3.2. Let $\Omega \subset \mathbb{C}^n$ be a bounded domain with smooth boundary. Let $T \in (0, \infty]$. Assume that

- φ is a smooth function in $\overline{\Omega} \times [0, T)$.
- f is a smooth function in $[0,T) \times \overline{\Omega} \times \mathbb{R}$ non increasing in the lastest variable.
- u_0 is a smooth strictly plurisubharmonic function in a neighbourhood of Ω .
- $u_0(z) = \varphi(z, 0), \ \forall z \in \partial \Omega.$
- The compatibility condition is satisfied, i.e.

$$\dot{\varphi} = \log \det(u_0)_{\alpha\bar{\beta}} + f(t, z, u_0), \quad \forall (z, t) \in \partial\Omega \times \{0\}.$$

• There exists a subsolution to the equation (4).

Then there exists a unique solution $u \in C^{\infty}(\Omega \times (0,T)) \cap C^{2;1}(\overline{\Omega} \times [0,T))$ of the equation (4).

If Ω is a bounded smooth strictly pseudoconvex domain of \mathbb{C}^n then a subsolution always exists on $\overline{\Omega} \times [0, T')$ (for example, $\underline{u} = M\rho + \varphi$, where $M \gg 1$ and ρ is a smooth strictly plurisubhamonic function such that $\rho|_{\partial\Omega} = 0$), for any 0 < T' < T, and so Theorem 3.2 does not need the additional assumption of existence of a subsolution.

Using regularity theories (see, for example, [GT83, CC95, Lieb96, Do15a]), we can conclude that the solution u of (4) is smooth outside $\partial \Omega \times \{0\}$ if the assumption of

Theorem 3.2 holds. If Ω is a bounded smooth strictly pseudoconvex domain of \mathbb{C}^n , φ is smooth in $\overline{\Omega} \times [0, T]$ and f is smooth in $[0, T] \times \overline{\Omega} \times \mathbb{R}$, then u is the solution of (4) in $\overline{\Omega} \times [0, T + \delta)$, where $0 < \delta \ll 1$. Hence u can be approximated in $\overline{\Omega} \times [0, T]$ by the smooth functions $u(z, t + \frac{1}{m})$. Thus, for approximations, u is as good as smooth in $\overline{\Omega} \times [0, T]$.

3.2. Maximum principle.

The following maximum principle is a basic tool to establish upper and lower bounds in the sequel (see [BG13] and [IS13] for the proof).

Theorem 3.3. Let Ω be a bounded domain of C^n and T > 0. Let $\{\omega_t\}_{0 < t < T}$ be a continuous family of continuous positive definite Hermitian forms on Ω . Denote by Δ_t the Laplacian with respect to ω_t :

$$\Delta_t f = \frac{n\omega_t^{n-1} \wedge dd^c f}{\omega_t^n}, \ \forall f \in C^{\infty}(\Omega).$$

Suppose that $H \in C^{\infty}(\Omega \times (0,T)) \cap C(\overline{\Omega} \times [0,T))$ and satisfies

$$\left(\frac{\partial}{\partial t} - \Delta_t\right) H \le 0 \quad or \quad \dot{H}_t \le \log \frac{(\omega_t + dd^c H_t)^n}{\omega_t^n}$$

Then $\sup_{\bar{\Omega}\times[0,T)} H = \sup_{\partial_P(\Omega\times[0,T))} H$. Here we denote $\partial_P(\Omega\times(0,T)) = (\partial\Omega\times(0,T)) \cup (\bar{\Omega}\times\{0\})$.

Corollary 3.4. (Comparison principle) Let Ω be a bounded domain of \mathbb{C}^n and $A \geq 0, T > 0$. Let $u, v \in C^{\infty}(\Omega \times (0,T)) \cap C(\overline{\Omega} \times [0,T))$ satisfy:

- u(.,t) and v(.,t) are strictly plurisubharmonic functions for any $t \in [0,T)$,
- $\dot{u} \leq \log \det(u_{\alpha\bar{\beta}}) Au + f(z,t),$
- $\dot{v} \ge \log \det(v_{\alpha\bar{\beta}}) Av + f(z,t),$

where $f \in C^{\infty}(\overline{\Omega} \times [0, T))$.

Then $\sup_{\Omega \times (0,T)} (u-v) \leq \max\{0, \sup_{\partial_P(\Omega \times (0,T))} (u-v)\}.$

Corollary 3.5. Let Ω be a bounded domain of \mathbb{C}^n and T > 0. We denote by L the operator on $C^{\infty}(\Omega \times (0,T))$ given by

$$L(f) = \frac{\partial f}{\partial t} - \sum a_{\alpha\bar{\beta}} \frac{\partial^2 f}{\partial z_{\alpha} \partial \bar{z}_{\beta}} - b.f,$$

where $a_{\alpha\bar{\beta}}, b \in C(\Omega \times (0,T))$, $(a_{\alpha\bar{\beta}}(z,t))$ are positive definite Hermitian matrices and b(z,t) < 0.

Assume that $\phi \in C^{\infty}(\Omega \times (0,T)) \cap C(\overline{\Omega} \times [0,T))$ satisfies

 $L(\phi) \le 0.$

Then $\phi \leq max(0, \sup_{\partial_P(\Omega \times (0,T))} \phi).$

8

3.3. Weak solution of Parabolic Monge-Ampère equation.

We recall some properties of weak solution of (1), which were proved in [Do15a] and [Do15b].

Proposition 3.6. Let $A \ge 0, T > 0$ and let Ω be a bounded smooth strictly pseudoconvex domain of \mathbb{C}^n . Assume that u_0 is a plurisubharmonic function in a neighbourhood of $\overline{\Omega}$ and φ , f are smooth in $\overline{\Omega} \times [0, T]$. Then there exists a unique weak solution u of (1). Moreover,

- (i) $u|_{\partial\Omega\times[0,T)} = \varphi$; $u(z,t) \xrightarrow{L^1} u_0$ as $t \searrow 0$.
- (ii) If Lelong numbers $\nu(u, a) = 0$ for every $a \in \Omega$ then $u \in C^{\infty}(\overline{\Omega} \times (0, T))$ and u satisfies (1) in $\overline{\Omega} \times (0, T)$ in the classical sense.
- (ii) If there exist $l \in \mathbb{N}, a_j \in \Omega, N_j \ge n_j \ge 0$ such that

$$\sum_{j=1}^{l} n_j \log |z - a_j| + C_0 \ge u_0 \ge \sum_{j=1}^{l} N_j \log |z - a_j| - C_0,$$

then *u* satisfies

- (a) $u \in C^{\infty}(Q)$, where $Q = (\overline{\Omega} \times (0,T)) \setminus (\cup (\{a_i\} \times (0,\epsilon_A(N_i))))$.
- (b) $u = -\infty$ on $\cup (\{a_i\} \times [0, \min\{T, \epsilon_A(n_i)\})).$
- (c) $\dot{u} = \log \det u_{\alpha\bar{\beta}} Au + f(z,t)$ in Q.

Proposition 3.7. Assume that there exists $u_m \in C^{\infty}(\bar{\Omega} \times [0,T))$ satisfying

(6)
$$\begin{cases} u_m(.,t) \in SPSH(\Omega) & \forall t \in [0,T), \\ u_m(z,t) + 2^{-m} \ge u_{m+1}(z,t) & \forall (z,t) \in \bar{\Omega} \times [0,T), \\ \dot{u}_m = \log \det(u_m)_{\alpha\bar{\beta}} - Au_m + f(z,t) & \forall (z,t) \in \Omega \times (0,T), \\ u_m(z,t) \longrightarrow \varphi(z,t) & \forall (z,t) \in \partial\Omega \times [0,T), \\ u_m(z,0) \longrightarrow u_0(z) & \forall z \in \bar{\Omega}. \end{cases}$$

Then $u = \lim u_m$ is a weak solution of (1).

Proposition 3.8. If there is $a \in \Omega$ such that $\nu_{u_0}(a) > 0$, then the weak solution u of (1) satisfies $u(a,t) = -\infty$ for $t \in [0, \epsilon_A(\nu_{u_0}(a)))$.

4. Proof of Theorem 0.2

4.1. Some technique lemmas. We present some lemmas, which will be used to prove the main theorem. The following two lemmas were proved in [Do15b].

Lemma 4.1. Suppose that $\psi, g \in C^{\infty}(\bar{\Omega} \times [0,T])$. Assume that $v \in C^{\infty}(\bar{\Omega} \times [0,T))$ satisfies

(7)
$$\begin{cases} v(.,t) \in SPSH(\bar{\Omega}), \\ \dot{v} = \log \det(v_{\alpha\bar{\beta}}) - Av + g(z,t) & on \ \Omega \times (0,T), \\ v = \psi & on \ \partial\Omega \times [0,T). \end{cases}$$

Then

$$v(z,t) - v(z,0) \ge -C(t),$$

for any $(z,t) \in \overline{\Omega} \times [0,T)$. Here C(t) is defined by

$$C(t) = \inf_{1 > \epsilon > 0} \left((-n\log\epsilon + A\sup|\psi| + \sup|g|)t - \epsilon\inf\rho \right) + \sup_{t' \in [0,t]} \sup_{z \in \partial\Omega} |\psi(z,t') - \psi(z,0)|,$$

where $\rho \in C^{\infty}(\overline{\Omega})$ such that $dd^c \rho \geq dd^c |z|^2$ and $\rho|_{\partial\Omega} = 0$.

Lemma 4.2. Assume that $u \in C^{\infty}(\overline{\Omega} \times [0,T))$ satisfies

(8)
$$\begin{cases} \dot{u} = \log \det(u_{\alpha\bar{\beta}}) + f(z,t) \quad on \ \Omega \times (0,T), \\ u = \varphi \quad on \ \partial\Omega \times [0,T). \end{cases}$$

Then

$$\frac{u(z,t) - \sup u_0}{t} - B \le \dot{u}(z,t) \le \frac{u(z,t) - u_0(z)}{t} + B, \ \forall (z,t) \in \bar{\Omega} \times [0,T),$$

where $B = 2 \sup |\dot{\varphi}| + T \sup |\dot{f}| + n$ and $u_0 = u(.,0)$.

We will also need the following elementary observation

Lemma 4.3. Let $g : \mathbb{R}^+ \to \mathbb{R}^+$ be a decreasing right-continuous function. Assume that there exist $\alpha, B > 1$ such that g satisfies

$$tg(t+s) \le B(g(s))^{\alpha} \quad \forall t, s > 0.$$

Then g(s) > 0 for all $s \ge s_{\infty}$, where

$$s_{\infty} = \frac{2Bg(0)^{\alpha - 1}}{1 - 2^{-\alpha + 1}}.$$

We refer the reader to [EGZ09] for the proof of Lemma 4.3. Using this lemma, we prove Lemma 4.4.

Lemma 4.4. Let Ω be a bounded open subset of \mathbb{C}^n . Let u, u_0, ψ be plurisubharmonic functions in Ω such that $u \in C^{\infty}(\overline{\Omega})$ and ψ is bounded near $\partial\Omega$. Assume also that

$$(dd^{c}u)^{n} \leq Be^{a_{1}(u-a_{2}u_{0})}dV$$
$$\int_{\Omega} e^{b(\psi-u_{0})}dV \leq B,$$

where $a_1, a_2, b, B > 0, b > a_1a_2$. Then there exists C > 0 depending only on $a_1, a_2, b, B, n, \Omega$ and $\liminf_{z \to \partial \Omega} (u - a_2 \psi)$ such that

$$u \geq a_2 \psi - C \text{ on } \Omega.$$

There is a corresponding result in the case of compact Kähler manifolds, which was proved in [DL14]. The same arguments can be applied for the case of domains in \mathbb{C}^n . For the reader's convenience, we recall the arguments here.

Proof. Without loss of generality, we can assume that $\liminf_{z \to \partial \Omega} (u - a_2 \psi) = 0$. For $t \in \mathbb{R}$, we denote

$$U_t = \{ z \in \Omega : u(z) < a_2 \psi(z) - t \}.$$

Let $M > \sup |u|/a_2$ and $\psi_M = \max\{\psi, -M\}$. Then, for any t, s > 0 and $v \in PSH(\Omega)$ such that $-1 \le v \le 0$, we have

$$t^{n} \int_{U_{t+s}} (dd^{c}v)^{n} = \int_{\{u < a_{2}\psi_{M} - t - s\}} (tdd^{c}v)^{n} \leq \int_{\{u < a_{2}\psi_{M} + tv - s\}} (dd^{c}(a_{2}\psi_{M} + tv - s))^{n}$$

$$\leq \int_{\{u < a_{2}\psi_{M} + tv - s\}} (dd^{c}u)^{n}$$

$$\leq \int_{U_{s}} Be^{a_{1}(u - a_{2}u_{0})} dV$$

$$\leq \int_{U_{s}} Be^{-s}e^{a_{1}a_{2}(\psi - u_{0})} dV$$

$$\leq B \int_{U_{s}} e^{a_{1}a_{2}(\psi - u_{0})} dV$$

$$\leq B \left(\int_{U_{s}} e^{b(\psi - u_{0})}\right)^{\frac{a_{1}a_{2}}{b}} \left(\int_{U_{s}} dV\right)^{1 - \frac{a_{1}a_{2}}{b}}$$

$$\leq B^{1 + \frac{a_{1}a_{2}}{b}} \lambda(U_{s})^{1 - \frac{a_{1}a_{2}}{b}},$$

where λ is Lebesgue measure. Hence, we have

(9)
$$t^n Cap(U_{t+s}, \Omega) \le B^{1+\frac{a_1a_2}{b}}\lambda(U_s)^{1-\frac{a_1a_2}{b}}.$$

Moreover, it follows from [AT84, Zer01] that for any p > 0, there exists $C_p > 0$ depending only on p, n and Ω such that

(10)
$$\lambda(U_t) \le C_p Cap(U_t, \Omega)^p$$

Combining (9) and (10), we obtain

(11)
$$t^n \lambda (U_{t+s})^{1/p} \le B^{1 + \frac{a_1 a_2}{b}} C_p^{1/p} \lambda (U_s)^{1 - \frac{a_1 a_2}{b}}.$$

Let $p = \frac{2b}{b-a_1a_2}$. Applying Lemma 4.3 for $g(t) = \lambda(U_t)^{1/(pn)}$ and $\alpha = \frac{p(b-a_1a_2)}{b}$, there exists $s_{\infty} > 0$ depending only on $a_1, a_2, b, B, n, \Omega$ such that $\lambda(U_{s_{\infty}}) = 0$. By the plurisubharmonicity of u and ψ , we conclude that $u \ge a_2\psi - s_{\infty}$.

4.2. **Proof of Theorem 0.2.** We consider the case A = 0 and then we use it to prove the result in the case A > 0.

Step 1: Construct an approximation.

Let us first contruct a sequence of solutions as in Proposition 3.7 such that

(i) $\varphi_k = \varphi$ on $\partial\Omega \times (\epsilon, T)$ for any $\epsilon > 0$ and $k \gg 1$; (ii) $\sup_{k \ge 0} \sup_{z \in \partial\Omega} |\varphi_k(z, t) - \varphi_k(z, 0)| \to 0$ as $t \searrow 0$.

Using the convolution of $u_0 + \frac{|z|^2}{k}$ with mollifiers, we can take $u_{0,k} \in C^{\infty}(\bar{\Omega}) \cap SPSH(\bar{\Omega})$ such that

(12)
$$u_{0,k} \searrow u_0.$$

Note that $u_0|_{\partial\Omega}$ is continuous. Then

(13)
$$\delta_k = \sup_{z \in \partial \Omega} \left(u_{0,k}(z) - u_0(z) \right) \stackrel{k \to \infty}{\longrightarrow} 0.$$

We define $g_k \in C^{\infty}(\overline{\Omega})$ and $\varphi_k \in C^{\infty}(\overline{\Omega} \times [0,T))$ by

$$g_k = \log \det(u_{0,k})_{\alpha\bar{\beta}} + f(z,0),$$

$$\varphi_k = \zeta(\frac{t}{\epsilon_k})(tg_k + u_{0,k}) + (1 - \zeta(\frac{t}{\epsilon_k}))\varphi,$$

where ζ is a smooth function on \mathbb{R} such that ζ is decreasing, $\zeta|_{(-\infty,1]} = 1$ and $\zeta|_{[2,\infty)} = 0$. $\epsilon_k > 0$ are chosen such that the sequences $\{\epsilon_k\}$, $\{\epsilon_k \sup |g_k|\}$ are decreasing to 0.

 $u_{0,k}$ and φ_k satisfy the compatibility condition. By Theorem 3.2, there exists $u_k \in$ $C^{\infty}(\Omega \times [0,T))$ satisfying

(14)
$$\begin{cases} \dot{u}_k = \log \det(u_k)_{\alpha\bar{\beta}} + f(z,t) & \text{on } \Omega \times (0,T), \\ u_k = \varphi_k & \text{on } \partial\Omega \times [0,T), \\ u_k = u_{0,k} & \text{on } \bar{\Omega} \times \{0\}. \end{cases}$$

It is easy to verify that u_k satisfies the conditions in Proposition 3.7. Then u(z,t) =lim $u_k(z,t)$ is the weak solution of (1). Moreover, $\varphi_k = \varphi$ on $\partial \Omega \times (\epsilon, T)$ for any $\epsilon > 0$ and $k \gg 1$.

Step 2: Smoothness of weak solution in $(\overline{\Omega} \setminus \{\nu(u_0, z) \geq \frac{2}{m}\}) \times (\frac{1}{m}, T).$

Let $m > \frac{1}{T}$ and $\epsilon < \frac{1}{m}$. Applying Lemma 4.1 and Lemma 4.2 for $u_k(z, t + \epsilon), k \gg 1$, we have, for any $(z,t) \in \Omega \times (\epsilon,T)$,

$$(dd^{c}u_{k})^{n} = e^{\dot{u}_{k} - f(z,t)}dV \leq C_{1}e^{\frac{u_{k} - u_{k}(z,\epsilon)}{t-\epsilon}}dV$$
$$\leq C_{2}e^{\frac{u_{k} - u_{0,k}}{t-\epsilon}}dV$$
$$\leq C_{2}e^{\frac{u_{k} - u_{0,k}}{t-\epsilon}}dV,$$

where $C_1, C_2 > 0$ are independent of k.

Assume that W is an open neighbourhood of Ω such that W is bounded pseudoconvex and $u_0 \in PSH(W)$. Let $l = \frac{1+\epsilon}{2(1/m-\epsilon)}$ and let $\{g_{l,j}\}$ be an orthonormal basis of $\mathcal{H}_W(lu_0)$. Denote $v_l = \frac{1}{2l} \log \sum_{i=1}^{\infty} |g_{l,j}|^2$. Applying Lemma 4.4 for $a_1 = \frac{1}{1/m-\epsilon}$, $a_2 = 1$ and b = 2l, we have

(15)
$$u_k(z, \frac{1}{m}) \ge v_l(z) - C_3,$$

where $C_3 > 0$ is independent of k. Then

(16)
$$u(z,\frac{1}{m}) \ge v_l(z) - C_3.$$

Hence, applying Proposition 2.2, we have

(17)
$$u(z, \frac{1}{m}) \ge N \sum_{\nu(u_0, a) \ge \frac{1}{l}} \log |z - a| + O(1),$$

where N > 0. It follows from Proposition 3.6 that u is smooth and satisfies (1) in the classical sense in $(\bar{\Omega} \setminus \{z : \nu(u, z) \ge \frac{1}{l}\}) \times (\frac{1}{m}, T)$. When $\epsilon \searrow 0$, we conclude that u is smooth and satisfies (1) in the classical sense in $(\bar{\Omega} \setminus \{z : \nu(u, z) \ge \frac{1}{l}\}) \times (\frac{1}{m}, T)$.

 $(\bar{\Omega} \setminus \{z : \nu(u, z) \ge \frac{2}{m}\}) \times (\frac{1}{m}, T) \text{ and } u|_{\partial\Omega \times [0,T)} = \varphi|_{\partial\Omega \times [0,T)}.$

Step 3: The set of singular points of u.

Assume that $\{z : \nu(u_0, z) \geq \frac{2}{m}\} = \{a_{m,1}, ..., a_{m,N(m)}\}$. For any j = 1, ..., N(m), we denote

(18)
$$\epsilon_{m,j} = \sup\{T > t \ge 0 : \nu(u(.,t'), a_{m,j}) > 0, \forall 0 \le t \le t'\}.$$

We need to show that

- u is smooth and satisfies (1) in the classical sense in $Q_m := \bar{\Omega} \times (\frac{1}{m}, T) \setminus$ $\bigcup_{j \le N(m)} \{a_{m,j}\} \times (\frac{1}{m}, \epsilon_{m,j}].$ $\bullet \frac{\nu(u_0, a_{m,j})}{2n} \le \epsilon_{m,j} \le \frac{\nu(u_0, a_{m,j})}{2}.$ $\bullet \nu(u(., t), a_{m,j}) > 0 \text{ for any } j = 1, ..., N(m) \text{ and } t < \epsilon_{m,j}.$

- If $\epsilon_{m,j} < T$ then $\nu(u(.,t), a_{m,j}) \searrow 0$ as $t \nearrow \epsilon_{m,j}$.

By Step 2, for any $T > \epsilon > 0$, there is r > 0 such that u is smooth in $(B(a_{m,j}, r) \setminus$ $\{a_{m,j}\} \times (\epsilon, T)$ for any j = 1, ..., N(m). If there is $\epsilon \in (0, T)$ satisfying $\nu(u(., \epsilon), a_{m,j}) =$ 0 then it follows from Proposition 3.6 that $u \in C^{\infty}(B(a_{m,j},r) \times (\epsilon,T))$. By the definition of $\epsilon_{m,i}$, we conclude that u is smooth in Q_m . Clearly, u satisfies (1) in the classical sense in Q_m .

By Proposition 3.8 and by the smoothness of u in Q_m , we have $\epsilon_{m,j} \geq \frac{\nu(u_0, a_{m,j})}{2n}$. If $\nu(u_0, a_{m,j}) < 2T$, we have, as in the step 2,

(19)
$$u(a_{m,j},c) \ge v_{\frac{1+\epsilon}{2(c-\epsilon)}} + O(1) =: v_l + O(1),$$

for any 0 < c < T and $c > \epsilon > 0$.

If $2c > \nu(u_0, a_{m,j})$ then for any $\epsilon \ll 1$ we have

$$\nu(u_0, a_{m,j}) < \frac{1}{l}.$$

It follows from Proposition 2.2 that v_l is smooth in a neighbourhood of $a_{m,j}$. By (19), we have

$$C \geq \epsilon_{m,j}.$$
Letting $c \to \frac{\nu(u_0, a_{m,j})}{2}$, we obtain $\epsilon_{m,j} \leq \frac{\nu(u_0, a_{m,j})}{2}$. Thus $\epsilon_{m,j}$ satisfies
$$\frac{\nu(u_0, a_{m,j})}{2n} \leq \epsilon_{m,j} \leq \frac{\nu(u_0, a_{m,j})}{2}.$$

By definition of $\epsilon_{m,j}$, we have $\nu(u(.,t), a_{m,j}) > 0$ for any j = 1, ..., N(m) and $t < \epsilon_{m,j}$. Applying Lemma 4.1 for u_k and letting $k \to \infty$, we conclude that $\nu(u(.,t), a_{m,j})$ is non increasing in t. If $\epsilon_{m,j} < T$ then by Proposition 3.8 and by the smoothness of u in Q_m , we have, for any $0 < \epsilon < \epsilon_{m,i}$,

$$\frac{\nu(u(.,\epsilon), a_{m,j})}{3n} + \epsilon \le \epsilon_{m,j}$$

Hence, $\nu(u(.,t), a_{m,j}) \searrow 0$ as $t \nearrow \epsilon_{m,j}$. Step 4: Continuity at zero. Applying Lemma 4.1, we have

(20)
$$\liminf_{t \to 0} u(z,t) \ge u_0(z),$$

for any $z \in \Omega$.

Note that u is the limit of a decreasing sequence of smooth functions, then $u \in USC(\bar{\Omega} \times [0,T))$. We have

(21)
$$\limsup_{t \to 0} u(z,t) \le u_0(z),$$

for any $z \in \overline{\Omega}$.

Combining (20) and (21), we obtain

$$\lim_{t \to 0} u(z,t) = u_0(z).$$

Hence, by the dominated convergence theorem, $u(.,t) \to u_0$ in L^1 , as $t \to 0$. Step 5: The case A > 0.

Assume that u is the weak solution of (1) with A > 0. We set

$$v(z,t) = (At+1)u(z, \frac{\log(At+1)}{A}).$$

Then we can verify that v is the weak solution of

(22)
$$\begin{cases} \dot{v} = \log \det(v_{\alpha\bar{\beta}}) - n \log(At+1) + f(z, \frac{\log(At+1)}{A}) & \text{on } \Omega \times (0, \frac{e^{AT}-1}{A}) \\ v(z, 0) = u_0(z) & \text{on } \Omega, \\ v(z, t) = \varphi(z, \frac{\log(At+1)}{A}) & \text{on } \partial\Omega \times [0, T). \end{cases}$$

Using the case A = 0, we conclude the similar result for the case A > 0.

References

- [AT84] H. ALEXANDER, B. TAYLOR: Comparison of two capacities in \mathbb{C}^n . Math. Z. 186(1984), 407–417.
- [BG13] S. BOUCKSOM, V. GUEDJ: Regularizing properties of the Kähler-Ricci flow. An introduction to the Kähler-Ricci flow,189–237, Lecture Notes in Math., 2086, Springer, Cham, 2013.
- [Ceg04] U. CEGRELL: The general definition of the complex Monge-Ampre operator. Annales de l'institut Fourier, Volume 54, Issue 1 (2004) 159–179.
- [CC95] L. CAFFARELLI, X. CABRE: Fully nonlinear elliptic equations, Colloquium publications 43, American Mathematical Society, Providence, RI, 1995.
- [Dem92] J-P. DEMAILLY: Regularization of closed positive currents and Intersection Theory, J. Alg. Geom. 1 (1992) 361–409.
- [Dem10] J-P.DEMAILLY: Analytic Methods in Algebraic Geometry, Higher Education Press, Surveys of Modern Mathematics, Vol. 1, (2010).
- [Dem14] J-P.DEMAILLY: On the cohomology of pseudoeffective line bundles. [arXiv:math.CV/14015432]
- [Do15a] H-S. DO: Degenerate complex Monge-Ampère flows on strictly pseudoconvex domains. [arXiv:math.CV/150107167]
- [Do15b] H-S.DO: Weak solution of Parabolic complex Monge-Ampère equation. [arXiv:math.CV/150601506] to appear Indiana U. Math. J.
- [DL14] E. DI NEZZA, H-C. LU: Uniqueness and short time regularity of the weak Kähler- Ricci flow. [arXiv:math.CV/14117958]
- [EGZ09] P.EYSSIDIEUX, V.GUEDJ, A.ZERIAHI: Singular Kähler-Einstein metrics. J. Amer. Math. Soc. 22 (2009), no. 3, 607–639.
- [GT83] D. GILBARG, N. TRUDINGER: Elliptic partial differential equations of second order. Second edition. Grundlehren der Mathematischen Wissenschaften 224. Springer-Verlag, Berlin, 1983. xiii+513 pp.
- [Hor90] L.HORMANDER: An introduction to complex analysis in several variables. North-Holland, 1990.

14

- [Huy05] D. HUYBRECHTS: Complex geometry. Universitext. Springer-Verlag, Berlin, 2005.
- [HL10] Z. HOU, Q. LI: Energy functionals and complex Monge-Ampère equations. J. Inst. Math. Jussieu 9 (2010) no.3, 463–476.
- [IS13] C. IMBERT, L. SILVERSTRE: An introduction to fully nonlinear parabolic equations. An introduction to the Kähler-Ricci flow, 7-88, Lecture Notes in Math., 2086, Springer, Cham, 2013.
- [JKS92] S. JI, J. KOLLÁR, B. SHIFFMAN: A global Lojasiewicz inequality for algebraic varieties. Trans. Amer. Math. Soc. 329 (1992), no.2, 813–818.
- [Lieb96] G. M. LIEBERMAN: Second order parabolic differential equations (World Scientific, River Edge, 1996).

[Loj59] S. LOJASIEWICZ: Sur le problème de la division. Studia Math. 18 (1959), 87–136.

- [Mal66] B. MALGRANGE: Ideals of differentiable functions. Oxford Univ. Press, 1966.
- [Sko72] H. SKODA: Sous-ensembles analytiques d'ordre fini ou infini dans Cⁿ. Bull. Soc. Math. France 100 (1972), 353–408.
- [Zer01] A. ZERIAHI: Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions. Indiana Univ. Math. J. 50 (2001), no.1, 671–703.

INSTITUTE OF MATHEMATICS, VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY, 18 HOANG QUOC VIET, HANOI, VIETNAM

E-mail address: hoangson.do.vn@gmail.com