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Abstract. Let F (x) := (fij(x))i=1,...,p;j=1,...,q, be a (p × q)-real polynomial matrix and

let f(x) be the smallest singular value function of F (x). In this paper, we first give the

following nonsmooth version of  Lojasiewicz gradient inequality for the function f with an

explicit exponent: For any x̄ ∈ Rn, there exist c > 0 and ε > 0 such that we have for all

‖x− x̄‖ < ε,

inf{‖w‖ : w ∈ ∂f(x)} ≥ c |f(x)− f(x̄)|1−
2

R(n+p,2d+2) ,

where ∂f(x) is the limiting subdifferential of f at x, d := maxi=1,...,p;j=1,...,q deg fij and

R(n, d) := d(3d − 3)n−1 if d ≥ 2 and R(n, d) := 1 if d = 1. Then we establish some

versions of  Lojasiewicz inequality for the distance function with explicit exponents, locally

and globally, for the smallest singular value function f(x) of the matrix F (x).
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1. Introduction

Let f be a real analytic function in a neighborhood of x̄ in Rn. Then the  Lojasiewicz

gradient inequality ([12, 13, 14]) states that there exist some constants c > 0 and α ∈ [0, 1)
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such that, in a neighborhood of x̄, we have

‖∇f(x)‖ ≥ c|f(x)− f(x̄)|α. (1)

The  Lojasiewicz exponent of f at x̄, denoted by αf , is the infimum of the exponents α for

which Inequality (1) holds.

If f is a real polynomial in n variables and of degree d, D’Acunto and Kurdyka [2] proved

that αf is bounded from above by a constant depending only on n and d. Precisely, the

following holds.

Theorem 1.1 ([2]). Let f : Rn → R be a polynomial function of degree d. Then there are

some positive constants c and ε such that

‖∇f(x)‖ ≥ c |f(x)− f(x̄)|1−
1

R(n,d) for all x such that ‖x− x̄‖ < ε,

where

R(n, d) :=

d(3d− 3)n−1 if d ≥ 2,

1 if d = 1.
(2)

Consequently, the following  Lojasiewicz inequality with an explicit exponent for the dis-

tance function can be deduced easily the same way as in [14]: There are some positive

constants c and ε such that

|f(x)− f(x̄)| ≥ c dist(x, f−1(x̄))
1

R(n,d) for all x such that ‖x− x̄‖ < ε,

where dist(·, ·) denotes the Euclidean distance function.

Note that knowing the  Lojasiewicz exponent is important in theory and application (see

[1, 7, 9, 14, 17, 19]). In the polynomial case, as far as we know, 1− 1
R(n,d)

is the best upper

bound for αf .

In the case f is semialgebraic continuous, which is not necessary smooth, inequalities

of type (1) still exist if we replace ‖∇f(x)‖ by mf (x), which is the nonsmooth slope of f

at x (see Definition 2.2). In fact, inequalities of type mf (x) ≥ c|f(x) − f(x̄)|α exist in a

more general context, however, calculating or just giving an explicit upper bound for the

 Lojasiewicz exponent, in general, is quite delicate.

In this paper, we propose a version of  Lojasiewicz gradient inequality with explicit expo-

nent for the smallest singular value function of a given real polynomial matrix. We prove

that the  Lojasiewicz exponent is bounded from above by a constant depending only on the

degrees, the number of variables of the polynomials and the number of rows of the matrix.

Precisely, our main result is the following.
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Theorem 1.2. Let M (p, q) be the space of (p × q)-matrices. Let F : Rn → M (p, q), x 7→
F (x) = (fij(x))i=1,...,p;j=1,...,q, be a (p × q)-polynomial matrix such that p ≤ q and d :=

maxi=1,...,p;j=1,...,q deg fij > 0. Let f(x) be the corresponding smallest singular value function.

Let x̄ ∈ Rn. Then there exist some positive constants c and ε such that

inf{‖w‖ : w ∈ ∂f(x)} ≥ c |f(x)− f(x̄)|1−
1

R(n+p,2d+2) for all x ∈ Rn, ‖x− x̄‖ < ε.

The principal idea of the proof of Theorem 1.2 is to produce a polynomial g such that the

limiting subdifferential of f can be related to ∇g, and hence the nonsmooth slope mf of f

can be estimated via ‖∇g‖. Note that, recently, we have proved a similar result for largest

eigenvalue functions of real symmetric matrices (see [4]), the techniques used in [4] permits

also to prove Theorem 1.2 by considering the matrix −F (x)F T (x) and its corresponding

maximal eigenvalue function −f 2(x). However, the techniques used in this paper yields a

much better exponent.

As a consequence of Theorem 1.2, we give a local (Proposition 4.1) and a global (Corol-

lary 5.2) version of  Lojasiewicz inequality for smallest singular value functions which bound

the distance to the zero set by some explicit positive power of the function. Moreover, we

give some versions of separation of semialgebraic sets associated to smallest singular value

functions with explicit exponents (Corollaries 4.1 and 5.1). A global version of  Lojasiewicz

inequality for tame singular value functions will be also established (Proposition 6.1).

The paper is organized as follows. Section 2 recalls some basic notions and results of

nonsmooth analysis. The proof of Theorem 1.2 is given in Section 3. Sections 4, 5 and 6

contain some consequences of Theorem 1.2 on various types of  Lojasiewicz inequality in local

and global setups.

Throughout this paper, we denote by dist(·, ·) the Euclidean distance function. We denote

Bn(x, ε), Bn(x, ε), and Sn−1(x, ε), respectively, the open ball, the closed ball and the sphere

centered at x, of radius ε > 0 in the Euclidean space Rn. In the case where x = 0 and ε = 1,

we write Bn, Bn and Sn−1, respectively, instead of Bn(0, 1), Bn(0, 1) and Sn−1(0, 1).

2. Nonsmooth slope

We first recall the notion of limiting subdifferential, that is, an appropriate multivalued

operator playing the role of the usual gradient map. For nonsmooth analysis we refer to the

comprehensive texts [15, 18].

Definition 2.1. (i) The Fréchet subdifferential ∂̂f(x) of a continuous function f : Rn →
R at x ∈ Rn is given by

∂̂f(x) :=

{
v ∈ Rn : lim inf

‖h‖→0, h6=0

f(x+ h)− f(x)− 〈v, h〉
‖h‖

≥ 0

}
.
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(ii) The limiting subdifferential at x ∈ Rn, denoted by ∂f(x), is the set of all cluster

points of sequences {vk}k≥1 such that vk ∈ ∂̂f(xk) and xk → x as k →∞.

The next lemma is well-known (see e.g., [15, 18]).

Lemma 2.1. Let f : Rn → R be a continuous function. The following statements hold:

(i) If x ∈ Rn is a local (or global) minimum of f then 0 ∈ ∂f(x).

(ii) Let g : Rn → R be a locally Lipschitz function. Then

∂(f + g)(x) ⊆ ∂f(x) + ∂g(x).

(iii) ∂‖x‖ =

 x
‖x‖ if x 6= 0,

Bn if x = 0.

Definition 2.2. Using the limiting subdifferential ∂f, we define the nonsmooth slope of f

by

mf (x) := inf{‖v‖ : v ∈ ∂f(x)}.

By definition, mf (x) = +∞ whenever ∂f(x) = ∅.

Remark 2.1. (i) It is a well-known result of variational analysis that ∂̂f(x) (and a fortiori

∂f(x)) is not empty in a dense subset of the domain of f (see [18], for example).

(ii) If the function f is of class C1, the above notions coincides with the usual concept of

gradient; that is, ∂f(x) = ∂̂f(x) = {∇f(x)}, and hence mf (x) = ‖∇f(x)‖.
(iii) By Tarski–Seidenberg Theorem (see [3]), it is not hard to show that if the function f

is semi-algebraic then so is mf .

The following lemma will be useful in the sequel (see [16, Corollary 2]).

Lemma 2.2. Let f : Rn → R be a continuous function and let x̄ ∈ Rn be such that f(x̄) = 0.

Let S := {x ∈ Rn | f(x) ≤ 0}. Assume that there are real numbers c > 0, δ > 0, and

α ∈ [0, 1), such that

mf (x) ≥ c|f(x)|α for all ‖x− x̄‖ ≤ δ and x 6∈ S.

Then we have [
f(x)

]1−α
+

≥ c(1− α) dist(x, S) whenever ‖x− x̄‖ ≤ δ

2
,

where [f(x)]+ := max{f(x), 0} and dist(x, S) denotes the Euclidean distance from x to S.
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3. Proof of the main result

First of all, it is not hard to see that the smallest singular value function can be expressed

by the following formula

f(x) = min
y∈Sp−1

∥∥∥∥∥
p∑
i=1

yiFi(x)

∥∥∥∥∥ ,
where Fi(x) stands for the ith row of the matrix F (x). Let us define the function g : Rn×Rp →
R, (x, y) 7→ g(x, y), by

g(x, y) :=

p∑
i=1

p∑
j=1

yiyj〈Fi(x), Fj(x)〉 −
p∑
i=1

[f(x̄)]2y2
i .

Clearly, g is a polynomial in n + p variables of degree at most 2d + 2, recall that d =

maxi=1,...,p;j=1,...,q deg fij. Let

f̃(x) := min
y∈Sp−1

g(x, y).

Then f̃(x) = [f(x)]2 − [f(x̄)]2 is the minimal value function of the matrix F (x)F T (x) −
[f(x̄)]2Ip, where F T (x) denotes the transpose of F (x) and Ip is the unit matrix of order p.

Claim 3.1. f̃ and f are locally Lipschitz semi-algebraic functions.

Proof. Lipschitz continuity of the functions f̃ and f follows immediately from definitions.

Thanks to Tarski–Seidenberg principle (see e.g., [20, 22, 23]), these are semi-algebraic. �

For each x ∈ Rn, we put

E(x) := {y ∈ Sp−1 : f̃(x) = g(x, y)}.

Since the sphere Sp−1 is compact, E(x) is a nonempty and compact set for all x ∈ Rn.

Moreover, we have

Claim 3.2. The set-valued map E : Rn ⇒ Rn, x 7→ E(x), is locally Hölder stable; i.e., for

any fixed x̄ ∈ Rn and ε > 0, there exist some positive constants c and α such that

E(x) ⊂ E(x̄) + c‖x− x̄‖α Bp for all x ∈ Bn(x̄, ε).

Proof. Let

H : Rn × Rp → R

(x, y) 7→ H(x, y) := |g(x, y)− f̃(x)|+

∣∣∣∣∣
p∑
i=1

y2
i − 1

∣∣∣∣∣ .
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It is easy to check that the function H is semi-algebraic and locally Lipschitz. Further, we

have

E(x) = {y ∈ Sp−1 : g(x, y)− f̃(x) = 0}

= {y ∈ Rp :

p∑
i=1

y2
i − 1 = 0, g(x, y)− f̃(x) = 0}

= {y ∈ Rp : H(x, y) = 0}.

Since the sphere Sp−1 is compact, it follows from the  Lojasiewicz inequality (see, for exam-

ple, [3]) that there are some constants c > 0 and α > 0 such that

c dist(y, E(x̄)) ≤ |H(x̄, y)|α for all y ∈ Sp−1.

On the other hand, since the function H is locally Lipschitz, it is globally Lipschitz on the

compact set Bn(x̄, ε)× Sp−1; in particular, there exists a constant L > 0 such that

|H(x, y)−H(x̄, y)| ≤ L‖x− x̄‖ for all (x, y) ∈ Bn(x̄, ε)× Sp−1.

Let x ∈ Bn(x̄, ε) and take an arbitrary y ∈ E(x). Then H(x, y) = 0. Therefore,

c dist(y, E(x̄)) ≤ |H(x̄, y)|α

= |H(x, y)−H(x̄, y)|α

≤ Lα‖x− x̄‖α.

This implies immediately the required statement. �

Claim 3.3. For all x ∈ Rn and all y ∈ E(x), the following statements hold:

(i) f̃(x) = g(x, y).

(ii) ∂̂f̃(x) ⊂ {∇xg(x, y)}. In particular, ∅ 6= ∂f̃(x) ⊂ ∪z∈E(x){∇xg(x, z)} and

mf̃ (x) ≥ inf
z∈E(x)

‖∇xg(x, z)‖.

(iii) ∇yg(x, y)− 2f̃(x)y = 0.

Proof. (i) Clearly.

(ii) Take arbitrary v ∈ ∂̂f̃(x). By definition, for every ε > 0 there exists δ > 0 such that

f̃(x+ h)− f̃(x)− 〈v, h〉 ≥ −ε‖h‖, for all h ∈ Bn(0, δ).

Define the function φ : Rn → R, h 7→ φ(h), by

φ(h) := g(x+ h, y)− 〈v, h〉+ ε‖h‖.
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We have for all h ∈ Bn(0, δ),

φ(h) ≥ f̃(x+ h)− 〈v, h〉+ ε‖h‖

≥ f̃(x) = g(x, y) = φ(0).

Consequently, 0 is a local minimum of φ. Then by Claim 2.1, we have

0 ∈ ∂φ(0) ⊆ ∇xg(x, y)− v + εBn.

Therefore, ‖∇xg(x, y)−v‖ ≤ ε. Letting ε→ 0 yields v = ∇xg(x, y). Since this equality holds

for all v ∈ ∂̂f̃(x), we obtain ∂̂f̃(x) ⊂ {∇xg(x, y)}.
On the other hand, since the function f̃ is semialgebraic, it follows from Cell Decomposition

Theorem (see [3, 5]) that f is of class C1 on a semi-algebraic open dense set U ⊂ Rn. Then

we have for all x ∈ U,
∂̂f̃(x) = ∂f̃(x) = {∇xg(x, y)}.

Note that the function g is of class C∞ and the set E(x) is compact. Therefore, by Claim 3.2

and by definition, we get that ∅ 6= ∂f̃(x) ⊂ ∪z∈E(x){∇xg(x, z)} for all x ∈ Rn.

(iii) By definition, ∇yg(x, y) = 2F (x)F (x)Ty − 2[f(x̄)]2y. Hence

〈∇yg(x, y), y〉 = 〈2F (x)F (x)Ty − 2[f(x̄)]2y, y〉 = 2g(x, y) = 2f̃(x).

On the other hand, be definition, we have

g(x, y) = f̃(x) = min
‖z‖2=1

g(x, z).

Thanks to Lagrange’s multiplier theorem, there exists λ ∈ R such that

∇yg(x, y)− 2λy = 0.

Therefore

2λ = 2λ〈y, y〉 = 〈∇yg(x, y), y〉 = 2f̃(x),

which completes the proof. �

Claim 3.4. There exist some positive constants c and ε′ such that

‖∇g(x, y)‖ ≥ c |g(x, y)− f̃(x̄)|1−
1

R(n+p,2d+2)

for all x ∈ Bn(x̄, ε′) and all y ∈ Rp with dist(y, E(x̄)) < ε′.

Proof. For any ȳ ∈ E(x̄), we have f̃(x̄) = g(x̄, ȳ). So by Theorem 1.1, there exist some

positive constants c(ȳ) and ε(ȳ) such that

‖∇g(x, y)‖ ≥ c(ȳ) |g(x, y)− f̃(x̄)|1−
1

R(n+p,2d+2) for ‖(x, y)− (x̄, ȳ)‖ < ε(ȳ).
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Clearly, E(x̄) ⊂
⋃
ȳ∈E(x̄) Bp

(
ȳ, ε(ȳ)

2

)
. Since E(x̄) is a compact set, there exist finite points

ȳk ∈ E(x̄), for k = 1, . . . , N, such that

E(x̄) ⊂
N⋃
k=1

Bp
(
ȳk,

ε(ȳk)

2

)
.

Then the constants c := mink=1,...,N c(ȳ
k) and ε′ := mink=1,...,N

ε(ȳk)
2

have the desired proper-

ties. �

Claim 3.5. For each ε′ > 0 there exists a positive constant ε < ε′ such that for all x ∈ Bn(x̄, ε)

and all y ∈ E(x), we have

dist(y, E(x̄)) < ε′.

Proof. By contradiction, assume that there exist a number ε′ > 0 and some sequences xk ∈ Rn

and yk ∈ E(xk) such that limk→∞ x
k = x̄ and

dist(yk, E(x̄)) ≥ ε′.

Since E(xk) is a subset of the compact set Sp−1, we may assume that the limit ȳ :=

limk→∞ y
k ∈ Sp−1 exists. Note that f̃(xk) = g(xk, yk). Hence, by continuity, we get f̃(x̄) =

g(x̄, ȳ), and so ȳ ∈ E(x̄), which is a contradiction. �

Claim 3.6. Then there exist some positive constants c and ε such that

mf̃ (x) ≥ c |f̃(x)|1−
1

R(n+p,2d+2) for all x ∈ Bn(x̄, ε).

Proof. Let c, ε′, and ε < ε′ be some positive constants such that Claims 3.4 and 3.5 hold.

Take arbitrary x ∈ Bn(x̄, ε). Since the set E(x) is compact, there exists a point y ∈ E(x)

such that ‖∇xg(x, y)‖ = infz∈E(x) ‖∇xg(x, z)‖. It follows from Claim 3.3 that

mf̃ (x) ≥ ‖∇xg(x, y)‖ and ∇yg(x, y) = 2f̃(x)y.

Since, all norms on normed vector spaces of finite dimension are equivalent, there is a constant

c1 > 0 such that

c1‖ (∇xg(x, y),∇yg(x, y)) ‖ ≤ ‖∇xg(x, y)‖+ ‖∇yg(x, y)‖ ≤ mf̃ (x) + 2|f̃(x)|.

This, together with Claims 3.4 and 3.5, yields

mf̃ (x) + 2|f̃(x)| ≥ c1c|g(x, y)|1−
1

R(n+p,2d+2) = c1c|f̃(x)|1−
1

R(n+p,2d+2) .

Note that f̃(x̄) = 0. Hence, diminishing ε, if necessary, we may assume that

|f̃(x)|
1

R(n+p,2d+2) <
c1c

4
for all x ∈ Bn(x̄, ε).
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Consequently, we obtain

mf̃ (x) ≥
(
c1c− 2|f̃(x)|

1
R(n+p,2d+2)

)
|f̃(x)|1−

1
R(n+p,2d+2)

≥ c1c

2
|f̃(x)|1−

1
R(n+p,2d+2) ,

which completes the proof. �

Claim 3.7. We have for any v ∈ ∂̂f(x),

2f(x)v ∈ ∂̂f̃(x).

In particular, if f(x) > 0 then

mf (x) ≥ 1

2f(x)
mf̃ (x).

Proof. Take arbitrary v ∈ ∂̂f(x). By definition, for every ε > 0, there exists δ > 0 such that

f(x+ h)− f(x)− 〈v, h〉 ≥ −ε‖h‖, for all h ∈ Bn(0, δ).

Let h ∈ Bn(0, δ). It follows from the fact that f ≥ 0 that

f 2(x+ h)− f 2(x)− (f(x+ h) + f(x)) 〈v, h〉 ≥ − (f(x+ h) + f(x)) ε‖h‖.

Hence

f̃(x+ h)− f̃(x)− 〈2f(x)v, h〉 ≥ (f(x+ h)− f(x)) 〈v, h〉 − (f(x+ h) + f(x)) ε‖h‖.

Note that f is locally Lipschitz by Claim 3.1, so we have

lim
‖h‖→0

f̃(x+ h)− f̃(x)− 〈2f(x)v, h〉
‖h‖

≥ lim
‖h‖→0

(f(x+ h)− f(x)) 〈v, h〉 − (f(x+ h) + f(x)) ε‖h‖
‖h‖

= lim
‖h‖→0

− (f(x+ h) + f(x)) ε‖h‖
‖h‖

= −2f(x)ε.

Letting ε→ 0 yields lim‖h‖→0
f̃(x+h)−f̃(x)−〈2f(x)v,h〉

‖h‖ ≥ 0, and so 2f(x)v ∈ ∂̂f̃(x). �

Now, we are in position to finish the proof of Theorem 1.2.

Proof of Theorem 1.2. By Claim 3.6, there exist some positive constants c and ε such that

mf̃ (x) ≥ c |f̃(x)|1−
1

R(n+p,2d+2) for all x ∈ Bn(x̄, ε).

Therefore, by Claim 3.7, we have if f(x) > 0 then

mf (x) ≥ 1

2f(x)
mf̃ (x) ≥ c

2f(x)

∣∣[f(x)]2 − [f(x̄)]2
∣∣1− 1

R(n+p,2d+2)

=
c |f(x) + f(x̄)|1−

1
R(n+p,2d+2)

2f(x)
|f(x)− f(x̄)|1−

1
R(n+p,2d+2) .
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If f(x̄) = 0, by continuity and by shrinking ε if necessary, we may assume that f(x) ≤ 1 for

x ∈ Bn(x̄, ε), hence

mf (x) ≥ c

2
|f(x)|1−

2
R(n+p,2d+2) ≥ c

2
|f(x)|1−

1
R(n+p,2d+2) .

If f(x̄) 6= 0, then by shrinking ε if necessary, we may assume that f(x) 6= 0 for x ∈ Bn(x̄, ε).

Let c̃ := infx∈Bn
(x̄,ε)

c |f(x)+f(x̄)|
1− 1

R(n+p,2d+2)

2f(x)
> 0. Then mf (x) ≥ c̃|f(x) − f(x̄)|1−

1
R(n+p,2d+2) .

Theorem 1.2 is proved. �

Remark 3.1. From the proof of Theorem 1.2, it is clear that if f(x̄) = 0, then there exist

some positive constants c and ε such that

mf (x) ≥ c |f(x)|1−
2

R(n+p,2d+2) for all x ∈ Bn(x̄, ε). (3)

4. Local  Lojasiewicz inequality and local separation of semialgebraic sets

The proof of Theorem 1.2 allows us to deduce the following local  Lojasiewicz inequality

for the smallest singular value function.

Proposition 4.1. Let F and f be as in Theorem 1.2. Then for any compact set K ⊂ Rn,

there exists a constant c > 0 such that

c dist(x, SF ) ≤
(
f(x)

) 2
R(n+p,2d+2)

for all x ∈ K, (4)

where SF := {x ∈ Rn : f(x) = 0} and R(·, ·) is defined by (2).

Proof. Since K is compact, we can cover K by finite open balls Bn(x̄i, εi), i = 1, . . . , N, such

that:

• Either x̄i ∈ SF or B̄n(x̄i, εi) ∩ SF = ∅;
• If x̄i ∈ SF then Inequality (3) holds in Bn(x̄i, 2εi).

It is clear that by taking c small enough, Inequality (4) holds for all x ∈ Bn(x̄i, εi) with

B̄n(x̄i, εi) ∩ SF = ∅ since infx∈Bn(x̄i,εi)[f(x)]+ = infx∈B̄n(x̄i,εi)[f(x)]+ > 0. On the other side,

by Lemma 2.2, Inequality (4) holds for all x ∈ Bn(x̄i, εi) with x̄i ∈ SF . The proposition

follows. �

Another consequence of Theorem 1.2 is the following local separation of semialgebraic

sets associated to smallest singular value functions with an explicit exponent, the first and

general version go back to  Lojasiewicz [13] without any precision on the exponent.

Corollary 4.1. Let F : Rn →M (p1, q1), x 7→ F (x) = (fij(x)), and G : Rn →M (p2, q2), x 7→
G(x) = (gkl(x)), be two polynomial matrices with p1 ≤ q1 and p2 ≤ q2. Let f and g be the
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corresponding smallest singular value functions. Set

SF := {x ∈ Rn : f(x) = 0} and SG := {x ∈ Rn : g(x) = 0},

and assume that SF ∩ SG 6= ∅. Then for any compact set K ⊂ Rn, there exists a constant

c > 0 such that

c dist(x, SF ∩ SG) ≤
(

dist(x, SF ) + dist(x, SG)
) 2

R(n+p1+p2,2d+2)
for all x ∈ K,

where d := max{deg fij, deg gkl : i = 1, . . . , p1, j = 1, . . . , q1, k = 1, . . . , p2, l = 1, . . . , q2}.

Proof. Let

a(x, y) :=

∥∥∥∥∥
p1∑
i=1

yiFi(x)

∥∥∥∥∥
2

and b(x, z) :=

∥∥∥∥∥
p2∑
j=1

zjGj(x)

∥∥∥∥∥
2

where Fi and Gj are, respectively, the ith row of F and the jth row of G. By Theorem 1.2,

we have

f̃(x) := f 2(x) = min
y∈Rp1 ,‖y‖=1

a(x, y) and g̃(x) := g2(x) = min
z∈Rp2 ,‖z‖=1

b(x, z).

So

SF ∩ SG = {x ∈ Rn : f(x) = g(x) = 0} = {x ∈ Rn : f(x) + g(x) = 0}.

Set E1(x) := {y ∈ Sp1−1 : f̃(x) = a(x, y)} and E2(x) := {z ∈ Sp2−1 : g̃(x) = b(x, z)}. Let

h(x) := f̃(x) + g̃(x), then SF ∩ SG = {x ∈ Rn : h(x) = 0}. Let x̄ ∈ SF ∩ SG, following up

the steps of the proof of Theorem 1.2, the reader may check the followings:

(a) For all x ∈ Rn, y ∈ E1(x), z ∈ E2(x),

(a1) h(x) = a(x, y) + b(x, z),

(a2) ∂̂h(x) ⊂ {∇x(a(x, y) + b(x, z))}, so

mh(x) ≥ inf
(y′,z′)∈E1(x)×E2(x)

‖∇x(a(x, y′) + b(x, z′))‖,

(a3) ∇ya(x, y) = 2f̃(x)y and ∇zb(x, z) = 2g̃(x)z.

(b) There exist some positive constants c and ε′ such that

‖∇x(a(x, y) + b(x, z))‖ ≥ c‖a(x, y) + b(x, z)‖1− 1
R(n+p1+p2,2d+2)

for all x ∈ Bn(x̄, ε′) and all (y, z) ∈ Rp1 × Rp2 with dist((y, z), E1(x̄)× E2(x̄)) < ε′.

(c) For each ε′ > 0, there exists a positive constant ε < ε′ such that for all x ∈ Bn(x̄, ε)

and all (y, z) ∈ E1(x)× E2(x), we have

dist((y, z), E1(x̄)× E2(x̄)) < ε′.
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(d) There exist some positive constants c and ε such that

mh(x) ≥ c|h(x)|1−
1

R(n+p1+p2,2d+2)

for all x ∈ Bn(x̄, ε).

By the same proof as Proposition 4.1, there exists a constant c > 0 such that for all x ∈ K,

we have

c dist(x, {h = 0}) ≤
(
h(x)

) 1
R(n+p1+p2,2d+2)

.

Therefore

c dist(x, SF ∩ SG) ≤
(
f 2(x) + g2(x)

) 1
R(n+p1+p2,2d+2) ≤

(
f(x) + g(x)

) 2
R(n+p1+p2,2d+2)

. (5)

Since K is compact, M := maxx∈K{dist(x, SF ), dist(x, SG)} < +∞ and K̃ := K + MBn is

a compact set. Note that the functions x 7→ f(x) and x 7→ g(x) are locally Lipschitz, so are

globally Lipschitz on the compact set K̃. Thus there exists a constant L > 0 such that for

all x, x′ ∈ K̃, we have

|f(x)− f(x′)| ≤ L‖x− x′‖ and |g(x)− g(x′)| ≤ L‖x− x′‖.

Now for each x ∈ K, there exist x′ ∈ SF and x′′ ∈ SG such that

dist(x, SF ) = ‖x− x′‖ and dist(x, SG) = ‖x− x′′‖.

It is clear that x′, x′′ ∈ K̃. Hence

|f(x)| = |f(x)− f(x′)| ≤ L‖x− x′‖ = L dist(x, SF ),

|g(x)| = |g(x)− g(x′′)| ≤ L‖x− x′′‖ = L dist(x, SG).

These inequalities, together with Inequality (5), imply the corollary. �

The next result establishes a sharpen version of  Lojasiewicz’s factorization lemma for

smallest singular value functions.

Corollary 4.2. Let F : Rn → M (p1, q1), x 7→ F (x) = (fij(x)), G : Rn → M (p2, q2), x 7→
G(x) = (gkl(x)), and H : Rn → M (p3, q3), x 7→ H(x) = (hst(x)), be some polynomial

matrices with p1 ≤ q1, p2 ≤ q2 and p3 ≤ q3. Let f(x), g(x), and h(x) be the corresponding

smallest singular value functions of F (x), G(x), and H(x). Assume that K := {x ∈ Rn :

h(x) = 0} is a compact set and that

{x ∈ K : f(x) = 0} ⊂ {x ∈ K : g(x) = 0}.

Then there is a constant c > 0 such that

g(x) ≤ c
(
f(x)

) 2
R(n+p1+p3,2d+2)

, for all x ∈ K,
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where d := max
i=1,...,p1, j=1,...,q1, s=1,...,p3, t=1,...,q3

{deg fij, deg hst}.

Proof. The problem is trivial if {x ∈ K : f(x) = 0} = ∅ so assume the contrary. Let

A := {x ∈ K : f(x) = 0} = {x ∈ Rn : f(x) = h(x) = 0}.

Similar to Inequality (5) in the proof of Corollary 4.1, we have

dist(x,A) ≤ c0

(
f(x) + h(x)

) 2
R(n+p1+p3,2d+2)

= c0

(
f(x)

) 2
R(n+p1+p3,2d+2)

,

for all x ∈ K, where c0 is a positive constant. Let M := maxx∈K dist(x, {g = 0}) < +∞ and

K̃ := K + MBn. The function g is locally Lipschitz, thus, is globally Lipschitz on K̃, i.e.,

there is a constant L > 0 such that |g(x)− g(y)| ≤ L‖x− y‖ for all x, y ∈ K̃.
Now take any x ∈ K. Clearly, there exists a point y ∈ K̃ such that g(y) = 0 and

dist(x, {g = 0}) = ‖x− y‖. Therefore,

g(x) = |g(x)− g(y)| ≤ L‖x− y‖ = L dist
(
x, {g = 0}

)
≤ L dist

(
x,A

)
≤ Lc0

(
f(x)

) 2
R(n+p1+p3,2d+2)

.

This completes the proof of the corollary. �

Remark 4.1. The statement of Corollary 4.2 still holds in the case g : K → R is a locally

Lipschitz function.

5. Global  Lojasiewicz inequality and global separation of semialgebraic

sets

In this section, we provide a global separation of semialgebraic sets and a global  Lojasiewicz

inequality with explicit exponents for the case of smallest singular value functions.

Corollary 5.1. Let F : Rn → M (p1, q1), x 7→ (fij(x)) and G : Rn → M (p2, q2), x 7→
(gkl(x)) be two polynomial matrices with p1 ≤ q1 and p2 ≤ q2. Let f and g be the correspond-

ing smallest singular value functions. Set

SF := {x ∈ Rn : f(x) = 0} and SG := {x ∈ Rn : g(x) = 0}

and assume that SF ∩ SG 6= ∅. Then there exists a constant c > 0 such that

c

(
dist(x, SF ∩ SG)

1 + ‖x‖2

)R(n+p1+p2,2d+2)
2

≤ dist(x, SF ) + dist(x, SG) for all x ∈ Rn,

where d := max
i=1,...,p1, j=1,..., q1, k=1,...,p2, l=1,...,q2

{deg fij, deg gkl}.

13



Proof. The proof follows the same lines of that of [10, Theorem 2], by using Corollary 4.1

instead of [10, Corollary 8]. Note that the arguments of the proof of [10, Theorem 2] also

hold for semialgebraic sets, the assumption of algebraicity is only needed for the application

of [10, Corollary 8]. �

Remark 5.1. Corollary 5.1 can be also obtained by applying [11, Theorem 1.1] but the

exponent will be different.

Next we state a global  Lojasiewicz inequality for smallest singular value functions (com-

pare [21, Theorem7]):

Corollary 5.2. Let F : Rn → M (p, q), x 7→ F (x) = (fij(x)), be a polynomial matrix

with p ≤ q, and f be the corresponding smallest singular value function. Assume that

SF := {x ∈ Rn : f(x) = 0} 6= ∅. Then for some constant c > 0,

c

(
dist(x, SF )

1 + ‖x‖2

)R(n+p+2,4d+2)
4

≤ f(x) for all x ∈ Rn,

where d := max
i=1,...,p, j=1,...,q

deg fij.

Proof. Define the symmetric polynomial matrices F̃ : Rn ×R→M (p, p) and G̃ : Rn ×R→
M (1, 1) by

F̃ (x, y) := F (x)F T (x)− yIp and G̃(x, y) := (y)

for x ∈ Rn and y ∈ R, where Ip denotes the unit matrix of order p. Denote by f̃ and g̃ the

corresponding smallest singular value functions of F̃ and G̃. Let

SF̃ := {(x, y) ∈ Rn × R : f̃(x, y) = 0} and SG̃ := {(x, y) ∈ Rn × R : g̃(x, y) = 0}.

Clearly,

SF̃ = {(x, y) ∈ Rn × R : y is an eigenvalue of F (x)F T (x)} and SG̃ = Rn × {0},

so SF̃ ∩ SG̃ = SF × {0}. By Corollary 5.1, there exists a constant c > 0 such that

c

(
dist(z, SF̃ ∩ SG̃)

1 + ‖z‖2

)R(n+p+2,4d+2)
2

≤ dist(z, SF̃ ) + dist(z, SG̃)

for all z := (x, y) ∈ Rn × R. Now it is sufficient to consider x ∈ Rn satisfying f(x) > 0. It

is clear that dist((x, 0), SG̃) = 0. Moreover dist((x, 0), SF̃ ∩ SG̃) = dist(x, SF ). Note that

(x, f 2(x)) ∈ SF̃ . Thus

dist((x, 0), SF̃ ) ≤ ‖(x, 0)− (x, f 2(x))‖ = f 2(x).

The corollary follows. �
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As a direct consequence of Corollary 5.2, we obtain the following result (see [8, 10]):

Corollary 5.3. Let F : Rn → M (p, q), x 7→ F (x) = (fij(x)), be a polynomial matrix

with p ≤ q, and f be the corresponding smallest singular value function. Assume that

SF := {x ∈ Rn : f(x) = 0} is a nonempty compact set. Then there are some constants

c > 0 and R > 0 such that

c‖x‖−
R(n+p+2,4d+2)

4 ≤ f(x), for all ‖x‖ ≥ R,

where d := max
i=1,...,p, j=1,...,q

deg fij.

Proof. Indeed, since the set SF is compact, we can find some positive constants c1 and c2

satisfying the following inequality

c1‖x‖ ≤ dist(x, SF ) ≤ c2‖x‖ for ‖x‖ � 1.

Combining this with Corollary 5.2 yields the desired conclusion. �

6. Global  Lojasiewicz inequality and goodness at infinity

In this part, we give a global version of  Lojasiewicz inequality with explicit exponent in

the case of tame singular value functions.

Definition 6.1. We say that the polynomial matrix F : Rn →M (p, q) is good at infinity if

its corresponding singular value function f is tame i.e., there exist some constants c > 0 and

R > 0 such that

mf (x) ≥ c for all ‖x‖ ≥ R.

Proposition 6.1. Let F : Rn → M (p, q), x 7→ F (x) = (fij(x)), be a polynomial matrix

with p ≤ q, and f be the corresponding smallest singular value function. Assume that

SF := {x ∈ Rn : f(x) = 0} 6= ∅ and that F is good at infinity. Then the set SF is compact

and there exists a constant c > 0 such that

c dist(x, SF ) ≤
(
f(x)

) 2
R(n+p,2d+2)

+ f(x) for all x ∈ Rn,

where d := maxi=1,...,p, j=1,...,q deg fij.

First of all, we prove the following claim.

Claim 6.1. Assume that there exist some constants c > 0 and R > 0 such that

mf (x) ≥ c for all ‖x‖ ≥ R.

Let s ∈ SF . Then

c

2
dist(x, SF ) ≤ f(x) for all ‖x‖ ≥ 3R + 2‖s‖.
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Proof. We argue by contradiction. Suppose that the conclusion is false. Then there exists

x̄ ∈ Rn such that

‖x̄‖ ≥ 3R + 2‖s‖ and f(x̄) <
c

2
dist(x̄, SF ).

Clearly x̄ 6∈ SF . Set K := {x ∈ Rn : ‖x‖ ≥ R}. Note that infK f(x) ≥ 0, so

f(x̄) < inf
K
f(x) +

c

2
dist(x̄, SF ).

By applying Ekeland variational principle [6] to the function f(x) on the closed set K with

the data ε := c
2
dist(x̄, SF ) > 0 and λ := 2dist(x̄,SF )

3
> 0, we assert that there is ȳ ∈ K such

that ‖ȳ − x̄‖ < λ and that ȳ minimizes the function

K → R, x 7→ f(x) +
ε

λ
‖x− ȳ‖.

It follows that

‖ȳ‖ ≥ ‖x̄‖ − ‖ȳ − x̄‖ > ‖x̄‖ − 2

3
dist(x̄, SF )

≥ ‖x̄‖ − 2

3
‖x̄− s‖ ≥ ‖x̄‖ − 2

3
(‖x̄‖+ ‖s‖) =

1

3
(‖x̄− 2‖s‖) ≥ R.

Thus ȳ is an interior point of K. Then we deduce from Claim 2.1 that

0 ∈ ∂f(ȳ) +
ε

λ
Bn.

By the definition of the function mf , it follows easily that

mf (ȳ) ≤ ε

λ
.

Since x̄ 6∈ SF and ‖ȳ − x̄‖ < λ = 2
3
dist(x̄, SF ), we have ȳ 6∈ SF and so f(ȳ) > 0. Therefore

mf (ȳ) ≤ ε

λ
=

3c

4
< c,

which is a contradiction. �

Now, we are in position to finish the proof of Proposition 6.1.

Proof of Proposition 6.1. By the assumption, there exist some constants c1 > 0 and R > 0

such that

mf (x) ≥ c1 for all ‖x‖ ≥ R.

Since the function f is non-negative on Rn, it follows from Claim 2.1(i) that if x ∈ SF then

0 ∈ ∂f(x) and so mf (x) = 0. Consequently, SF ⊂ {x ∈ Rn : ‖x‖ ≤ R} and hence SF is a

compact set.

Now, let us fix a point s in SF . Due to Claim 6.1, we obtain

c1

2
dist(x, SF ) ≤ f(x), for all ‖x‖ ≥ 3R + 2‖s‖. (6)
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On the other hand, thanks to Proposition 4.1, we get a constant c2 > 0 satisfying

c2 dist(x, SF ) ≤
(
f(x)

) 2
R(n+p,2d+2)

, for all ‖x‖ ≤ 3R + 2‖s‖. (7)

Let c := min{ c1
2
, c2} > 0. Taking account of Inequalities (6) and (7), we obtain

c dist(x, SF ) ≤
(
f(x)

) 2
R(n+p,2d+2)

+ f(x), for all x ∈ Rn,

as it was to be shown. �
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