Omega-limit sets and bounded solutions

Dang Vu Giang

Hanoi Institute of Mathematics Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam

e-mail: $\langle dangvugiang@yahoo.com \rangle$

April 8, 2016

Abstract. We prove among other things that the omega-limit set of a bounded solution of a Hamilton system

$$\begin{cases} \dot{\mathbf{p}} = \frac{\partial H}{\partial \mathbf{q}} \\ \dot{\mathbf{q}} = -\frac{\partial H}{\partial \mathbf{p}} \end{cases}$$

is containing a full-time solution so there are the limits of $\frac{1}{t} \int_0^t \mathbf{p}(s) ds$ and $\frac{1}{t} \int_0^t \mathbf{q}(s) ds$ as $t \to \infty$ for any bounded solution (\mathbf{p}, \mathbf{q}) of the Hamilton system. These limits are stationary points of the Hamilton system so if a Hamilton system has no stationary point then every solution of this system is unbounded.

2000 AMS Subject Classification: 34-02 (47D06)

KEY WORDS: Beurling spectrum of a bounded full-time solution, precompact orbit, unique ergodic

1. INTRODUCTION

In this paper $(\mathbb{X}, \|\cdot\|_{\mathbb{X}})$ denotes a complex Banach space. Let $A : \mathbb{X} \to \mathbb{X}$ be a bounded linear operator with compact spectrum $\sigma(A)$ and positive spectral radius r(A). In [1] we proved that if $\sigma(A) \cap i\mathbb{R} = \{i\xi_1, i\xi_2, \cdots, i\xi_n\}$ then every bounded full-time solution of differential equation $\dot{\mathbf{x}}(t) = A\mathbf{x}(t)$ has the form $\mathbf{u}(t) = \sum_{k=1}^{n} e^{i\xi_k t} \mathbf{v}_k$, where $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ are fixed vectors of X. Recall that full-time solution is the solution satisfying the differential equation for all $t \in \mathbb{R}$. For example, periodic solutions are full-time and bounded solutions. Moreover, if $\sigma(A) \cap i\mathbb{R} = \emptyset$ then 0 is the only bounded full-time solution. We used Beurling spectrum [1] and Fourier coefficients of a bounded function (on the real line) in the proof. More exactly, we proved that the Beurling spectrum of any bounded full-time solution is a subset of $\{\xi_1, \xi_2, \cdots, \xi_n\}$. For the delay equation $\dot{\mathbf{u}}(t) = -\mathbf{u}(t-\tau)$ we proved that every almost periodic solution is periodic, so if there exists an almost periodic solution then the delay τ must be $\pi/2$. Generally, the spectrum of any bounded full-time solution of the delay equation $\dot{\mathbf{x}}(t) = A\mathbf{x}(t-\tau)$ is a compact subset of the interval [-r(A), r(A)]. Now consider a bounded solution **x** of

$$\begin{cases} \dot{\mathbf{x}}(t) = A\mathbf{x}(t) & \text{for } t > 0\\ \mathbf{x}(0) & \text{given in } \mathbb{X}. \end{cases}$$

Assume that the orbit $\{\mathbf{x}(t): t \ge 0\}$ is relatively compact. Then the omegalimit set ω of \mathbf{x} is a compact connected subset of \mathbb{X} [4]. Moreover, ω is invariant under the group $T(t) = e^{At}$. Let \mathbf{v} be a point in this omegalimit set and $\mathbf{u}(t) = T(t)\mathbf{v}$. Then \mathbf{u} is a bounded full-time solution of the differential equation $\dot{\mathbf{x}} = A\mathbf{x}$. On the other hand, $\Omega = \omega \cup \{\mathbf{x}(t): t \ge 0\}$ is a compact subset of \mathbb{X} . Therefore, the semi-group $\{T(t)\}_{t\ge 0}$ acts injectively on Ω . By an ergodic theorem [6] we have $\lim_{t\to\infty} \frac{1}{t} \int_0^t \mathbf{x}(s) ds = \lim_{t\to\infty} \frac{1}{t} \int_0^t \mathbf{u}(s) ds$. This limit is lying in the kernel of A. Specially, if $\sigma(A) \cap i\mathbb{R} = \emptyset$ then 0 is the only bounded full time solution. Thus, every bounded solution tends to 0 as $t \to \infty$. Now let (\mathbf{p}, \mathbf{q}) be a bounded solution of the Hamilton system

$$\begin{cases} \dot{\mathbf{p}} = \frac{\partial H}{\partial \mathbf{q}} \\ \dot{\mathbf{q}} = -\frac{\partial H}{\partial \mathbf{p}} \end{cases}$$

Then there is an injective continuous semi-flow $T(t) : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ such that $(\mathbf{p}(t), \mathbf{q}(t)) = T(t)(\mathbf{p}(0), \mathbf{q}(0))$ Then the omega-limit set ω of (\mathbf{p}, \mathbf{q}) is a compact connected subset of \mathbb{R}^{2n} [4]. Moreover, ω is invariant under the group T(t). The dynamical system $\langle \omega, \{T(t)\}_{t \in \mathbb{R}} \rangle$ is uniquely ergodic, since the only invariant (continuous) function on $\langle \omega, \{T(t)\}_{t \in \mathbb{R}} \rangle$ is the constant function. Let \mathbf{v} be a point in this omega-limit set and $\mathbf{u}(t) = T(t)\mathbf{v}$. Then \mathbf{u} is a bounded full-time solution of the differential equation

$$\begin{cases} \dot{\mathbf{p}} = \frac{\partial H}{\partial \mathbf{q}} \\ \dot{\mathbf{q}} = -\frac{\partial H}{\partial \mathbf{p}} \end{cases}$$

By an ergodic theorem [6] there are the limits of $\frac{1}{t} \int_0^t \mathbf{p}(s) ds$ and $\frac{1}{t} \int_0^t \mathbf{q}(s) ds$ as $t \to \infty$ for any bounded solution (\mathbf{p}, \mathbf{q}) of the Hamilton system. These limits are stationary points of the Hamilton system. Therefore, we have

Theorem A. If the gradient ∇H of a smooth hamiltonian H is nowhere 0 then every solution of the Hamilton system

$$\begin{cases} \dot{\mathbf{p}} = \frac{\partial H}{\partial \mathbf{q}} \\ \dot{\mathbf{q}} = -\frac{\partial H}{\partial \mathbf{p}} \end{cases}$$

is unbounded.

For example, consider the system $\ddot{x} = -\sin x$ with x(0) = 0. If $\dot{x}(0) > 2$ then x(t) is unbounded. If $\dot{x}(0) = 2$ then

$$x(t) = 2 \operatorname{arc} \sin \frac{e^{2t} - 1}{e^{2t} + 1}$$

which is increasingly tending to π as $t \to \infty$. If $\dot{x}(0) \in (0,2)$ then x(t) is periodic and bounded by π in the time and both $\frac{1}{t} \int_{0}^{t} x(s) ds$ and $\frac{1}{t} \int_{0}^{t} \dot{x}(s) ds$ tend to 0 as $t \to \infty$. Moreover, the period of this solution is

$$2\int_{0}^{A} \frac{dx}{\sqrt{2\cos x - 2 + \dot{x}(0)^{2}}}$$

where $A = \arccos\left(1 - \frac{\dot{x}(0)^2}{2}\right)$ is the maximal value of x(t).

2. MAIN RESULTS

Let $T(t) : \mathbb{X} \to \mathbb{X}$ for $t \geq 0$ denote a semi-group with (unbounded and close) generator A. Let $\mathbf{x}(t) = T(t)\mathbf{x}(0)$ denote a bounded solution of the differential equation $\dot{\mathbf{x}} = A\mathbf{x}$. Assume that the orbit $\{\mathbf{x}(t) : t \geq 0\}$ is relatively compact. Then the omega-limit set ω of \mathbf{x} is a compact connected subset of \mathbb{X} [4]. Moreover, ω is invariant under the semi-group $\{T(t)\}_{t\geq 0}$. Clearly, $T(t) : \omega \to \omega$ is bijective. It is easy to prove that the dynamical system $\langle \omega, \{T(t)\}_{t\in\mathbb{R}} \rangle$ is uniquely ergodic [6]. In fact, the only invariant (continuous) function on $\langle \omega, \{T(t)\}_{t\in\mathbb{R}} \rangle$ is the constant function. Hence, there is a unique Borel probability measure μ on ω [6] such that

$$\lim_{t \to \infty} \frac{1}{2t} \int_{-t}^{t} \varphi\left(\mathbf{u}(s)\right) ds = \int_{\omega} \varphi\left(\mathbf{v}\right) d\mu\left(\mathbf{v}\right).$$

Here, φ denotes a continuous function on ω and $\mathbf{u}(s) = T(s)\mathbf{v}$ for some $\mathbf{v} \in \omega$. Therefore, there is the limit of $\frac{1}{t} \int_0^t \mathbf{u}(s) ds$ as $t \to \infty$. Similarly, the limit of $\frac{1}{t} \int_0^t \mathbf{x}(s) ds$ exists as $t \to \infty$.

Theorem B. Let A denote the generator of a linear semigroup $T(t) : \mathbb{X} \to \mathbb{X}$ for $t \geq 0$. Let $\mathbf{x}(t) = T(t) \mathbf{x}(0)$ denote a bounded solution of the differential equation $\dot{\mathbf{x}} = A\mathbf{x}$. Assume that the orbit $\{\mathbf{x}(t) : t \geq 0\}$ is pre-compact. Then the limit of $\frac{1}{t} \int_0^t \mathbf{x}(s) ds$ exists as $t \to \infty$. This limit is a vector in the kernel of the operator A. If $\sigma(A) \cap i\mathbb{R} = \{i\xi_1, i\xi_2, \cdots, i\xi_n\}$ then every bounded full-time solution of differential equation $\dot{\mathbf{x}}(t) = A\mathbf{x}(t)$ has the form $\mathbf{u}(t) = \sum_{k=1}^n e^{i\xi_k t} \mathbf{v}_k$, where $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ are fixed vectors of \mathbb{X} . Specially, if $\sigma(A) \cap i\mathbb{R} \subseteq \{0\}$ then every bounded solution of pre-compact orbit tends to a vector in the kernel of A as $t \to \infty$.

Proof: As we have mentioned before, the dynamics on the omega limit set of \mathbf{x} is uniquely ergodic. Moreover, this limit set contains a full time bounded solution. Let \mathbf{u} denote a bounded full-time solution of $\dot{\mathbf{x}}(t) = A\mathbf{x}(t)$. Then $(\lambda - D)^{-1}\mathbf{u}(t) = (\lambda - A)^{-1}\mathbf{u}(t)$ for any $t \in \mathbb{R}$ and $\lambda \notin i\mathbb{R} \cup \sigma(A)$. Here D denotes the differential operator with spectrum $i\mathbb{R}$. Therefore, for any point ξ in the Beurling spectrum of u we have $i\xi \in \sigma(A)$. Hence, if $\sigma(A) \cap i\mathbb{R} = \{i\xi_1, i\xi_2, \cdots, i\xi_n\}$ then the Beurling spectrum of any bounded full-time solution is a subset of $\{\xi_1, \xi_2, \cdots, \xi_n\}$. Thus, $\mathbf{u}(t) = \sum_{k=1}^n e^{i\xi_k t} \mathbf{v}_k$, where $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ are fixed vectors of \mathbb{X} [1], [5]. Now consider a bounded solution \mathbf{x} of pre-compact orbit. Then the omega-limit set of \mathbf{x} should contain a bounded full time solution $\mathbf{u}(t) = \sum_{k=1}^n e^{i\xi_k t} \mathbf{v}_k$. Specially, if $\sigma(A) \cap i\mathbb{R} \subseteq \{0\}$ then the omega limit set of any bounded solution with pre-compact orbit has only one element. This element is a vector of the kernel of A. The proof is now complete.

Remark. The last statement in our Theorem makes a significant extension of results in [2], [3]. Indeed, the authors have proved the existence of the $\lim_{t\to\infty} \frac{1}{t} \int_0^t \mathbf{x}(s) ds$ only.

Acknowledgement. Deepest appreciation is extended towards the NAFOSTED (the National Foundation for Science and Techology Development in Vietnam) for the financial support.

References

- Dang Vu Giang, Beurling spectrum of functions in Banach space, Acta Math. Vietnamica 39 (2014) 305-312.
- [2] R. deLaubenfels and Vu Quoc Phong. Stability and almost periodicity of solutions of ill-posed abstract Cauchy problems. Proc. Amer. Math. Soc. 125 (1997) 235-241.
- [3] Vu Quoc Phong. On stability of C_0 -semigroups. Proc. Amer. Math. Soc. 129 (2001) 2871-2879.
- Hale, Jack K.; Verduyn Lunel, Sjoerd M. Introduction to functional-differential equations. Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993. x+447 pp. ISBN: 0-387-94076-6
- [5] N.V. Minh, A new approach to the spectral theory and Loomis-Arendt-Batty-Vu theory, Journal of Differential Equations 247 (2009) 1249-1274
- [6] Cornfeld, I. P.; Fomin, S. V.; Sina, Ya. G. Ergodic theory. Translated from the Russian by A. B. Sosinski. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 245. Springer-Verlag, New York, 1982. x+486 pp.