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Abstract. We prove among other things that the omega-limit set of a
bounded solution of a Hamilton system
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is containing a full-time solution so there are the limits of 7 fot p(s)ds and
2 f[f q(s)ds ast — oo for any bounded solution (p, q) of the Hamilton system.
These limits are stationary points of the Hamilton system so if a Hamilton
system has no stationary point then every solution of this system is un-

bounded.
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INTRODUCTION

In this paper (X, ||-|lx) denotes a complex Banach space. Let A : X — X be a
bounded linear operator with compact spectrum o(A) and positive spectral
radius 7(A). In [1] we proved that if o (A)NiR = {i&,, &y, - - - , i, } then every
bounded full-time solution of differential equation %(t) = Ax(¢) has the form
u(t) = Y ey, where vy, vy, -+, v, are fixed vectors of X. Recall that

k=1
full-time solution is the solution satisfying the differential equation for all

t € R. For example, periodic solutions are full-time and bounded solutions.
Moreover, if 0(A)NiR = () then 0 is the only bounded full-time solution. We
used Beurling spectrum [1] and Fourier coefficients of a bounded function
(on the real line) in the proof. More exactly, we proved that the Beurling
spectrum of any bounded full-time solution is a subset of {{1, &, -+ , &, } . For
the delay equation 0 (¢t) = —u (t — 7)we proved that every almost periodic
solution is periodic, so if there exists an almost periodic solution then the
delay 7 must be 7/2. Generally, the spectrum of any bounded full-time
solution of the delay equation x(t) = Ax(t — 7) is a compact subset of the
interval [—r(A),r(A)]. Now consider a bounded solution x of

x (t) = Ax (t) for t >0
x (0) given in X.

Assume that the orbit {x(¢) : ¢t > 0} is relatively compact. Then the omega-
limit set w of x is a compact connected subset of X [4]. Moreover, w is
invariant under the group T'(t) = e’. Let v be a point in this omega-
limit set and u(t) = T(t)v. Then u is a bounded full-time solution of the
differential equation x = Ax. On the other hand, Q@ = w U {x (t) : ¢ > 0} is

a compact subset of X. Therefore, the semi-group {T'(t)},5, acts injectively

on . By an ergodic theorem [6] we have Jim %f(f x(s)ds = Jim %fot u(s)ds.
—00 —00

This limit is lying in the kernel of A. Specially, if o(A) NiR = () then 0 is

the only bounded full time solution. Thus, every bounded solution tends to

0 as t — co. Now let (p,q) be a bounded solution of the Hamilton system
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Then there is an injective continuous semi-flow 7' (¢) : R?*" — R?" such that
(p(t),q(t)) =T (t)(p(0),q(0)) Then the omega-limit set w of (p,q) is a
compact connected subset of R?*" [4]. Moreover, w is invariant under the
group T'(t). The dynamical system (w, {T'()},.z) is uniquely ergodic, since
the only invariant (continuous) function on (w, {T'(t)},.z) is the constant
function. Let v be a point in this omega-limit set and u(t) = T'(t)v. Then
u is a bounded full-time solution of the differential equation
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By an ergodic theorem [6] there are the limits of } fot p(s)ds and %fg q(s)ds
as t — oo for any bounded solution (p,q) of the Hamilton system. These
limits are stationary points of the Hamilton system. Therefore, we have

Theorem A. If the gradient VH of a smooth hamiltonian H is nowhere 0
then every solution of the Hamilton system

. OH
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is unbounded.
For example, consider the system & = —sinx with z(0) = 0. If £(0) > 2

then z(t) is unbounded. If #(0) = 2 then
et —1
t) = 2arc sin =~
x(t) = 2arc sin e

which is increasingly tending to m as t — oo. If #(0) € (0,2) then z(t) is
¢ ¢
periodic and bounded by 7 in the time and both %{x(s)ds and %{x'(s)ds

tend to 0 as t — oo. Moreover, the period of this solution is

/A dx
2 ;
0 +/2cosz — 2+ #(0)?
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where A = arc cos <1 - ) is the maximal value of x(t).

MAIN RESULTS

Let T'(t) : X — X for ¢ > 0 denote a semi-group with (unbounded and
close) generator A. Let x () = T (t) x (0) denote a bounded solution of the
differential equation x = Ax. Assume that the orbit {x(¢): t >0} is
relatively compact. Then the omega-limit set w of x is a compact connected
subset of X [4]. Moreover, w is invariant under the semi-group {7'(¢)},~,-
Clearly, T (t) : w — w is bijective. It is easy to prove that the dynamical
system (w, {T(t)},cg) is uniquely ergodic [6]. In fact, the only invariant
(continuous) function on (w,{T'(t)},.g) is the constant function. Hence,
there is a unique Borel probability measure p on w [6] such that

im o [ et ds= [pw)antv)

t—o00 2t ¢

Here, ¢ denotes a continuous function on w and u(s) = T (s)v for some
v € w. Therefore, there is the limit of %fot u(s)ds as t — oo. Similarly, the

limit of L ['x(s)ds exists as t — 0.

Theorem B. Let A denote the generator of a linear semigroup 7' (¢) : X — X
for t > 0. Let x () = T () x (0) denote a bounded solution of the differential
equation X = Ax. Assume that the orbit {x(t): ¢ > 0} is pre-compact.
Then the limit of fot x(s)ds exists as t — oo. This limit is a vector in
the kernel of the operator A. If o(A) NiR = {i&,,i&,, -+ ,i£,} then every
bounded full-time solution of differential equation x(t) = Ax(t) has the form
u(t) = > elvy, where vi, vy, -+, v, are fixed vectors of X. Specially, if

k=1
o(A) NiR C {0} then every bounded solution of pre-compact orbit tends to

a vector in the kernel of A as t — oo.

Proof:  As we have mentioned before, the dynamics on the omega limit
set of x is uniquely ergodic. Moreover, this limit set contains a full time
bounded solution. Let u denote a bounded full-time solution of x(t) = Ax(t).
Then (A — D) tu(t) = (A — A)"tu(t) for any ¢ € R and A ¢ iR U a(A).
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Here D denotes the differential operator with spectrum ¢R. Therefore, for
any point ¢ in the Beurling spectrum of u we have i§ € o(A). Hence, if
o(A) NiR = {i&,,i&,, -+ ,i&,} then the Beurling spectrum of any bounded

full-time solution is a subset of {£1,&, -+, &} . Thus, u(t) = > elvy,
=1

k=
where v, vy, -+, v, are fixed vectors of X [1], [5]. Now consider a bounded
solution x of pre-compact orbit. Then the omega-limit set of x should contain

a bounded full time solution u (t) = Y e*+'v,. Specially, if o(A) NiR C {0}
k=1

then the omega limit set of any bounded solution with pre-compact orbit has
only one element. This element is a vector of the kernel of A. The proof is
now complete.

Remark. The last statement in our Theorem makes a significant extension
of results in [2], [3]. Indeed, the authors have proved the existence of the
lim %fot x(s)ds only.
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