Spectrum of a bounded sequence and inhomogeneous delay linear difference equations in a Banach space

Dang Vu Giang

Hanoi Institute of Mathematics Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam

e-mail: $\langle \text{dangvugiang@yahoo.com} \rangle$

March 31, 2016

Abstract. We study the asymptotic behavior of a bounded solution of an inhomogeneous delay linear difference equation in a Banach space by using the spectrum of bounded sequences. We get a significant extension of excellent results in [1]. A new simple proof is also found for the famous Gelfand spectral radius theorem. Moreover, among other things we prove that if the spectrum of a bounded sequence $\{x_n\}_n$ is finite then $x_n = c_1 \vartheta_1^n + c_2 \vartheta_2^n$ $c_2\vartheta_2^n + \cdots + c_k\vartheta_k^n + o(1)$ as $n \to \infty$ where $|\vartheta_1| = |\vartheta_2| = \cdots = |\vartheta_k| = 1$.

2000 AMS Subject Classification: 47D06 KEY WORDS: Resolvent of shift operator, essential singularity, bounded entire functions in Banach spaces,

1. Introduction

Let $\mathbb{X} = (\mathbb{X}, \|\cdot\|_{\mathbb{X}})$ denote a Banach space and $T : \mathbb{X} \to \mathbb{X}$ denote a bounded linear operator. If the sequence of norms $\{||T||, ||T^2||, \cdots\}$ is bounded then T is called a power bounded operator. Katznelson and Tzafriri [2] proved the following famous result.

Theorem A. Let $T : \mathbb{X} \to \mathbb{X}$ denote a bounded linear operator and ∂ \mathbb{D} the unit circle. If T is power bounded and $\partial \mathbb{D} \cap \sigma(T) \subseteq \{1\}$ then

$$
\lim_{n \to \infty} (T^{n+1} - T^n) = 0.
$$

Vu Quoc Phong [4] reproved this theorem. In this paper, we use a new method (the spectrum of a bounded sequence in a Banach space) to prove the existence of limit of T^n as $n \to \infty$.

2. Spectrum of a bounded sequence

Let $\mathbb{X} = (\mathbb{X}, \|\cdot\|_{\mathbb{X}})$ denote a Banach space. Let $\mathbf{x} = \{x_0, x_1, \dots\}$ denote a sequence with elements in X and $\ell^{\infty}(\mathbb{X})$ the Banach space of bounded sequences in X with the norm $\|\mathbf{x}\| = \sup \{\|x_0\|_{\mathbb{X}}, \|x_1\|_{\mathbb{X}}, \cdots\}$. Moreover, let $c_0(\mathbb{X})$ be the subpace of $\ell^{\infty}(\mathbb{X})$ consisting of vanishing sequences $\mathbf{x} =$ $\{x_0, x_1, \dots\}$ in X that is $\lim_{n \to \infty} x_n = 0$. Let

$$
S: \ell^{\infty}(\mathbb{X}) \to \ell^{\infty}(\mathbb{X})
$$

denote the shift operator, that is $(S_{\mathbf{X}})_n = x_{n+1}$. Let

$$
\mathbb{Y} = \ell^{\infty}(\mathbb{X}) / c_0(\mathbb{X})
$$

be the quotient space. The equivalent class containing $\mathbf{x} = \{x_0, x_1, \dots\}$ is denoted by $\bar{\mathbf{x}} = {\bar{x}_0, \bar{x}_1, \dots}$ The norm of an $\bar{\mathbf{x}} = \overline{\{x_0, x_1, \dots\}} \in \mathbb{Y}$ is defined by $\|\bar{\mathbf{x}}\|_{\mathbb{Y}} = \limsup_{n \to \infty} ||x_n||_{\mathbb{X}}$ and the reduced shift operator of S is denoted by \overline{S} : $\mathbb{Y} \to \mathbb{Y}$. Then \overline{S} is an isometry operator so the spectrum of \overline{S} is contained in the unit circle so the resolvent operator $R(\lambda, \overline{S})$ of \overline{S} is analytic and injective for every $|\lambda| \neq 1$. Hence, if $R(\lambda, \overline{S}) \overline{\mathbf{x}} = 0$ for some $|\lambda| \neq 1$

then $\bar{\mathbf{x}} = 0$ which means $\lim_{n \to \infty} x_n = 0$. Moreover, the norm of $R(\lambda, \overline{S})$ is bounded by $||\lambda|-1|^{-1}$. Hence, $\lim R(\lambda,\overline{S})=0$. These conditions hold for bounded by $|\lambda| = 1$. Hence, $\lim_{\lambda \to \infty} h(\lambda, \beta) = 0$. These conditions not for resolvent of any isometry operator. The spectrum of a bounded sequence $\mathbf{x} = \{x_0, x_1, \dots\}$ denoted by $\sigma(\mathbf{x})$ is the set of all essential (non-removable) singular points of $g(\lambda) = R(\lambda, \overline{S}) \bar{x}$ (holomorphic function taking values in Y). Then σ (x) is contained in the unit circle ∂D. Moreover, we have

Theorem 1. $\sigma(\mathbf{x})$ is empty iff $\lim_{n\to\infty}x_n=0$.

Note 1. Theorem 1 is presented in [1] without strict proof. We refer [3] for readers intersted in complex function and spectral theory .

Theorem 2.
$$
\sigma(\mathbf{x}) = \{1\} \text{ iff } \lim_{n \to \infty} (x_{n+1} - x_n) = 0.
$$

Note 2. Theorem 2 is also presented in [1] without strict proof. Similar to Theorem 2 we consider the case where $\sigma(\mathbf{x})$ has only one point. We have

Theorem 3. $\sigma(\mathbf{x}) = \{\vartheta\}$ iff $\lim_{n \to \infty} (x_{n+1} - \vartheta x_n) = 0.$

Proof: See Theorem 5 below.

Note 3. Theorems 1 and 3 give the following theorem which is invented by Katznelson and Tzafriri [2] and reproved by Vu Quoc Phong [4] in the case $\vartheta = 1.$

Theorem 4. Let $T : \mathbb{X} \to \mathbb{X}$ denote a bounded linear operator and $\partial\mathbb{D}$ the unit circle. If T is power bounded (that is the sequence of norms $\{||T||, ||T^2||, \cdots\}$ is bounded) and ∂D ∩ $\sigma(T) \subseteq \{\vartheta\}$ then

$$
\lim_{n \to \infty} (T^{n+1} - \vartheta T^n) = 0.
$$

Proof: Let $x_n = T^n$ and consider the spectrum of $\mathbf{x} = \{x_0, x_1, \dots\}$. We have at once that $\sigma(\mathbf{x}) \subseteq \partial \mathbb{D} \cap \sigma(T) \subseteq {\theta}$ so by Theorem 3, $\lim_{n \to \infty} (x_{n+1} - \vartheta x_n) =$ 0. The proof is now complete.

Theorem 5. Assume that $\sigma(\mathbf{x}) = \{\vartheta_1, \vartheta_2, \cdots, \vartheta_k\}$ is of k distinct points. Then there exist vectors $v_1, v_2, \cdots, v_k \in \mathbb{X}$ such that $x_n = v_1 \vartheta_1^n + v_2 \vartheta_2^n + \cdots$

 $v_k v_k^n + o(1)$ as $n \to \infty$. Specially, if $\sigma(\mathbf{x}) \subseteq \{1\}$ then there exists $\lim x_n$ as $n \to \infty$.

Proof: Let

$$
g(\lambda) = R(\lambda, \overline{S}) \overline{\mathbf{x}} = \sum_{j=1}^{k} \frac{\overline{\mathbf{c}}_j}{\lambda - \vartheta_j}.
$$

This formula holds because the (resolvent) function $R(\lambda, \overline{S}) \times \overline{S}$ has simple poles at isolated points $\{\vartheta_1, \vartheta_2, \cdots, \vartheta_k\}$ and $\lim_{\lambda \to \infty} g(\lambda) = 0$. Then

$$
\bar{\mathbf{x}} = \sum_{j=1}^{k} \frac{(\lambda - \overline{S}) \bar{\mathbf{c}}_j}{\lambda - \vartheta_j} \quad \text{for every } \lambda \in \mathbb{C} \setminus \{\vartheta_1, \vartheta_2, \cdots, \vartheta_k\}.
$$
 (*)

Let $\lambda \to \infty$ we get $\bar{\mathbf{x}} = \sum_{k=1}^{k}$ $j=1$ $\bar{\mathbf{c}}_j$. Replace this back to $(*)$ we get

$$
\sum_{j=1}^{k} \frac{\overline{S} \overline{c}_{j}}{\lambda - \vartheta_{j}} = \sum_{j=1}^{k} \frac{\vartheta_{j} \overline{c}_{j}}{\lambda - \vartheta_{j}} \quad \text{ for every } \lambda \in \mathbb{C} \setminus \{\vartheta_{1}, \vartheta_{2}, \cdots, \vartheta_{k}\}
$$

and consequently, $S\bar{c}_j = \vartheta_j \bar{c}_j$ for $j = 1, 2, \dots, k$. In the other words, \bar{x} is the sum of k eigen-sequences of the shift operator with respect to k eigenvalues $\vartheta_1, \vartheta_2, \cdots, \vartheta_k$. More exactly, we have $x_n = v_1 \vartheta_1^n + v_2 \vartheta_2^n + \cdots + v_k \vartheta_k^n + o(1)$ as $n \to \infty$ where $v_1, v_2, \dots, v_k \in \mathbb{X}$ are fixed. The proof is now complete.

3. Inhomogeneous delay linear difference equations

Now let $B : \mathbb{X} \to \mathbb{X}$ denote a bounded linear operator. Then B can be extended to the space $\ell^{\infty}(\mathbb{X})$ by letting $(B\mathbf{x})_n = Bx_n$ and also to the space $\mathbb{Y} = \ell^{\infty}(\mathbb{X}) / c_0(\mathbb{X})$. The spectrums of B in the spaces X and Y are the same. We are interested in the bounded solutions of the linear difference equation

$$
x_{n+1} = Bx_n + y_n
$$

where $y = \{y_0, y_1, \dots\}$ is a vanishing sequence in X. Clearly, for any solution $\mathbf{x} = \{x_0, x_1, \dots\}$ we have $S\bar{\mathbf{x}} = B\bar{\mathbf{x}}$. Therefore, the spectrum of any solution $\mathbf{x} = \{x_0, x_1, \dots\}$ is contained in the spectrum of the operator B (and in the unit circle). Theorem 5 gives the following theorem which was proved in [1] for the case $k = 1$ and $\vartheta_1 = 1$.

Theorem 6. Let $B : \mathbb{X} \to \mathbb{X}$ denote a bounded linear operator and ∂ \mathbb{D} the unit circle. If $\partial \mathbb{D} \cap \sigma(B) = \{\vartheta_1, \vartheta_2, \cdots, \vartheta_k\}$ then for every bounded solution $\mathbf{x} = \{x_0, x_1, \dots\}$ of the linear difference equation

$$
x_{n+1} = Bx_n + y_n \quad \text{for } n = 0, 1, \cdots,
$$

where $\mathbf{y} = \{y_0, y_1, \dots\}$ is a vanishing sequence in X, we have $x_n = v_1 \vartheta_1^n +$ $v_2\vartheta_2^n+\cdots+v_k\vartheta_k^n+o(1)$ as $n\to\infty$ where $v_1,v_2,\cdots,v_k\in\mathbb{X}$ are fixed. Specially, if $\partial \mathbb{D} \cap \sigma(B) \subseteq \{1\}$ then there exists $\lim x_n$ as $n \to \infty$.

For the delay equation

$$
x_{n+p} = Bx_n + y_n \quad \text{for } n = 0, 1, \cdots,
$$

we have the following result.

Theorem 7. Let $B : \mathbb{X} \to \mathbb{X}$ denote a bounded linear operator and $\partial\mathbb{D}$ the unit circle. If $\partial\mathbb{D} \cap \sigma(B) \subseteq {\vartheta}$ then for every bounded solution $\mathbf{x} = \{x_0, x_1, \dots\}$ of the delay linear difference equation

 $x_{n+n} = Bx_n + y_n$ for $n = 0, 1, \cdots$,

where $y = \{y_0, y_1, \dots\}$ is a vanishing sequence in X, we have

$$
\lim_{n \to \infty} (x_{n+1} - \vartheta x_n) = 0.
$$

(Here p denotes a fixed positive integer.)

Proof: Clearly, for any bounded solution $\mathbf{x} = \{x_0, x_1, \dots\}$ we have $S^p \bar{\mathbf{x}} =$ B \bar{x} . Therefore, the spectrum of $S^{p-1}x$ is contained in the spectrum of the operator B (and in the unit circle). Consequently, this spectrum is empty or of only one point and our Theorem follows.

4. Appendix: Holomorphic functions in a Banach space and Resolvent of an isometry operator

We are interested in those functions $f : \mathbb{C} \to \mathbb{X}$ which can be expressed as power series $f(z) = \sum_{k=0}^{\infty} z^k x_k$ where $\{x_k\}_{k=0}^{\infty} \subseteq \mathbb{X}$. This series is convergent in the norm topology of $k=0$
 W. This means that $\sum_{n=0}^{\infty}$ $\sum_{k=0}^{\infty} ||x_k||_{\mathbb{X}} |z|^k < \infty$ for every $z \in \mathbb{C}$. These functions are called entire functions in the Banach space X. If this series is finite we say about polynomial function (operator). The complex derivative of f is $f'(z) = \sum_{n=0}^{\infty}$ $\sum_{k=1} k z^{k-1} x_k$. Moreover, the complex integral of f gives

$$
x_k = \frac{1}{2\pi i} \oint\limits_{|z|=R} \frac{f(z) \, dz}{z^{k+1}} \quad \text{for } k = 0, 1, 2, \cdots.
$$

Hence, if $||f(z)||_{\mathbb{X}}$ is bounded then f is constant (a vector of the Banach space X). Now let Ω be an open (unbounded) region of complex plane. Consider those functions $g : \Omega \to \mathbb{X}$ such that for any $z_0 \in \Omega$ there is $\delta > 0$ such that $g(z) = \sum_{k=0}^{\infty} (z - z_0)^k x_k$ for some ${x_k}_{k=0}^{\infty} \subseteq \mathbb{X}$ and $|z - z_0| < \delta$. These functions of this condition are called holomorphic functions in the region Ω . If we can extend q to the whole complex plane without breaking this condition then q is also called an entire function. Otherwise, we say about the essential singularity of g. A point $z_0 \in \mathbb{C}$ is called an essential singularity point of g if g cannot be extended to $\Omega \cup \{z_0\}$ without breaking the holomorphy condition. Most of time we are interested in the resolvent $(\lambda - A)^{-1}$ of a linear bounded operator $A : \mathbb{X} \to \mathbb{X}$. This is a holomorphic function defined on $\mathbb{C}\setminus\sigma(A)$ by Laurent series

$$
(\lambda - A)^{-1} = \sum_{n=0}^{\infty} \frac{A^n}{\lambda^{n+1}}
$$

which is convergent for all $|\lambda| > \rho(A)$ ($\rho(A)$ denotes the spectral radius of A). On the other hand, if X is finite dimensional then the resolvent $(\lambda - A)^{-1}$ has finite poles in $\sigma(A)$ (the spectrum of A). Let χ_A denote the characteristic polynomial of A. Then $\chi_A(z) = 0$ for every $z \in \sigma(A)$ and the resolvent $(\lambda - A)^{-1}$ is holomorphic in $\mathbb{C} \setminus \sigma(A)$. Therefore, we can write

$$
(\lambda - A)^{-1} = \frac{\phi(\lambda)}{\chi_A(\lambda)},
$$

where $\phi : \mathbb{C} \to B(\mathbb{X})$ is a holomorphic function $(B(\mathbb{X}))$ denotes the set of continuous linear operators on X and χ_A denotes the characteristic polynomial of A). Now multiply with $(\lambda - A)\chi_A(\lambda)$ side by side we have $\chi_A(\lambda)I = (\lambda - A)\phi(\lambda)$. Let $\lambda = A$ we have $\chi_A(A) = 0$. The famous Caley-Hamilton theorem is proved. Moreover, we can prove the famous theorem of I. Gelfand on the spectral radius as follows. Let $a_n = \ln ||A^n||$. Then $a_{n+m} = \ln ||A^{n+m}|| \leq \ln (||A^n|| ||A^m||) = \ln ||A^n|| + \ln ||A^m|| = a_n + a_m$ and consequently, there is $\lim a_n/n = \ln r$, that is $\lim ||A^n||^{1/n} = r$. On the other hand, the relsovent series

$$
(\lambda - A)^{-1} = \sum_{n=0}^{\infty} \frac{A^n}{\lambda^{n+1}}
$$

is absolutely convergent for all $|\lambda| > \rho(A)$ and

$$
\sum_{n=0}^{\infty}\frac{\|A^n\|}{\rho(A)^n}=\infty.
$$

If $\lim \|A^n\|^{1/n} = r < \rho(A)$ then $\|A^n\| < |\rho(A) - \varepsilon|^n$ for all $n > N$ and consequently,

$$
\infty = \sum_{n>N} \frac{\|A^n\|}{\rho(A)^n} < \sum_{n>N} \left[\frac{\rho(A) - \varepsilon}{\rho(A)} \right]^n < \infty
$$

which is a contradiction. If $\lim \|A^n\|^{1/n} = r > \rho(A)$ then $\|A^n\| > [\rho(A) + \varepsilon]^n$ for all $n > N$ and the series

$$
\sum_{n=0}^{\infty}\frac{\left\Vert A^{n}\right\Vert }{\left\vert \lambda\right\vert ^{n}}
$$

divergent for $|\lambda| = \rho(A) + \varepsilon > \rho(A)$ which is a contradiction. In the next sections we are specially interested in the resolvent of isometry operators. More exactly, if $A : \mathbb{X} \to \mathbb{X}$ is an isometry linear operator then the spectrum of A is contained in the unit circle and the norm of $(\lambda - A)^{-1}$ is bounded by $||\lambda|-1|^{-1}$. On the other hand, any isolated essential $||v|| = 1$ singular point of $(\lambda - A)^{-1}$ is a simple pole [1].

Acknowledgement. Deepest appreciation is extended towards the NAFOSTED (the National Foundation for Science and Techology Development in Vietnam) for the financial support.

References

- [1] Nguyen Van Minh, Asymptotic behavior of individual orbits of discrete systems. Proc. Amer. Math. Soc. 137 (2009) 3025-3035.
- [2] Katznelson Y. and Tzafriri L., On power bounded operators. J. Funct. Anal. 68 (1986) 313-328.
- [3] Rudin W. "Real and Complex Analysis" MacGraw-Hill, New York, 1987.
- [4] Vu Quoc Phong, A short proof of Y. Katznelson's and L. Tzafriri's theorem. Proc. Amer. Math. Soc. 115 (1992) 1023-1024.