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Abstract. We study the asymptotic behavior of a bounded solution of
an inhomogeneous delay linear difference equation in a Banach space by
using the spectrum of bounded sequences. We get a significant extension
of excellent results in [1]. A new simple proof is also found for the famous
Gelfand spectral radius theorem. Moreover, among other things we prove
that if the spectrum of a bounded sequence {xn}n is finite then xn = c1ϑ

n
1 +

c2ϑ
n
2 + · · ·+ ckϑ

n
k + o(1) as n→∞ where |ϑ1| = |ϑ2| = · · · = |ϑk| = 1.
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1. Introduction

Let X = (X, ‖·‖X) denote a Banach space and T : X→ X denote a bounded
linear operator. If the sequence of norms {‖T‖ , ‖T 2‖ , · · · } is bounded then
T is called a power bounded operator. Katznelson and Tzafriri [2] proved
the following famous result.

Theorem A. Let T : X→ X denote a bounded linear operator and ∂D the
unit circle. If T is power bounded and ∂D ∩ σ (T ) ⊆ {1} then

lim
n→∞

(
T n+1 − T n

)
= 0.

Vu Quoc Phong [4] reproved this theorem. In this paper, we use a new
method (the spectrum of a bounded sequence in a Banach space) to prove
the existence of limit of T n as n→∞.

2. Spectrum of a bounded sequence

Let X = (X, ‖·‖X) denote a Banach space. Let x = {x0, x1, · · · } denote
a sequence with elements in X and `∞ (X) the Banach space of bounded
sequences in X with the norm ‖x‖ = sup {‖x0‖X, ‖x1‖X, · · · }. Moreover,
let c0 (X) be the subpace of `∞ (X) consisting of vanishing sequences x =
{x0, x1, · · · } in X that is lim

n→∞
xn = 0. Let

S : `∞ (X)→ `∞ (X)

denote the shift operator, that is (Sx)n = xn+1. Let

Y = `∞ (X) /c0 (X)

be the quotient space. The equivalent class containing x = {x0, x1, · · · } is
denoted by x̄ = {x̄0, x̄1, · · · } The norm of an x̄ = {x0, x1, · · · } ∈ Y is defined
by ‖x̄‖Y = lim supn→∞ ‖xn‖X and the reduced shift operator of S is denoted
by S : Y → Y. Then S is an isometry operator so the spectrum of S is
contained in the unit circle so the resolvent operator R

(
λ, S

)
of S is analytic

and injective for every |λ| 6= 1. Hence, if R
(
λ, S

)
x̄ = 0 for some |λ| 6= 1
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then x̄ = 0 which means lim
n→∞

xn = 0. Moreover, the norm of R
(
λ, S

)
is

bounded by
∣∣|λ| − 1

∣∣−1. Hence, lim
λ→∞

R
(
λ, S

)
= 0. These conditions hold for

resolvent of any isometry operator. The spectrum of a bounded sequence
x = {x0, x1, · · · } denoted by σ (x) is the set of all essential (non-removable)
singular points of g (λ) = R

(
λ, S

)
x̄ (holomorphic function taking values in

Y). Then σ (x) is contained in the unit circle ∂D. Moreover, we have

Theorem 1. σ (x) is empty iff lim
n→∞

xn = 0.

Note 1. Theorem 1 is presented in [1] without strict proof. We refer [3]
for readers intersted in complex function and spectral theory .

Theorem 2. σ (x) = {1} iff lim
n→∞

(xn+1 − xn) = 0.

Note 2. Theorem 2 is also presented in [1] without strict proof. Similar to
Theorem 2 we consider the case where σ (x) has only one point. We have

Theorem 3. σ (x) = {ϑ} iff lim
n→∞

(xn+1 − ϑxn) = 0.

Proof: See Theorem 5 below.

Note 3. Theorems 1 and 3 give the following theorem which is invented by
Katznelson and Tzafriri [2] and reproved by Vu Quoc Phong [4] in the case
ϑ = 1.

Theorem 4. Let T : X → X denote a bounded linear operator and
∂D the unit circle. If T is power bounded (that is the sequence of norms
{‖T‖ , ‖T 2‖ , · · · } is bounded) and ∂D ∩ σ (T ) ⊆ {ϑ} then

lim
n→∞

(
T n+1 − ϑT n

)
= 0.

Proof: Let xn = T n and consider the spectrum of x = {x0, x1, · · · }. We have

at once that σ (x) ⊆ ∂D∩σ (T ) ⊆ {ϑ} so by Theorem 3, lim
n→∞

(xn+1 − ϑxn) =

0. The proof is now complete.

Theorem 5. Assume that σ (x) = {ϑ1, ϑ2, · · · , ϑk} is of k distinct points.
Then there exist vectors v1, v2, · · · , vk ∈ X such that xn = v1ϑ

n
1 +v2ϑ

n
2 + · · ·+
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vkϑ
n
k + o(1) as n → ∞. Specially, if σ (x) ⊆ {1} then there exists limxn as

n→∞.

Proof: Let

g (λ) = R
(
λ, S

)
x̄ =

k∑
j=1

c̄j
λ− ϑj

.

This formula holds because the (resolvent) function R
(
λ, S

)
x̄ has simple

poles at isolated points {ϑ1, ϑ2, · · · , ϑk} and lim
λ→∞

g(λ) = 0. Then

x̄ =
k∑
j=1

(
λ− S

)
c̄j

λ− ϑj
for every λ ∈ C\ {ϑ1, ϑ2, · · · , ϑk} . (∗)

Let λ→∞ we get x̄ =
k∑
j=1

c̄j. Replace this back to (∗) we get

k∑
j=1

Sc̄j
λ− ϑj

=
k∑
j=1

ϑj c̄j
λ− ϑj

for every λ ∈ C\ {ϑ1, ϑ2, · · · , ϑk}

and consequently, Sc̄j = ϑj c̄j for j = 1, 2, · · · , k. In the other words, x̄ is the
sum of k eigen-sequences of the shift operator with respect to k eigenvalues
ϑ1, ϑ2, · · · , ϑk. More exactly, we have xn = v1ϑ

n
1 + v2ϑ

n
2 + · · · + vkϑ

n
k + o(1)

as n→∞ where v1, v2, · · · , vk ∈ X are fixed. The proof is now complete.

3. Inhomogeneous delay linear difference equations

Now let B : X → X denote a bounded linear operator. Then B can be
extended to the space `∞ (X) by letting (Bx)n = Bxn and also to the space
Y = `∞ (X) /c0 (X). The spectrums of B in the spaces X and Y are the same.
We are interested in the bounded solutions of the linear difference equation

xn+1 = Bxn + yn

where y = {y0, y1, · · · } is a vanishing sequence in X. Clearly, for any solution
x = {x0, x1, · · · } we have Sx̄ = Bx̄. Therefore, the spectrum of any solution
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x = {x0, x1, · · · } is contained in the spectrum of the operator B (and in the
unit circle). Theorem 5 gives the following theorem which was proved in [1]
for the case k = 1 and ϑ1 = 1.

Theorem 6. Let B : X→ X denote a bounded linear operator and ∂D the
unit circle. If ∂D∩ σ (B) = {ϑ1, ϑ2, · · · , ϑk} then for every bounded solution
x = {x0, x1, · · · } of the linear difference equation

xn+1 = Bxn + yn for n = 0, 1, · · · ,

where y = {y0, y1, · · · } is a vanishing sequence in X, we have xn = v1ϑ
n
1 +

v2ϑ
n
2+· · ·+vkϑnk+o(1) as n→∞ where v1, v2, · · · , vk ∈ X are fixed. Specially,

if ∂D ∩ σ (B) ⊆ {1} then there exists limxn as n→∞.

For the delay equation

xn+p = Bxn + yn for n = 0, 1, · · · ,

we have the following result.

Theorem 7. Let B : X → X denote a bounded linear operator and
∂D the unit circle. If ∂D ∩ σ (B) ⊆ {ϑ} then for every bounded solution
x = {x0, x1, · · · } of the delay linear difference equation

xn+p = Bxn + yn for n = 0, 1, · · · ,

where y = {y0, y1, · · · } is a vanishing sequence in X, we have

lim
n→∞

(xn+1 − ϑxn) = 0.

(Here p denotes a fixed positive integer.)

Proof: Clearly, for any bounded solution x = {x0, x1, · · · } we have Spx̄ =
Bx̄. Therefore, the spectrum of Sp−1x is contained in the spectrum of the
operator B (and in the unit circle). Consequently, this spectrum is empty or
of only one point and our Theorem follows.

4. Appendix: Holomorphic functions in a Banach space
and Resolvent of an isometry operator
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We are interested in those functions f : C → X which can be expressed as power series

f (z) =
∞∑
k=0

zkxk where {xk}∞k=0 ⊆ X. This series is convergent in the norm topology of

X. This means that
∞∑
k=0

‖xk‖X|z|
k
< ∞ for every z ∈ C. These functions are called entire

functions in the Banach space X. If this series is finite we say about polynomial function

(operator). The complex derivative of f is f ′ (z) =
∞∑
k=1

kzk−1xk. Moreover, the complex

integral of f gives

xk =
1

2πi

∮
|z|=R

f (z) dz

zk+1
for k = 0, 1, 2, · · · .

Hence, if ‖f (z)‖X is bounded then f is constant (a vector of the Banach space X). Now let
Ω be an open (unbounded) region of complex plane. Consider those functions g : Ω→ X

such that for any z0 ∈ Ω there is δ > 0 such that g (z) =
∞∑
k=0

(z − z0)
k
xk for some

{xk}∞k=0 ⊆ X and |z − z0| < δ. These functions of this condition are called holomorphic
functions in the region Ω. If we can extend g to the whole complex plane without breaking
this condition then g is also called an entire function. Otherwise, we say about the essential
singularity of g. A point z0 ∈ C is called an essential singularity point of g if g cannot be
extended to Ω ∪ {z0} without breaking the holomorphy condition. Most of time we are

interested in the resolvent (λ−A)
−1

of a linear bounded operator A : X → X. This is a
holomorphic function defined on C\σ (A) by Laurent series

(λ−A)
−1

=

∞∑
n=0

An

λn+1

which is convergent for all |λ| > ρ (A) (ρ(A) denotes the spectral radius of A). On the

other hand, if X is finite dimensional then the resolvent (λ−A)
−1

has finite poles in σ(A)
(the spectrum of A). Let χA denote the characteristic polynomial of A. Then χA(z) = 0

for every z ∈ σ(A) and the resolvent (λ−A)
−1

is holomorphic in C \ σ(A). Therefore, we
can write

(λ−A)
−1

=
φ(λ)

χA(λ)
,

where φ : C → B(X) is a holomorphic function (B(X) denotes the set of continuous
linear operators on X and χA denotes the characteristic polynomial of A). Now multiply
with (λ−A)χA(λ) side by side we have χA(λ)I = (λ−A)φ(λ). Let λ = A we have
χA(A) = 0. The famous Caley-Hamilton theorem is proved. Moreover, we can prove the
famous theorem of I. Gelfand on the spectral radius as follows. Let an = ln ‖An‖ . Then
an+m = ln ‖An+m‖ ≤ ln (‖An‖ ‖Am‖) = ln ‖An‖+ ln ‖Am‖ = an + am and consequently,

there is lim an/n =: ln r, that is lim ‖An‖1/n = r. On the other hand, the relsovent series

(λ−A)
−1

=

∞∑
n=0

An

λn+1
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is absolutely convergent for all |λ| > ρ (A) and

∞∑
n=0

‖An‖
ρ(A)

n =∞.

If lim ‖An‖1/n = r < ρ (A) then ‖An‖ < [ρ (A)− ε]n for all n > N and consequently,

∞ =
∑
n>N

‖An‖
ρ(A)

n <
∑
n>N

[
ρ (A)− ε
ρ (A)

]n
<∞

which is a contradiction. If lim ‖An‖1/n = r > ρ (A) then ‖An‖ > [ρ (A) + ε]
n

for all
n > N and the series

∞∑
n=0

‖An‖
|λ|n

divergent for |λ| = ρ (A) + ε > ρ (A) which is a contradiction. In the next sections we are
specially interested in the resolvent of isometry operators. More exactly, if A : X → X is
an isometry linear operator then the spectrum of A is contained in the unit circle and the

norm of (λ−A)
−1

is bounded by
∣∣|λ| − 1

∣∣−1. On the other hand, any isolated essential

singular point of (λ−A)
−1

is a simple pole [1].
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