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Abstract. We study the asymptotic behavior of a bounded solution of
an inhomogeneous delay linear difference equation in a Banach space by
using the spectrum of bounded sequences. We get a significant extension
of excellent results in [1]. A new simple proof is also found for the famous
Gelfand spectral radius theorem. Moreover, among other things we prove
that if the spectrum of a bounded sequence {z,}, is finite then z,, = ;97 +
Uy + -+ cpUp + o(1) as n — oo where || = || = -+ = |U| = L.
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Introduction

Let X = (X ||-|lx) denote a Banach space and 7" : X — X denote a bounded
linear operator. If the sequence of norms {||T||, /7%, -} is bounded then
T is called a power bounded operator. Katznelson and Tzafriri [2] proved
the following famous result.

Theorem A. Let T : X — X denote a bounded linear operator and 0D the
unit circle. If T is power bounded and 0D N o (T) C {1} then

lim (7" —T") =0.

n—o0

Vu Quoc Phong [4] reproved this theorem. In this paper, we use a new
method (the spectrum of a bounded sequence in a Banach space) to prove
the existence of limit of 7™ as n — oc.

Spectrum of a bounded sequence

Let X = (X,||:|[¢x) denote a Banach space. Let x = {zg, 21, -} denote
a sequence with elements in X and ¢* (X) the Banach space of bounded
sequences in X with the norm ||x|| = sup {||zol|x, ||1]lg,---}. Moreover,
let ¢o (X) be the subpace of ¢ (X) consisting of vanishing sequences x =
{zo,x1,---} in X that is lim z, = 0. Let
n—oo

S 7 (X) = 0 (X)
denote the shift operator, that is (5Sx), = #,41. Let

Y = > (X) /co (X)

be the quotient space. The equivalent class containing x = {zg, 1, -} is
denoted by X = {Zg, Z1, - - } The norm of an X = {xg, x1,--- } € Y is defined
by [|X||y = limsup,,_,. ||#n||x and the reduced shift operator of S is denoted
by S : Y — Y. Then S is an isometry operator so the spectrum of S is
contained in the unit circle so the resolvent operator R ()\, §) of S is analytic
and injective for every |A| # 1. Hence, if R (X, S)X = 0 for some |A| # 1
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then X = 0 which means lim z,, = 0. Moreover, the norm of R ()\,g) is
n—oo

bounded by ||A] — 1‘_1. Hence, /\lim R (X, S) = 0. These conditions hold for
—00

resolvent of any isometry operator. The spectrum of a bounded sequence
x = {xg, 1, - } denoted by o (x) is the set of all essential (non-removable)
singular points of g (A\) = R (), S) X (holomorphic function taking values in
Y). Then o (x) is contained in the unit circle 9D. Moreover, we have

Theorem 1. o (x) is empty iff lim z,, = 0.
n—oo

Note 1. Theorem 1 is presented in [1] without strict proof. We refer [3]
for readers intersted in complex function and spectral theory .

Theorem 2. o (x) = {1} iff lim (z,41 —x,) = 0.
n—oo

Note 2. Theorem 2 is also presented in [1] without strict proof. Similar to
Theorem 2 we consider the case where ¢ (x) has only one point. We have

Theorem 3. o (x) = {9} iff lim (2,41 —Vz,) =0.
n—oo
Proof: See Theorem 5 below.

Note 3. Theorems 1 and 3 give the following theorem which is invented by
Katznelson and Tzafriri [2] and reproved by Vu Quoc Phong [4] in the case
9 =1.

Theorem 4. Let T : X — X denote a bounded linear operator and
0D the unit circle. If T is power bounded (that is the sequence of norms
AT NT? - -+ } is bounded) and OD No (T) C {9} then

lim (7" —9T") =0

n—oo

Proof: Let x, = T™ and consider the spectrum of x = {x¢, xy,--- }. We have

at once that o (x) C 0DNo (T') C {I¥} so by Theorem 3, lim (z,+1 — Jz,) =
n—o0

0. The proof is now complete.

Theorem 5. Assume that o (x) = {¥1,02,--+ , U} is of k distinct points.
Then there exist vectors vy, vy, -+ , v € X such that x, = v197 +v205 +-- -+



vt + o(1) as n — oo. Specially, if o (x) C {1} then there exists limx,, as
n — oo.
Proof: Let
— c;
g(\) :R(A,S)X:Z)\_ﬂ.

j=1 J

This formula holds because the (resolvent) function R ()\,g) X has simple
poles at isolated points {01, s, -+ ,Jx} and /\lim g(A\) = 0. Then
—00

for every A € C\ {1,092, , U} . (*)

k
Let A — oo we get X = > ;. Replace this back to (x) we get
j=1

Sc. 9.C.

Z X —Ci9j = Z 3 icjyj for every A € C\ {¢1,%2, -+ ,Ux}
7j=1 7j=1

and consequently, ?Ej =4v;c; for 5 =1,2,--- k. In the other words, X is the
sum of k£ eigen-sequences of the shift operator with respect to k eigenvalues
V1,9, -+ , U More exactly, we have z,, = 0107 + vy + -+ - + v} + o(1)

as n — 0o where vy, vq, -+ , v, € X are fixed. The proof is now complete.

Inhomogeneous delay linear difference equations

Now let B : X — X denote a bounded linear operator. Then B can be
extended to the space (> (X) by letting (Bx), = Bz, and also to the space
Y = ¢ (X) /co (X). The spectrums of B in the spaces X and Y are the same.
We are interested in the bounded solutions of the linear difference equation

Lpt1 = an + Yn

where y = {0, y1, - - - } is a vanishing sequence in X. Clearly, for any solution
x = {xg,x1, - } we have SX = Bx. Therefore, the spectrum of any solution



x = {xg, x1,- - } is contained in the spectrum of the operator B (and in the
unit circle). Theorem 5 gives the following theorem which was proved in [1]
for the case £k =1 and ¢; = 1.

Theorem 6. Let B : X — X denote a bounded linear operator and 0D the
unit circle. If 0D N o (B) = {V¥1,Vq,-- , Uy} then for every bounded solution
x = {xg,x1, -+ } of the linear difference equation

Tpni1 =Bz, + y, form=0,1,---,

where y = {yo,¥1, - } s a vanishing sequence in X, we have z,, = v197 +
VU4 - -+ R+o(1) asn — oo where vy, ve, - -+, v € X are fived. Specially,
if 0D No (B) C {1} then there exists limx,, as n — oo.

For the delay equation
Tptp = Bry, + yp forn=0,1,---,

we have the following result.

Theorem 7. Let B : X — X denote a bounded linear operator and
0D the unit circle. If 0D N o (B) C {¥} then for every bounded solution
x = {xg,x1, - } of the delay linear difference equation

xn+P:an+yn forn:O,1,~--,
where'y = {yo, Y1, } is a vanishing sequence in X, we have

lim (2,41 — Yz,) = 0.
n—oo

(Here p denotes a fized positive integer.)

Proof: Clearly, for any bounded solution x = {xg, z1, -} we have SPx =
Bx. Therefore, the spectrum of SP~!x is contained in the spectrum of the
operator B (and in the unit circle). Consequently, this spectrum is empty or
of only one point and our Theorem follows.

Appendix: Holomorphic functions in a Banach space
and Resolvent of an isometry operator
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We are interested in those functions f : C — X which can be expressed as power series

o0
f(z) = 3 2%z where {z)}7—, C X. This series is convergent in the norm topology of
k=0

oo

X. This means that > ||a:k||x|z|k < oo for every z € C. These functions are called entire
k=0

functions in the Banach space X. If this series is finite we say about polynomial function

o0

(operator). The complex derivative of f is f’(z) = Y. kz*~1x). Moreover, the complex
k=1

integral of f gives

1 f(z)dz
xk:% f W fork=0,1,2,~--.

|z|=R

Hence, if || f (2)||x is bounded then f is constant (a vector of the Banach space X). Now let
Q be an open (unbounded) region of complex plane. Consider those functions g : Q@ — X

o0
such that for any zy € € there is & > 0 such that g(z) = 3. (z — 20) ) for some
k=0
{zr}iey € X and |z — 2| < é. These functions of this condition are called holomorphic
functions in the region . If we can extend g to the whole complex plane without breaking
this condition then g is also called an entire function. Otherwise, we say about the essential
singularity of g. A point zg € C is called an essential singularity point of g if g cannot be
extended to Q U {zp} without breaking the holomorphy condition. Most of time we are
interested in the resolvent (A — A)~" of a linear bounded operator A : X — X. This is a
holomorphic function defined on C\o (A) by Laurent series

1 n

which is convergent for all |A| > p(A) (p(A) denotes the spectral radius of A). On the
other hand, if X is finite dimensional then the resolvent (A — A) " has finite poles in o (A)
(the spectrum of A). Let x4 denote the characteristic polynomial of A. Then x(z) =0

for every z € o(A) and the resolvent (A — A) ™" is holomorphic in C\ o(A). Therefore, we
can write

o SO
xa(A)

where ¢ : C — B(X) is a holomorphic function (B(X) denotes the set of continuous
linear operators on X and x4 denotes the characteristic polynomial of A). Now multiply
with (A — A)xa(A) side by side we have xa(A\)I = (A — A)p(A). Let A = A we have
xA(A) = 0. The famous Caley-Hamilton theorem is proved. Moreover, we can prove the
famous theorem of I. Gelfand on the spectral radius as follows. Let a, = In||A™||. Then
Anim = In [JAT™ < In (]| A" |A™]]) = In [|A"|| + In||A™|| = a, + @, and consequently,
there is lim a, /n =: Inr, that is lim | A”||"/" = r. On the other hand, the relsovent series

1 n
(A =4) ZZ)W
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is absolutely convergent for all |A| > p(A) and
Sl
— p(A)
If lim || A™[|*/™ = r < p(A) then ||A"|| < [p(A) — &]" for all n > N and consequently,

a4 plA) ="
“‘me<z{mm]<

n>N n>N

which is a contradiction. If lim[[A"[|"/™ = r > p(A) then A" > [p(A) +]" for all

n > N and the series
Z | A"
n=0 |A|

divergent for |A| = p(A) 4+ ¢ > p(A) which is a contradiction. In the next sections we are
specially interested in the resolvent of isometry operators. More exactly, if A : X — X is
an isometry linear operator then the spectrum of A is contained in the unit circle and the
norm of (A — A)~" is bounded by |[A] — 1‘71. On the other hand, any isolated essential

singular point of (A — A)_1 is a simple pole [1].
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