Dynamics of a real quadratic polynomial on its Julia set and a compact interval

Dang Vu Giang

Hanoi Institute of Mathematics Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam

e-mail: $\langle \text{dangvugiang@yahoo.com} \rangle$

February 26, 2016

Abstract. We prove among other things that the Julia set of a real quadratic polynomial $P = 1 - az^2$ having an an absolutely continuous invariant measure in [-1,1] should be real.

2000 AMS Subject Classification: 37A05 (37A45)

Key Words: orthogonal polynomials, invariant measure, Cauchy and Hilbert transforms

1. INTRODUCTION

Let $P = az^d + \cdots$ denote a polynomial of degree $d > 1$. Denote by $P^n =$ $P \circ P \circ \cdots \circ P$ \overbrace{n} the *n*−th iterate of P. The Julia set $J = J(P)$ of P is compact and nonempty. The Hausdorff dimension of J is positive $(\geq \ln d / \ln K_0)$, with $K_0 = \max\{|P'(x)| : x \in J\} > 1$) [3]. Let \mathbb{C}_{∞} denote the Riemann

sphere and $A(\infty) = \left\{ z \in \mathbb{C}_{\infty} : \lim_{n \to \infty} P^n(z) = \infty \right\}$. Then $\partial A(\infty) = J$. Let μ denote the equilibrium measure of $J(P)$ and $\Sigma(P)$ the symmetry group of $J(P)$. It is proved in [4] that $\Sigma(P)$ is infinite if and only if $J(P)$ is a circle. For example, if $P = z^d$ then $J(P)$ is the unit circle, $cap(J) = 1$ and $\mu = \frac{d\theta}{2\pi}$ $\frac{d\theta}{2\pi}$; if $P = T_d$ (Chebisev polynomial of the first kind) then $J(P) =$ $[-1, 1]$, cap(J) = 1/2 and $\mu = \frac{dx}{\pi\sqrt{1}}$ $\frac{dx}{\pi\sqrt{1-x^2}}$. Brolin [6] proved that for monic polynomial $P = z^d + \cdots$, the sequence of zero counting measures of $P^n - a$ converges weakly to the equilibrium measure of $J = J(P)$ for any fixed $a \in \mathbb{C}$. Moreover, the capacity of $J(P)$ is 1 and $J(P)$ is completely invariant under $T: z \to P(z)$, i.e., $T(J) = T^{-1}(J) = J$. On the other hand, as a transformation on $J = J(P)$ the transformation T is strongly mixing and measure preserving, $\mu(T^{-1}(E)) = \mu(E)$ for $E \subset J$ in this case. Recently, we prove that [7]

$$
\operatorname{cap}(J) = \sqrt[d-1]{\frac{1}{|a|}}
$$

for all $P = az^d + \cdots$ and the equilibrium measure of $J = J(P)$ is invariant under T. Recall that the logarithmic energy of a probability measure μ is

$$
I(\mu) = \iint \ln \frac{1}{|z - w|} d\mu(z) d\mu(w).
$$

The equilibrium measure is the only probability measure with minimal energy [11]. Moreover, for the equilibrium measure μ of $J(P)$ we have $I(\mu) =$ $-\ln$ cap (J) and

$$
\int \ln \frac{1}{|z-w|} d\mu(z) = I(\mu),
$$

for q.e. $w \in J$. In [7] we proved the following theorems.

Theorem 1. Let $P = az^d + \cdots$ denote a polynomial of degree $d > 1$. Then the Julia set $J = J(P)$ of P is compact, the equilibrium measure of J is invariant under P and

$$
cap(J) = \sqrt[d-1]{\frac{1}{|a|}}.
$$
\n(1)

Theorem 2. Let $\{\varphi_n = \kappa_n z^n + \cdots : \kappa_n > 0\}_{n=0}^{\infty}$ denote the orthonormal polynomial basis of $L^2(J,\mu)$. Here J is the Julia set of a polynomial $P(z) =$ $az^{d} + bz^{d-1} + \cdots$ of degree $d > 1$ and μ is the equilibrium measure of J. Then

$$
\varphi_n \circ P = \frac{a^n}{|a|^n} \varphi_{nd}, \qquad \kappa_{nd} = \kappa_n |a|^n, \qquad \kappa_{d^n} = \kappa_1 |a|^{d^{n-1} + \dots + d+1}.
$$
 (2)

Moreover,

$$
\varphi_1(z)=\kappa_1\big(z+\frac{b}{ad}\big),\quad \varphi_{d^n}=\kappa_1\big(\underbrace{P\circ P\circ\cdots\circ P}_{n}+\frac{b}{ad}\big)\big(\frac{|a|}{a}\big)^{d^{n-1}+\cdots+d+1}.
$$

For $P(z) = az^d+bz^{d-1}+\cdots$ of degree $d > 1$, every root of $P \circ P \circ \cdots \circ P$ \overbrace{n} $+\frac{b}{a}$ ad is lying in the convex hull of $J(P)$. Consequently, the Julia set of P is real

if and only if the roots of $P \circ P \circ \cdots \circ P$ \overbrace{n} $+\frac{b}{ad}$ are real and distinct.

Theorem 3. If two polynomials $P_1 = a_1 z^d + \cdots$ and $P_2 = a_2 z^d + \cdots$ have the same degree and Julia set then there is a point ξ in the unit circle such that $a_1 = \xi a_2$ and $P_1 = \xi P_2 + P_1(0) - \xi P_2(0)$. In this case the Julia set is invariant under the transformation $z \to \xi z + P_1(0) - \xi P_2(0)$. If $\xi = 1$ then $P_1 = P_2$. If J is real then $\xi = \pm 1$.

Theorem 4. If two polynomials $P_1 = a^{d-1}z^d + \cdots$ and $P_2 = a^{d^n-1}z^{d^n} + \cdots$ have the same Julia set then $P_2 = P_1 \circ P_1 \circ \cdots \circ P_1$ $\overbrace{\hspace{2.5cm}}^{n}$.

Remark. Similar results are proved in [1, 10] for polynomials having the same Julia sets. However, our results make more insight about these polynomials than earlier results. Theorem 2 really recovers the polynomial of a given degree from its Julia set.

2. Main Results

Let μ denote the equilibrium measure of the Julia set of $P = az^k + \cdots$. Define the Cauchy transform $S\mu$ of μ by letting

$$
S\mu(z) = \int \frac{d\mu(t)}{z - t}.
$$

Then $S\mu$ is holomorphic on the Fatou set of P and tending to 0 as $z \to \infty$. For $P(z) = z^k$, the Julia set is the unit circle and $S\mu = 0$ on the whole complex plane. For $P = T_k$, the Chebisev polynomial of the first kind, $J(P) = [-1, 1]$ and $S\mu(z) = \frac{1}{\sqrt{z^2}}$ $\frac{1}{z^2-1}$. Now we prove

Theorem A. For the Cauchy transform of μ the equilibrium measure of the Julia set of $P = az^2 + bz + c$ we have

$$
S\mu(z) - S\mu\left(-z - \frac{b}{a}\right) = P'(z) S\mu(P(z)). \tag{3}
$$

For polynomial $P_a = 1 - az^2$, we have

$$
S\mu_a(z) + azS\mu_a(1 - az^2) = 0,
$$
\n(4)

 \blacksquare

where μ_a denotes the equilibrium measure of $J(P_a)$. Therefore, $S\mu_a = 0$ on any attractive cycle of P_a .

Proof. For $z \in \mathbb{C}$ satisfying $P'(z) \neq 0$

$$
\frac{P'(z)}{P(z) - P(t)} = \frac{1}{z - t} + \frac{1}{z + \frac{b}{a} + t}
$$

so

$$
P'(z) S\mu(P(z)) = \int \frac{d\mu(t)}{z - t} + \int \frac{d\mu(t)}{z + t + \frac{b}{a}}
$$

$$
= S\mu(z) - S\mu\left(-z - \frac{b}{a}\right)
$$

For $P_a = 1 - az^2$, we note that $S\mu_a(z) = -S\mu_a(-z)$ so

$$
2S\mu_{a}(z) = P'_{a}(z) S\mu_{a}(P_{a}(z)).
$$

If $S\mu_a(z) \neq 0$ for some attractive fixed point z of P_a^n then it follows from the above formula that

$$
\frac{d}{dz}P_a^n(z) = 2,
$$

which contradicts the attractivity of z . The proof is now complete.

Remark. Levin [9] had some results related the Cauchy transform of a limiting measure, but our Theorem is not following directly from his results.

3. Iterations of $1 - ax^2$ on $(-1, 1)$

Our methods on orthonormal polynomials with respect to the invariant measures can be applied for iterations of $P_a: x \to 1 - ax^2$ on $(-1, 1)$. Carleson and co-author proved in [5] that for $a \in (0, 2)$ in a set of positive Lebesgue measure, the transformation P_a has no attractive cycle but it has an absolutely continuous invariant measure μ_a with density $g_a/\pi \in L^p(-1,1)$ for all $p \in (1, 2).$

Theorem B. If the transformation P_a of $[-1, 1]$ has an absolutely continuous invariant measure $\mu_a = g_a dx/\pi$ then roots of the iterations P_a^n are distinct and lying in $[-1, 1]$. Therefore, the Julia set of P_a is real (a subset of $[-1, 1]$). Moreover, the Cauchy transform of μ_a will satisfy the identity

$$
S\mu_a(z) + azS\mu_a(1 - az^2) = 0.
$$
 (5)

Therefore, $S\mu_a = 0$ on any attractive cycle of P_a if $S\mu$ is well defined on that cycle. Moreover,

$$
\tilde{g}_a(x) + ax\tilde{g}_a(1 - ax^2) = 0
$$
 for a.e. $x \in [-1, 1].$ (6)

Here, \tilde{g} denote the Hilbert transform of g. If $g_a \in L^p(-1,1)$ for some $p > 1$ then

$$
g_a(x) = \frac{1}{\sqrt{1 - x^2}} \left(1 + \frac{1}{\pi} \int_{-1}^1 \frac{\tilde{g}_a(s) \sqrt{1 - s^2}}{s - x} ds \right)
$$
(7)

and

$$
g_2(x) = \frac{1}{\sqrt{1 - x^2}}.\t(8)
$$

Proof. Apply the orthonormal polynomials techniques [2] we get that the iterations P_a^n are orthogonal with respect to the measure μ_a so any root of them is lying in $[-1, 1]$. We omit the details here. We remind the readers that $P_a: z \to 1 - az^2$ is a transformation of the compact interval [-1.1]. Theorem 2 implies that the Julia set of P_a is (real) subset of [−1, 1]. But not every real quadratic polynomial having an absolutely continuous invariant measure should have real Julia set. The Cauchy transform of μ_a will satisfy the identity (5) . The proof is completely similar as the proof of (3) . On the other hand, the Cauchy transform is exactly the Hilbert transform of the density function. Hence, the formula (6) is directly following from (5). The formula (7) is proved in [8]. If $a = 2$, it follows from (6) that $\tilde{g}_2 = 0$. Hence, (8) follows directly from (7).

Remark. If $a = 1$ then $P_1 = 1 - x^2$ and $P_1 \circ P_1 \circ P_1 = 1 - (x^4 - 2x^2)^2$ has two complex roots $(\pm \sqrt{1 - \frac{1}{n}})$ √ 2) so P_1 has no absolutely continuous invariant measure. However,

$$
\frac{\delta_1 + \delta_0}{2}
$$

is a discrete invariant measure of P_1 .

Acknowledgement. Deepest appreciation is extended towards the NAFOSTED (the National Foundation for Science and Techology Development in Vietnam) for the financial support.

References

- [1] Atela, P.; Hu, J. Commuting polynomials and polynomials with same Julia set. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6 (1996), no. 12A, 2427-2432.
- [2] Barnsley, M. et al, Orthogonal polynomials associated with invariant measures on Julia sets, Bulletin AMS, 7(1982) 381-384.
- [3] Beardon, A. Iteration of Rational Functions, Springer, 1991.
- [4] Beardon, A. Symmetry of Julia sets, Bulletin LMS. 22(1980) 576-582.
- [5] Benedicks M. and Carleson L. On iterations of $1 ax^2$ on $(-1, 1)$, Ann. Math. 122(1985), 1-25.
- [6] Brolin, H. Invariant sets under iteration of rational functions, Ark. Mat. 6(1965) 103-144.
- [7] Dang Vu Giang, Julia set of a polynomial and its equilibrium measure, (submitted)
- [8] Dang Vu Giang, Finite Hilbert transforms, J. Approx. Theory, 200(2015) 221-226
- [9] Levin, Genadi, On an analytic approach to the Fatou conjecture. Fund. Math. 171 (2002), no. 2, 177-196.
- [10] Schmidt, W.; Steinmetz, N. The polynomials associated with a Julia set. Bull. London Math. Soc. 27 (1995), no. 3, 239-241.
- [11] Tsuji, M. Potential theory in modern function theory. Maruzen Co., Ltd., Tokyo 1959 590 pp.