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Abstract. In this paper, we study local well-posedness for the Navier-
Stokes equations with arbitrary initial data in homogeneous Sobolev
spaces Ḣs

p(Rd) for d ≥ 2, p > d
2 , and d

p − 1 ≤ s < d
2p . The obtained

result improves the known ones for p > d and s = 0 (see [4, 6]). In
the case of critical indexes s = d

p − 1, we prove global well-posedness

for Navier-Stokes equations when the norm of the initial value is small
enough. This result is a generalization of the ones in [5] and [24] in which
(p = d, s = 0) and (p > d, s = d

p − 1), respectively.

1. Introduction

This paper studies the Cauchy problem of the incompressible Navier-

Stokes equations (NSE) in the whole space Rd for d ≥ 2, ∂tu = ∆u−∇.(u⊗ u)−∇p,
∇.u = 0,
u(0, x) = u0,

which is a condensed writing for 1 ≤ k ≤ d, ∂tuk = ∆uk −
∑d

l=1 ∂l(uluk)− ∂kp,∑d
l=1 ∂lul = 0,

1 ≤ k ≤ d, uk(0, x) = u0k.

The unknown quantities are the velocity u(t, x) = (u1(t, x), . . . , ud(t, x)) of

the fluid element at time t and position x and the pressure p(t, x).

There is an extensive literature on the existence of strong solutions of the

Cauchy problem for NSE. The global well-posedness of strong solutions for

small initial data in the critical Sobolev space Ḣ
1
2 (R3) is due to Fujita and

Kato [20], also in [8], Chemin has proved the case of Hs(R3), (s > 1/2).

In [21], Kato has proved the case of the Lebesgue space L3(R3). In [23],
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Koch and Tataru have proved the case of the space BMO−1 (see also

[7]). In [23], H. Koch has proved the case of the space Ḃ
d
p
−1

p,∞ (Rd)(p<+∞),

see [23] and the recent ill-posedness result [1] for Ḃ−1
∞,∞(Rd). Results on

the existence of mild solutions with value in Lp(Rd), (p > d) were estab-

lished in the papers of Fabes, Jones and Rivière [10] and of Giga [12].

Concerning the initial datum in the space L∞, the existence of a mild so-

lution was obtained by Cannone and Meyer in [4, 6]. Moreover, in [4, 6],

they also obtained theorems on the existence of mild solutions with value

in the Morrey-Campanato space Mp
2 (Rd), (p > d) and the Sobolev space

Hs
p(Rd), (p < d, 1

p
− s

d
< 1

d
). NSE in the Morrey-Campanato space were

also treated by Kato [22] and Taylor [26]. Recently, the authors of this

article have considered NSE in Sobolev spaces, Sobolev-Lorentz spaces,

mixed-norm Sobolev-Lorentz spaces, and Sobolev-Fourier-Lorentz spaces,

see [15, 16, 18], [17], [13], and [14] respectively. In [19], we prove some results

on the existence and space-time decay rates of global strong solutions of the

Cauchy problem for NSE in weighed L∞(Rd, |x|βdx) spaces. In this paper,

we construct mild solutions in the spaces L∞([0, T ]; Ḣs
p(Rd)) to the Cauchy

problem for NSE when the initial datum belongs to the Sobolev spaces

Ḣs
p(Rd), with d ≥ 2, p > d

2
, and d

p
− 1 ≤ s < d

2p
, we obtain the existence of

mild solutions with arbitrary initial value when T is small enough and exis-

tence of mild solutions for any T < +∞ when the norm of the initial value in

the Triebel-Lizorkin spaces Ḟ
s−d( 1

p
− 1
q̃

),∞
q̃ , (q̃ > max{p, q}, where 1

q
= 1

p
− s

d
)

is small enough. In the case p > d and s = 0, this result is stronger than

that of Cannone and Meyer [4, 6] under a weaker condition on the initial

data. In the case of critical indexes (p > d
2
, s = d

p
− 1), we obtaine global

mild solutions when the norm of the initial value in the Triebel-Lizorkin

spaces Ḟ
d
q̃
−1,∞

q̃ (Rd), (q̃ > max{d, p}) is small enough. This result in one

hand if p = d and s = 0 is stronger than that of Cannone and Planchon [5]

but under a weaker condition on the initial data and in the other hand if

p > d and s = d
p
− 1 is stronger than that of Lemarie-Rieusset but under

a weaker condition on the initial data (Proposition 20.2, [24], p. 201). The

content of this paper is as follows: in Section 2, we state our main theorem

after introducing some notations. In Section 3, we first establish some esti-

mates concerning the heat semigroup with differential. We also recall some

auxiliary lemmas and several estimates in the homogeneous Sobolev spaces
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and Triebel spaces. Finally, in Section 4, we will give the proof of the main

theorem.

2. Statement of the results

Now, for T > 0, we say that u is a mild solution of NSE on [0, T ] cor-

responding to a divergence-free initial datum u0 when u solves the integral

equation

u = et∆u0 −
∫ t

0

e(t−τ)∆P∇.
(
u(τ, .)⊗ u(τ, .)

)
dτ.

Above we have used the following notation: for a tensor F = (Fij) we

define the vector ∇.F by (∇.F )i =
∑d

j=1 ∂jFij and for two vectors u and

v, we define their tensor product (u ⊗ v)ij = uivj. The operator P is the

Helmholtz-Leray projection onto the divergence-free fields

(Pf)j = fj +
∑

1≤k≤d

RjRkfk,

where Rj is the Riesz transforms defined as

Rj =
∂j√
−∆

i.e. R̂jg(ξ) =
iξj
|ξ|
ĝ(ξ).

The heat kernel et∆ is defined as

et∆u(x) = ((4πt)−d/2e−|.|
2/4t ∗ u)(x).

For a space of functions defined on Rd, say E(Rd), we will abbreviate it as E.

We denote by Lq := Lq(Rd) the usual Lebesgue space for q ∈ [1,∞] with the

norm ‖.‖q, and we do not distinguish between the vector-valued and scalar-

valued spaces of functions. We define the Sobolev space by Ḣs
q := Λ̇−sLq

equipped with the norm
∥∥f∥∥

Ḣs
q

:= ‖Λ̇sf‖q. Here Λ̇s := F−1|ξ|sF , where

F and F−1 are the Fourier transform and its inverse, respectively. Λ̇ =√
−∆ is the homogeneous Calderon pseudo-differential operator. For vector-

valued f = (f1, ..., fM), we define ‖f‖X =
(∑m=M

m=1 ‖fm‖2
X

) 1
2 . Throughout

the paper, we sometimes use the notation A . B as an equivalent to A ≤
CB with a uniform constant C. The notation A ' B means that A . B

and B . A. Now we can state our results

Theorem 2.1. Let s and p be such that

p >
d

2
and

d

p
− 1 ≤ s <

d

2p
.
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Set
1

q
=

1

p
− s

d
.

(a) For all q̃ > max{p, q}, there exists a positive constant δq,q̃,d such that

for all T > 0 and for all u0 ∈ Ḣs
p(Rd) with div(u0) = 0 satisfying

(2.1) T
1
2

(1+s− d
p

)
∥∥∥ sup

0<t<T
t
d
2

( 1
p
− s
d
− 1
q̃

)
∣∣et∆u0

∣∣∥∥∥
Lq̃
≤ δq,q̃,d,

NSE has a unique mild solution u ∈ L∞([0, T ]; Ḣs
p) and the following in-

equality holds∥∥∥ sup
0<t<T

t
d
2

( 1
q
− 1
r

)
∣∣u(t, x)

∣∣∥∥∥
r
< +∞, for all r > max{p, q}.

In particular, the condition (2.1) holds for arbitrary u0 ∈ Ḣs
p(Rd) when

T (u0) is small enough.

(b) If s = d
p
− 1 then for all q̃ > max{p, d} there exists a constant σq̃,d > 0

such that if
∥∥u0

∥∥
Ḟ
d
q̃−1,∞
q̃

≤ σq̃,d and T = +∞ then the condition (2.1) holds.

In the case of critical indexes (s = d
p
− 1, p > d

2
), we get the following

consequence.

Proposition 2.2. Let p > d
2
. Then for any q̃ > max{p, d}, there exists a

positive constant δq̃,d such that for all T > 0 and for all u0 ∈ Ḣ
d
p
−1

p (Rd) with

div(u0) = 0 satisfying

(2.2)
∥∥∥ sup

0<t<T
t
1
2

(1− d
q̃

)
∣∣et∆u0

∣∣∥∥∥
Lq̃
≤ δq̃,d,

NSE has a unique mild solution u ∈ L∞([0, T ]; Ḣ
d
p
−1

p ) and the following

inequality holds∥∥∥ sup
0<t<T

t
d
2

( 1
d
− 1
r

)
∣∣u(t, x)

∣∣∥∥∥
r
< +∞, for all r > max{p, d}.

Denoting w = u− et∆u0 then w satisfies the following inequality∥∥∥ sup
0<t<T

∣∣Λ̇ d
p̃
−1w(t, x)

∣∣∥∥∥
Lp̃
<∞, for all p̃ > 1

2
max{p, d}.

Moreover, if p ≥ d then

sup
0<t<T

t
1
2

(1− d
p

)
∣∣u(t, .)

∣∣ ∈ Lp.



5

In particular, the condition (2.2) holds for arbitrary u0 ∈ Ḣ
d
p
−1

p (Rd) when

T (u0) is small enough, and there exists a positive constant σq̃,d such that if

(2.3)
∥∥u0

∥∥
Ḟ
d
q̃−1,∞
q̃

≤ σq̃,d and T = +∞

then the condition (2.2) holds.

Remark 2.3. Proposition 2.2 is the theorem of Canone and Planchon [5]

if p = d and the condition (2.3) is replaced by the condition

(2.4)
∥∥u0

∥∥
Ḟ
d
q̃−1,∞
q̃

≤ σq̃,d and T = +∞, where d < q̃ < 2d.

Note that in the case p = d, the condition (2.3) is weaker than the condition

(2.4) because of the following elementary imbedding maps

Ḟ
d
q̃
−1,∞

q̃ (Rd)(d<q̃<2d) ↪→ Ḟ
− 1

2
,∞

2d (Rd) ↪→ Ḟ
d
q̃
−1,∞

q̃ (Rd)(q̃>2d).

Remark 2.4. The statement about the global existence in Proposition 2.2

is the Lemarie-Rieusset statement (Proposition 20.2, [24], p. 201) if p > d

and the condition (2.3) is replaced by the condition

(2.5)
∥∥u0

∥∥
Ḣ
d
p−1

p

< δd,p.

Note that the condition (2.3) is weaker than the condition (2.5) because of

the following elementary imbedding maps

Ḣ
d
p
−1

p (Rd) ↪→ Ḟ
d
p
−1,∞

p (Rd) ↪→ Ḟ
d
q̃
−1,∞

q̃ (Rd), (q̃ > p).

Lemarie-Rieusset proved the above statement by using Hardy-Littlewood

maximal functions theory (as developped for Ld by Canderón [9] and

Cannone [4]).

In the case of supercritical indexes p > d
2

and d
p
− 1 < s < d

2p
, we get the

following consequence.

Proposition 2.5. Let p > d
2

and d
p
−1 < s < d

2p
. Then for all q̃ > max{p, q},

where
1

q
=

1

p
− s

d
,

there exists a positive constant δq,q̃,d such that for all T > 0 and for all

u0 ∈ Ḣs
p(Rd) with div(u0) = 0 satisfying

(2.6) T
1
2

(1+s− d
p

)
∥∥u0

∥∥
Ḟ
s−( dp−

d
q̃ ),∞

q̃

≤ δq,q̃,d,
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NSE has a unique mild solution u ∈ L∞([0, T ]; Ḣs
p) and the following in-

equality holds∥∥∥ sup
0<t<T

t
d
2

( 1
q
− 1
r

)
∣∣u(t, x)

∣∣∥∥∥
r
< +∞, for all r > max{p, q}.

Remark 2.6. Proposition 2.5 is the theorem of Canone and Meyer [4, 6] if

s = 0, p > d, and the condition (2.6) is replaced by the condition

T
1
2

(1− d
p

)
∥∥u0

∥∥
Lp
≤ δp,d.

Note that in the case s = 0 and p > d, the condition (2.6) is weaker than

the above condition because of the following elementary imbedding maps

Lp(Rd) ↪→ Ḟ
−( d

p
− d
q̃

),∞
q̃ (Rd), (q̃ > p ≥ d).

3. Tools from harmonic analysis

In this section we prepare some auxiliary lemmas.

The main property we use throughout this paper is that the operator et∆P∇
is a matrix of convolution operators with bounded integrable kernels.

Lemma 3.1. Let s > −1. Then the kernel function of Λ̇set∆P∇ is the

function

Kt(x) =
1

t
d+s+1

2

K
( x√

t

)
,

where the function K is the kernel function of Λ̇se∆P∇ which satisfies the

following inequality

|K(x)| . 1

1 + |x|d+s+1
.

Proof. See Proposition 11.1 in ([24], p. 107). �

Lemma 3.2. The kernel function Kt(x) of Λ̇set∆P∇ satisfies the following

inequality

|Kt(x)| . 1

tγ2|x|γ1
, for γ1 > 0, γ2 > 0, and γ1 + 2γ2 = d+ s+ 1.

Proof. This is deduced by applying Lemma 3.1 and the Young inequality

|Kt(x)| =
∣∣∣ 1

t
d+s+1

2

K
( x√

t

)∣∣∣ . 1

t
d+s+1

2

1

1 + ( |x|√
t
)d+s+1

=
1

t
d+s+1

2 + |x|d+s+1
.

1

tγ2|x|γ1
.

�
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Lemma 3.3. (Sobolev inequalities).

If s1 > s2, 1 < q1, q2 < ∞, and s1 − d
q1

= s2 − d
q2

, then we have the

following embedding mapping

Ḣs1
q1
↪→ Ḣs2

q2
.

In this paper we use the definition of the homogeneous Triebel space Ḟ s,p
q

in [2, 3, 11, 25]. The following lemma will provide a different characterization

of Triebel spaces Ḟ s,p
q in terms of the heat semigroup and will be one of the

staple ingredients of the proof of Theorem 2.1.

Lemma 3.4.

Let 1 ≤ p, q ≤ ∞ and s < 0. Then the two quantities∥∥∥(∫ ∞
0

(
t−

s
2

∣∣et∆f ∣∣)pdt

t

) 1
p
∥∥∥
Lq
and

∥∥f∥∥
Ḟ s,pq

are equivalent.

Proof. See [5]. �

Lemma 3.5. (Convolution of the Lorentz spaces).

Let 1 < p < ∞, 1 ≤ q ≤ ∞, 1/p′ + 1/p = 1, and 1/q′ + 1/q = 1. Then

convolution is a bounded bilinear operator:

(a) from Lp,q × L1 to Lp,q,

(b) from Lp,q × Lp′,q′ to L∞,

(c) from Lp,q×Lp1,q1 to Lp2,q2, for 1 < p, p1, p2 <∞, 1 ≤ q, q1, q2 ≤ ∞, 1/p2+

1 = 1/p+ 1/p1, and 1/q2 = 1/q + 1/q1.

Proof. See Proposition 2.4 (c) in ([24], p. 20). �

Lemma 3.6. Let θ < 1 and γ < 1 then∫ t

0

(t− τ)−γτ−θdτ = Ct1−γ−θ, where C =

∫ 1

0

(1− τ)−γτ−θdτ <∞.

The proof of this lemma is elementary and may be omitted. �

Let us recall following result on solutions of a quadratic equation in Banach

spaces (Theorem 22.4 in ([24], p. 227)).

Theorem 3.7. Let E be a Banach space, and B : E ×E → E be a contin-

uous bilinear map such that there exists η > 0 so that

‖B(x, y)‖ ≤ η‖x‖‖y‖,

for all x and y in E. Then for any fixed y ∈ E such that ‖y‖ ≤ 1
4η

, the

equation x = y −B(x, x) has a unique solution x ∈ E satisfying ‖x‖ ≤ 1
2η

.
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4. Proof of Theorem 2.1

In this section we shall give the proof of Theorem 2.1.

We now need three more lemmas. In order to proceed, we define an auxiliary

space G q̃q,T which is made up of the functions u(t, x) such that∥∥u∥∥Gq̃q,T :=
∥∥∥ sup

0<t<T
t
α
2

∣∣u(t, x)
∣∣∥∥∥
Lq̃
<∞,

and

(4.1) lim
t→0

∥∥∥ sup
0<τ<t

τ
α
2

∣∣u(τ, x)
∣∣∥∥∥
Lq̃

= 0,

with

q̃ ≥ q ≥ d and α = d
(1

q
− 1

q̃

)
.

We recall the definition of the auxiliary space Hs
p,T introduced by Cannone

and Planchon [5]. This space is made up of the functions u(t, x) such that∥∥u∥∥Hsp,T :=
∥∥∥ sup

0<t<T

∣∣Λ̇su(t, x)
∣∣∥∥∥
Lp
<∞,

and

(4.2) lim
t→0

∥∥∥ sup
0<τ<t

∣∣Λ̇su(τ, x)
∣∣∥∥∥
Lp

= 0,

with

p > 1 and s ≥ d

p
− 1.

The space Hs
p,T is continuously embedded into L∞([0, T ]; Ḣs

p(Rd)) because

of the following elementary inequality

sup
0<t<T

∥∥Λ̇su(t, x)
∥∥
Lp
≤
∥∥∥ sup

0<t<T

∣∣Λ̇su(t, x)
∣∣∥∥∥
Lp
.

Lemma 4.1. Suppose that u0 ∈ Ḣs
p(Rd) with p > 1 and d

p
− 1 ≤ s < d

p
.

Then for all q̃ satisfying

q̃ > max{p, q},

where
1

q
=

1

p
− s

d
,

we have

et∆u0 ∈ G q̃q,∞.
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Proof. First, we consider the case p ≤ q. In this case s ≥ 0, applying Lemma

3.3 to obtain u0 ∈ Lq. We will prove that∥∥∥ sup
0<t<∞

t
α
2

∣∣et∆u0

∣∣∥∥∥
Lq̃
.
∥∥u0

∥∥
Lq
, for all q̃ > q.

Indeed, we have the following estimates

t
α
2

∣∣et∆u0

∣∣ =
∣∣∣ t

α
2

(4πt)d/2
e
−|.|2
4t ∗ u0

∣∣∣ . 1
√
t
(d−α)

e
−|.|2
4t ∗ |u0|

=
1

|.|d−α
( |.|√

t

)d−α
e
−|.|2
4t ∗ |u0| ≤ sup

x∈Rd

(
|x|d−αe

−|x|2
4

)
.

1

|.|d−α
∗
∣∣u0

∣∣
.

1

|.|d−α
∗
∣∣u0

∣∣.(4.3)

From the estimate (4.3), applying Lemma 3.5(c) to obtain∥∥∥ sup
0<t<∞

t
α
2

∣∣et∆u0

∣∣∥∥∥
Lq̃
.
∥∥∥ 1

|.|d−α
∗
∣∣u0

∣∣∥∥∥
Lq̃
.
∥∥∥ 1

|.|d−α
∥∥∥
L

d
d−α ,∞

∥∥u0

∥∥
Lq,q̃

.
∥∥u0

∥∥
Lq
, (note that

1

|.|s
∈ L

d
s
,∞(Rd) with 0 < s ≤ d).

This proves the result. We now prove that

lim
t→0

∥∥∥ sup
0<τ<t

τ
α
2

∣∣eτ∆u0

∣∣∥∥∥
Lq̃

= 0.

Set Xn(x) = 0 for x ∈ {x : |x| < n} ∩ {x : |u0(x)| < n} and Xn(x) = 1

otherwise. We have

(4.4) t
α
2

∣∣et∆u0

∣∣ ≤ C
( 1
√
t
(d−α)

e
−|.|2
4t ∗ |Xnu0|+

1
√
t
(d−α)

e
−|.|2
4t ∗ |(1−Xn)u0|

)
.

Let q̂ be fixed such that q < q̂ < q̃ and β = d(1
q̂
− 1

q̃
). Arguing as in the

proof of the estimate (4.3), we derive

C
1

√
t
(d−α)

e
−|.|2
4t ∗ |Xnu0| ≤ C1

1

|.|d−α
∗
∣∣Xnu0

∣∣,(4.5)

and

C
1

√
t
(d−α)

e
−|.|2
4t ∗ |(1−Xn)u0| = Ct

α−β
2

1
√
t
(d−β)

e
−|.|2
4t ∗ |(1−Xn)u0|

≤ C sup
x∈Rd

(|x|d−βe
−|x|2

4 )t
α−β
2

1

|.|d−β
∗
∣∣(1−Xn)u0

∣∣
≤ C2nt

d
2

( 1
q
− 1
q̂

) 1

|.|d−β
∗
∣∣1−Xn∣∣.(4.6)



10 DAO QUANG KHAI AND VU THI THUY DUONG

From the estimates (4.4), (4.5), and (4.6), we have∥∥∥ sup
0<τ<t

τ
α
2

∣∣eτ∆u0

∣∣∥∥∥
Lq̃
≤

C1

∥∥∥ 1

|.|d−α
∗
∣∣Xnu0

∣∣∥∥∥
Lq̃

+ C2nt
d
2

( 1
q
− 1
q̂

)
∥∥∥ 1

|.|d−β
∗
∣∣1−Xn∣∣∥∥∥

Lq̃
≤

C3

∥∥∥ 1

|.|d−α
∥∥∥
L

d
d−α ,∞

∥∥Xnu0

∥∥
Lq

+ C4nt
d
2

( 1
q
− 1
q̂

)
∥∥∥ 1

|.|d−β
∥∥∥
L

d
d−β ,∞

∥∥1−Xn
∥∥
Lq̂
≤

C5

∥∥Xnu0

∥∥
Lq

+ C6nt
d
2

( 1
q
− 1
q̂

)
∥∥1−Xn

∥∥
Lq̂
.(4.7)

For any ε > 0, we can take n large enough that

(4.8) C5

∥∥Xnu0

∥∥
Lq
<
ε

2
.

Fixed one of such n, there exists t0 = t0(n) > 0 satisfying

(4.9) C6nt
d
2

( 1
q
− 1
q̂

)
∥∥1−Xn

∥∥
Lq̂
<
ε

2
, for t < t0.

From the estimates (4.7), (4.8), and (4.9), we have∥∥∥ sup
0<τ<t

τ
α
2

∣∣eτ∆u0

∣∣∥∥∥
Lq̃
≤ C5

∥∥Xnu0

∥∥
Lq

+ C6nt
d
2

( 1
q
− 1
q̂

)
∥∥1−Xn

∥∥
Lq̂
< ε, for t < t0.

We now consider the case p > q. In this case s < 0. We prove that∥∥∥ sup
0<t<∞

t
α
2

∣∣et∆u0

∣∣∥∥∥
Lq̃
.
∥∥u0

∥∥
Ḣs
p
, for all q̃ > p.

We have

et∆u0 = et∆Λ̇−sΛ̇su0 =
1

t
d−s
2

K
( .√

t

)
∗ (Λ̇su0),

where

K̂(ξ) =
1

(2π)
d
2

e−|ξ|
2|ξ|−s and |K(x)| . 1

(1 + |x|)d−s
.

From the above inequality, we have

t
α
2

∣∣et∆u0

∣∣ ≤ ∣∣∣ 1
√
t
(d−s−α)

K
( .√

t

)∣∣∣ ∗ |Λ̇su0|

=
∣∣∣ 1

|.|d−s−α
( |.|√

t

)d−s−α
K
( .√

t

)∣∣∣ ∗ |Λ̇su0|

≤ sup
x∈Rd

(∣∣|x|d−s−αK(x)
∣∣) 1

|.|d−s−α
∗
∣∣Λ̇su0

∣∣ . 1

|.|d−s−α
∗
∣∣Λ̇su0

∣∣.(4.10)

From the estimate (4.10), applying Lemma 3.5(c), we have∥∥∥ sup
0<t<∞

t
α
2

∣∣et∆u0

∣∣∥∥∥
Lq̃
.
∥∥∥ 1

|.|d−s−α
∗
∣∣Λ̇su0

∣∣∥∥∥
Lq̃
≤∥∥∥ 1

|.|d−s−α
∗
∣∣Λ̇su0

∣∣∥∥∥
Lq̃,p
.
∥∥∥ 1

|.|d−s−α
∥∥∥
L

d
d−s−α ,∞

∥∥Λ̇su0

∥∥
Lp
'
∥∥u0

∥∥
Ḣs
p
.
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This proves the result. We now claim that

lim
t→0

∥∥∥ sup
0<τ<t

τ
α
2

∣∣eτ∆u0

∣∣∥∥∥
Lq̃

= 0, for all q̃ > p.

Set Xn,s(x) = 0 for x ∈ {x : |x| < n}∩{x : |Λ̇su0(x)| < n} and Xn,s(x) = 1

otherwise. Let q̂ be fixed such that p < q̂ < q̃ and β = d(1
p
− 1

q̂
). For any

ε > 0, by an arguing similar to the case q > p, there exist a sufficiently large

n and a sufficiently small t0 = t0(n) such that∥∥∥ sup
0<τ<t

τ
α
2

∣∣eτ∆u0

∣∣∥∥∥
Lq̃
≤ C1

∥∥∥ 1

|.|d−s−α
∥∥∥
L

d
d−s−α ,∞

∥∥Xn,sΛ̇su0

∥∥
Lp

+ C2nt
β
2

∥∥∥ 1

|.|d−s−α+β

∥∥∥
L

d
d−s−α+β ,∞

∥∥1−Xn,s
∥∥
Lq̂
< ε, for t < t0.

�

In the following lemmas a particular attention will be devoted to the

study of the bilinear operator B(u, v)(t) defined by

(4.11) B(u, v)(t) =

∫ t

0

e(t−τ)∆P∇.
(
u(τ)⊗ v(τ)

)
dτ.

Lemma 4.2. Let p and s be such that

p >
d

2
and

d

p
− 1 ≤ s <

d

2p
.

Then the bilinear operator B is continuous from G q̃q,T×G
q̃
q,T into Hs

p,T , where

1

q
=

1

p
− s

d
, q < q̃ < 2p,

and we have the inequality

(4.12)
∥∥B(u, v)

∥∥
Hsp,T
≤ CT

1
2

(1+s− d
p

)
∥∥u∥∥Gq̃q,T∥∥v∥∥Gq̃q,T ,

where C is a positive constant and independent of T.

Proof. From the equality (4.11), applying Lemma 3.2 to obtain∣∣Λ̇sB(u, v)(t)(x)
∣∣ ≤ ∫ t

0

∣∣Λ̇se(t−τ)∆P∇.
(
u(τ, x)⊗ v(τ, x)

)∣∣dτ
=

∫ t

0

∣∣∣Kt−τ (x) ∗
(
u(τ, x)⊗ v(τ, x)

)∣∣∣dτ
.
∫ t

0

∣∣∣ 1

(t− τ)γ2 .|x|γ1
∗
(
u(τ, x)⊗ v(τ, x)

)∣∣∣dτ(4.13)

where

γ1 > 0, γ2 > 0, γ1 + 2γ2 = d+ 1 + s.
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Using the estimate (4.13) for

γ1 = d
(

1 +
1

p
− 2

q̃

)
, γ2 =

1

2
− d

2p
+
s

2
+
d

q̃
,

and applying Lemma 3.6 to obtain∣∣Λ̇sB(u, v)(t)(x)
∣∣

.
1

|x|d(1+ 1
p
− 2
q̃

)
∗
∫ t

0

1

(t− τ)
1
2
− d

2p
+ s

2
+ d
q̃

∣∣u(τ, x)⊗ v(τ, x)
∣∣dτ

.
1

|x|d(1+ 1
p
− 2
q̃

)
∗
∫ t

0

1

(t− τ)
1
2
− d

2p
+ s

2
+ d
q̃

τ−α sup
0<η<t

η
α
2

∣∣u(η, x)
∣∣ sup
0<η<t

η
α
2

∣∣v(η, x)
∣∣dτ

=
1

|x|d(1+ 1
p
− 2
q̃

)
∗
(

sup
0<η<t

η
α
2

∣∣u(η, x)
∣∣ sup
0<η<t

η
α
2

∣∣v(η, x)
∣∣) ∫ t

0

1

(t− τ)
1
2
− d

2p
+ s

2
+ d
q̃

τ−αdτ

' t
1
2

(1+s− d
p

) 1

|x|d(1+ 1
p
− 2
q̃

)
∗
(

sup
0<η<t

η
α
2

∣∣u(η, x)
∣∣ sup
0<η<t

η
α
2

∣∣v(η, x)
∣∣).(4.14)

From the estimate (4.14), applying Lemma 3.5(c) and Hölder’s inequality

in order to obtain∥∥∥ sup
0<τ<t

∣∣Λ̇sB(u, v)(τ)
∣∣∥∥∥
Lp
≤
∥∥∥ sup

0<τ<t

∣∣Λ̇sB(u, v)(τ)
∣∣∥∥∥
Lp,

q̃
2

. t
1
2

(1+s− d
p

)
∥∥∥ 1

|x|d(1+ 1
p
− 2
q̃

)

∥∥∥
L

1

1+ 1
p−

2
q̃

,∞

∥∥∥ sup
0<η<t

η
α
2

∣∣u(η, x)
∣∣ sup
0<η<t

η
α
2

∣∣v(η, x)
∣∣∥∥∥
L
q̃
2

. t
1
2

(1+s− d
p

)
∥∥∥ sup

0<η<t
η
α
2

∣∣u(η, x)
∣∣∥∥∥
Lq̃

∥∥∥ sup
0<η<t

η
α
2

∣∣v(η, x)
∣∣∥∥∥
Lq̃
.(4.15)

Let us now check the validity of the condition (4.2) for the bilinear term

B(u, v)(t). In fact, from the estimate (4.15) it follows that

lim
t→0

∥∥∥ sup
0<τ<t

∣∣Λ̇sB(u, v)(τ)
∣∣∥∥∥
Lp

= 0,

whenever

lim
t→0

∥∥∥ sup
0<τ<t

τ
α
2

∣∣u(τ, x)
∣∣∥∥∥
Lq̃

= lim
t→0

∥∥∥ sup
0<τ<t

τ
α
2

∣∣v(τ, x)
∣∣∥∥∥
Lq̃

= 0.

The estimate (4.12) is deduced from the inequality (4.15). �

Lemma 4.3. Let q and q1 be such that d ≤ q < q1 < +∞. Then the bilinear

operator B is continuous from Gq1q,T × G
q1
q,T into Gq2q,T for all q2 satisfying

1
q2
∈
(
0, 1

q

]
∩
(

2
q1
− 1

d
, 2
q1

)
, and we have the inequality

(4.16)
∥∥B(u, v)

∥∥
Gq2q,T
≤ CT

1
2

(1− d
q

)
∥∥u∥∥Gq1q,T∥∥v∥∥Gq1q,T ,

where C is a positive constant and independent of T.
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Proof. From the equality (4.11), applying Lemma 3.2 to obtain∣∣B(u, v)(t)(x)
∣∣ ≤ ∫ t

0

∣∣e(t−τ)∆P∇.
(
u(τ, x)⊗ v(τ, x)

)∣∣dτ
=

∫ t

0

∣∣∣Kt−τ (x) ∗
(
u(τ, x)⊗ v(τ, x)

)∣∣∣dτ
.
∫ t

0

∣∣∣ 1

(t− τ)γ2 .|x|γ1
∗
(
u(τ, x)⊗ v(τ, x)

)∣∣∣dτ(4.17)

where

γ1 > 0, γ2 > 0, γ1 + 2γ2 = d+ 1.

Set

α1 = d(
1

q
− 1

q1

), α2 = d(
1

q
− 1

q2

).

Using the estimate (4.17) for

γ1 = d
(

1 +
1

q2

− 2

q1

)
, γ2 =

1

2
− d

2q2

+
d

q1

,

and applying Lemma 3.6 to obtain∣∣B(u, v)(t)(x)
∣∣ . 1

|x|d(1+ 1
q2
− 2
q1

)
∗
∫ t

0

1

(t− τ)
1
2
− d

2q2
+ d
q1

∣∣u(τ, x)⊗ v(τ, x)
∣∣dτ

.
1

|x|d(1+ 1
q2
− 2
q1

)
∗
∫ t

0

1

(t− τ)
1
2
− d

2q2
+ d
q1

τ−α1 sup
0<η<t

η
α1
2

∣∣u(η, x)
∣∣ sup
0<η<t

η
α1
2

∣∣v(η, x)
∣∣dτ

=
1

|x|d(1+ 1
q2
− 2
q1

)
∗
(

sup
0<η<t

η
α1
2

∣∣u(η, x)
∣∣ sup
0<η<t

η
α1
2

∣∣v(η, x)
∣∣) ∫ t

0

1

(t− τ)
1
2
− d

2q2
+ d
q1 τα1

dτ

' t
1
2

(1− d
q

)−α2
2

1

|x|d(1+ 1
q2
− 2
q1

)
∗
(

sup
0<η<t

η
α1
2

∣∣u(η, x)
∣∣ sup
0<η<t

η
α1
2

∣∣v(η, x)
∣∣).(4.18)

From the estimate (4.18), applying Lemma 3.5(c) and Hölder’s inequality

in order to obtain∥∥∥ sup
0<τ<t

t
α2
2

∣∣B(u, v)(τ)
∣∣∥∥∥
Lq2
≤
∥∥∥ sup

0<τ<t
t
α2
2

∣∣B(u, v)(τ)
∣∣∥∥∥
Lq2,

q2
2

. t
1
2

(1− d
q

)
∥∥∥ 1

|x|d(1+ 1
q2
− 2
q1

)

∥∥∥
L

1

1+ 1
q2
− 2
q1

,∞

∥∥∥ sup
0<η<t

η
α1
2

∣∣u(η, x)
∣∣ sup
0<η<t

η
α1
2

∣∣v(η, x)
∣∣∥∥∥
L
q1
2

. t
1
2

(1− d
q

)
∥∥∥ sup

0<η<t
η
α1
2

∣∣u(η, x)
∣∣∥∥∥
Lq̃

∥∥∥ sup
0<η<t

η
α1
2

∣∣v(η, x)
∣∣∥∥∥
Lq1
.(4.19)

Let us now check the validity of the condition (4.1) for the bilinear term

B(u, v)(t). In fact, from the estimate (4.19) it follows that

lim
t→0

∥∥∥ sup
0<τ<t

t
α2
2

∣∣B(u, v)(τ)
∣∣∥∥∥
Lq2

= 0,
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whenever

lim
t→0

∥∥∥ sup
0<τ<t

τ
α1
2

∣∣u(τ, x)
∣∣∥∥∥
Lq1

= lim
t→0

∥∥∥ sup
0<τ<t

τ
α1
2

∣∣v(τ, x)
∣∣∥∥∥
Lq1

= 0

The estimate (4.16) is deduced from the inequality (4.19). �

Proof of Theorem 2.1

(a) Applying Lemma 4.3 for q1 = q2 = q̃, we deduce that B is continuous

from G q̃q,T × G
q̃
q,T to G q̃q,T and we have the inequality∥∥B(u, v)

∥∥
Gq̃q,T
≤ Cq,q̃,dT

1
2

(1− d
q

)
∥∥u∥∥Gq̃q,T∥∥v∥∥Gq̃q,T = Cq,q̃,dT

1
2

(1+s− d
p

)
∥∥u∥∥Gq̃q,T∥∥v∥∥Gq̃q,T ,

where Cq,q̃,d is a positive and independent of T . From Theorem 3.7 and the

above inequality, we deduce that for any u0 ∈ Ḣs
p satisfying

T
1
2

(1+s− d
p

)
∥∥et∆u0

∥∥
Gq̃q,T

= T
1
2

(1+s− d
p

) sup
0<t<T

t
α
2

∥∥et∆u0

∥∥
Lq̃
≤ 1

4Cq,q̃,d
,

where

α = d
(1

q
− 1

q̃

)
= d
(1

p
− s

d
− 1

q̃

)
,

NSE has a solution u on the interval (0, T ) so that u ∈ G q̃q,T . We prove that

u ∈
⋂

r>max{p,q}
Grq,T . Indeed, applying Lemma 4.3, we have B(u, u) ∈ Grq,T

for all r satisfying 1
r
∈
(
0, 1

q

]
∩
(

2
q̃
− 1

d
, 2
q̃

)
. Applying Lemma 4.1, we have

et∆u0 ∈ Grq,T for all r satisfying 1
r
∈
(
0, 1

max{p,q}

)
. Since u = et∆u0−B(u, u),

it follows that u ∈ Grq,T for all r satisfying 1
r
∈
(
0, 1

max{p,q}

)
∩
(

2
q̃
− 1

d
, 2
q̃

)
.

Applying again Lemmas 4.3 and 4.1, in exactly the same way, since u ∈ Grq,T
for all r satisfying 1

r
∈
(
0, 1

max{p,q}

)
∩
(

2
q̃
− 1

d
, 2
q̃

)
, it follows that u ∈ Grq,T for

all r satisfying 1
r
∈
(
0, 1

max{p,q}

)
∩
(

1
d
− 22(1

d
− 1

q̃
), 22

q̃

)
. By induction, we get

u ∈ Grq,T for all r satisfying 1
r
∈
(
0, 1

max{p,q}

)
∩
(

1
d
−2n(1

d
− 1

q̃
), 2n

q̃

)
with n ≥ 1.

Since 1
d
− 1

q̃
> 0, it follows that there exists sufficiently large n satisfying(

0, 1
max{p,q}

)
∩
(

1
d
− 2n(1

d
− 1

q̃
), 2n

q̃

)
=
(
0, 1

max{p,q}

)
. Therefore u ∈ Grq,T for all

r > max{p, q}. This proves the result.

We now prove that u ∈ L∞([0, T ]; Ḣs
p). Indeed, from u ∈ Grq,T for all r >

max{p, q}, applying Lemma 4.2 to obtain B(u, u) ∈ Hs
p,T ⊆ L∞

(
[0, T ]; Ḣs

p

)
.

On the other hand, since u ∈ Ḣs
p , it follows that et∆u0 ∈ L∞

(
[0, T ]; Ḣs

p

)
.

Therefore

u = et∆u0 −B(u, u) ∈ L∞
(
[0, T ]; Ḣs

p

)
.
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Finally, we will show that the condition (2.1) is valid when T is small enough.

From the definition of G q̃q,T and Lemma 4.1, we deduce that the left-hand

side of the condition (2.1) converges to 0 when T goes to 0. Therefore the

condition (2.1) holds for arbitrary u0 ∈ Ḣs
p(Rd) when T (u0) is small enough.

(b) From Lemma 3.4, the two quantities
∥∥u0

∥∥
Ḟ
d
q̃−1,∞
q̃

and sup
0<t<∞

t
1
2

(1− d
q̃

)
∥∥et∆u0

∥∥
Lq̃

are equivalent. Thus, there exists a positive constant σq̃,d such that the con-

dition (2.1) holds for T =∞ whenever
∥∥u0

∥∥
Ḟ
d
q̃−1,∞
q̃

≤ σq̃,d. �

Proof of Proposition 2.2

By Theorem 2.1, we only need to prove that w ∈ H
d
p̃
−1

p̃,T for all p̃ >
1
2
max{p, d} and if p ≥ d then sup

0<t<T
t
1
2

(1− d
p

)
∣∣u(t, .)

∣∣ ∈ Lp. Indeed, applying

Lemma 4.2, we deduce that the bilinear operator B is continuous from

Grd,T × Grd,T into H
d
p̃
−1

p̃,T for all p̃ > d
2

and r satisfying d < r < 2p̃; hence from

u ∈
⋂

r>max{p,d}
Grd,T and 2p̃ > max{p, d}, we have w = −B(u, u) ∈ H

d
p̃
−1

p̃,T .

We now prove that if p ≥ d then sup
0<t<T

t
1
2

(1− d
p

)
∣∣u(t, .)

∣∣ ∈ Lp. Indeed, we notice

that, if u0 ∈ Ḣ
d
p
−1

p , then u0 = Λ̇1− d
pv0 with v0 ∈ Lp; hence t

1
2

(1− d
p

)
∣∣et∆u0

∣∣ .
Mv0 , where Mv0 is the Hardy-Littlewood maximal function of v0 (hence

Mv0 ∈ Lp). On the other hand, from u ∈
⋂
r>p

Grd,T , we apply Lemma 4.3 to

obtain B(u, u) ∈ Gpd,T , hence sup
0<t<T

t
1
2

(1− d
p

)
∣∣B(u, u)(t, .)

∣∣ ∈ Lp. Thus

sup
0<t<T

t
1
2

(1− d
p

)
∣∣u(t, .)

∣∣ ≤ sup
0<t<T

t
1
2

(1− d
p

)
∣∣et∆u0

∣∣+ sup
0<t<T

t
1
2

(1− d
p

)
∣∣B(u, u)(t, .)

∣∣ ∈ Lp.
�

Proof of Proposition 2.5

By Lemma 3.4, we deduce that two quantities∥∥u0

∥∥
Ḟ
s−( dp−

d
q̃ ),∞

q̃

and
∥∥ sup

0<t<∞
t
d
2

( 1
p
− s
d
− 1
q̃

)|et∆u0|
∥∥
Lq̃

are equivalent. Thus∥∥∥ sup
0<t<T

t
d
2

( 1
p
− s
d
− 1
q̃

)
∣∣et∆u0

∣∣∥∥∥
Lq̃
.
∥∥u0

∥∥
Ḟ
s−( dp−

d
q̃ ),∞

q̃

.
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The Proposition 2.5 is proved by applying Theorem 2.1 and the above in-

equality. �
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