ON THE INITIAL VALUE PROBLEM FOR THE
NAVIER-STOKES EQUATIONS WITH THE INITIAL
DATUM IN THE SOBOLEV SPACES

D. Q. KHAI AND V. T. T. DUONG

ABSTRACT. In this paper, we study local well-posedness for the Navier-
Stokes equations with arbitrary initial data in homogeneous Sobolev

spaces H;(Rd) for d > 2,p > %7 and % —1<s< %. The obtained

result improves the known ones for p > d and s = 0 (see [4, 6]). In
the case of critical indexes s = % — 1, we prove global well-posedness
for Navier-Stokes equations when the norm of the initial value is small
enough. This result is a generalization of the ones in [5] and [24] in which
(p=d,s=0)and (p>d,s= % — 1), respectively.

1. INTRODUCTION

This paper studies the Cauchy problem of the incompressible Navier-
Stokes equations (NSE) in the whole space R? for d > 2,
Ou=Au—V.(u®u) — Vp,
V. =0,
u(0, ) = uy,

which is a condensed writing for

1<k<d, Ouy=~"0u— 37, d(uwuy) — O,

S O =0,

1 <k<d, ug(0,2)=ug.
The unknown quantities are the velocity u(t, x) = (ui(t, z), ..., uq(t, z)) of
the fluid element at time ¢ and position x and the pressure p(t, ).
There is an extensive literature on the existence of strong solutions of the
Cauchy problem for NSE. The global well-posedness of strong solutions for
small initial data in the critical Sobolev space Hz(R?) is due to Fujita and
Kato [20], also in [8], Chemin has proved the case of H*(R3),(s > 1/2).
In [21], Kato has proved the case of the Lebesgue space L?(R3). In [23],
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Koch and Tataru have proved the case of the space BMO™! (see also

[7]). In [23], H. Koch has proved the case of the space Bp%,;ol(Rd)(KJroo),
see [23] and the recent ill-posedness result [1] for B;o{OO(Rd). Results on
the existence of mild solutions with value in LP(RY), (p > d) were estab-
lished in the papers of Fabes, Jones and Riviere [10] and of Giga [12].
Concerning the initial datum in the space L*°, the existence of a mild so-
lution was obtained by Cannone and Meyer in [4, 6]. Moreover, in [4, 6],
they also obtained theorems on the existence of mild solutions with value
in the Morrey-Campanato space ML(R?), (p > d) and the Sobolev space
H;(Rd), (p < d,% -5 < é) NSE in the Morrey-Campanato space were
also treated by Kato [22] and Taylor [26]. Recently, the authors of this
article have considered NSE in Sobolev spaces, Sobolev-Lorentz spaces,
mixed-norm Sobolev-Lorentz spaces, and Sobolev-Fourier-Lorentz spaces,
see [15, 16, 18], [17], [13], and [14] respectively. In [19], we prove some results
on the existence and space-time decay rates of global strong solutions of the
Cauchy problem for NSE in weighed L>(R?, |z|?dx) spaces. In this paper,
we construct mild solutions in the spaces L*([0,T7; H;’(Rd)) to the Cauchy
problem for NSE when the initial datum belongs to the Sobolev spaces
H;(Rd), with d > 2,p > g, and g —1<s< 2%, we obtain the existence of
mild solutions with arbitrary initial value when T is small enough and exis-
tence of mild solutions for any T' < +o00 when the norm of the initial value in

d(—1)00

the Triebel-Lizorkin spaces F; e d :

is small enough. In the case p > d and s = 0, this result is stronger than

q 1_1_ s
, (¢ > max{p, ¢}, where ; = —%)

that of Cannone and Meyer [4, 6] under a weaker condition on the initial
data. In the case of critical indexes (p > g, s = ‘;f — 1), we obtaine global
mild SOIPE—OFOSO when the norm of the initial value in the Triebel-Lizorkin
spaces F7 7 (RY), (¢ > max{d,p}) is small enough. This result in one
hand if p = d and s = 0 is stronger than that of Cannone and Planchon [5]
but under a weaker condition on the initial data and in the other hand if
p>dand s = % — 1 is stronger than that of Lemarie-Rieusset but under
a weaker condition on the initial data (Proposition 20.2, [24], p. 201). The
content of this paper is as follows: in Section 2, we state our main theorem
after introducing some notations. In Section 3, we first establish some esti-
mates concerning the heat semigroup with differential. We also recall some
auxiliary lemmas and several estimates in the homogeneous Sobolev spaces
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and Triebel spaces. Finally, in Section 4, we will give the proof of the main

theorem.

2. STATEMENT OF THE RESULTS

Now, for T" > 0, we say that u is a mild solution of NSE on [0,77] cor-
responding to a divergence-free initial datum wug when u solves the integral
equation

¢
u = ePuy — / e(t_T)APV.(u(T, ) @u(r,.))dr.
0

Above we have used the following notation: for a tensor F' = (Fj;) we
define the vector V.F by (V.F); = ijl 0;F;; and for two vectors u and
v, we define their tensor product (u ® v);; = u;v;. The operator P is the
Helmholtz-Leray projection onto the divergence-free fields
(Bf); = fi+ > RsFufi
1<k<d

where R; is the Riesz transforms defined as

9, g
Ry =2 e Roglé) = 14c).

The heat kernel 2 is defined as
ePu(x) = ((Art) "2 P4 wu) (2).

For a space of functions defined on R?, say E(R?), we will abbreviate it as E.
We denote by L? := L(R?) the usual Lebesgue space for q € [1, co] with the
norm ||.||,, and we do not distinguish between the vector-valued and scalar-
valued spaces of functions. We define the Sobolev space by H g = A—sL4
iy |A®f|l, Here A® := F~Y¢]*F, where

F and F~! are the Fourier transform and its inverse, respectively. A =

equipped with the norm H f‘

v —A is the homogeneous Calderon pseudo-differential operator. For vector-
M 1

valued f = (f1,..., fur), we define ||f]|x = (22:1 Hmeg()Q Throughout

the paper, we sometimes use the notation A < B as an equivalent to A <

CB with a uniform constant C. The notation A ~ B means that A < B

and B < A. Now we can state our results

Theorem 2.1. Let s and p be such that
d d d
p>—and ——1<s<—.
2 p 2p
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Set

¢ p d
(a) For all ¢ > max{p,q}, there exists a positive constant 6,44 such that
for all T > 0 and for all ug € H;(Rd) with div(ug) = 0 satisfying

(2.1) T30+53)

sup t%(%fﬁfﬂemuo”‘ < 0g,g.ds
0<t<T La
NSE has a unique mild solution u € LOO([O,T];H;) and the following in-
equality holds

d 1_1,
sup t2te
o<t<T

u(t,x)‘H < 400, for all r > max{p,q}.

In particular, the condition (2.1) holds for arbitrary uy € H;(Rd) when
T'(ug) is small enough.
(b) If s = % — 1 then for all ¢ > max{p,d} there exists a constant 054 > 0
such that if ||uo|| 4_, . < 044 and T = +oo then the condition (2.1) holds.
Ff
d

In the case of critical indexes (s = % —1,p > §), we get the following

consequence.

Proposition 2.2. Let p > %l. Then for any ¢ > max{p,d}, there exists a

Ld_
positive constant 644 such that for all’T > 0 and for all ug € Hy 1(]Rd) with
div(ug) = 0 satisfying

(2.2)

1 d
1(1-d
sup t2' q)|etAu0|H < 054,
0<t<T La

d

NSE has a unique mild solution u € LOO([O,T];HP;A) and the following
inequality holds

di_1
sup t2'd 7
o<t<T

u(t, z)| H < 400, for all r > max{p,d}.
Denoting w = u — e'®uqy then w satisfies the following inequality
: 1
sup ’A%_lw(t,x)m < o0, forall p> §max{p, d}.
Lr

o<t<T

Moreover, if p > d then

sup t%(k%)‘u(t, )| e L~
0<t<T
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L
In particular, the condition (2.2) holds for arbitrary ug € Hy 1(R‘L’) when

T'(ug) is small enough, and there exists a positive constant 54 such that if
(2.3) | uOH 4 L 054 and T =400

Fﬂ
q

then the condition (2.2) holds.

Remark 2.3. Proposition 2.2 is the theorem of Canone and Planchon [5]
if p = d and the condition (2.3) is replaced by the condition
(2.4) ||u0|| 410 L 054 and T = 400, where d < ¢ < 2d.

Fﬂ

i
Note that in the case p = d, the condition (2.3) is weaker than the condition
(2.4) because of the following elementary imbedding maps

.4 100 L1 .41 00

F7 7 (Rd)(d<fj<2d) — deQ’oo(Rd) — F7 7 (Rd)((bzd)-
Remark 2.4. The statement about the global existence in Proposition 2.2
is the Lemarie-Rieusset statement (Proposition 20.2, [24], p. 201) if p > d
and the condition (2.3) is replaced by the condition

(2.5) HUOHHgfl < Odp-

Note that the condition (2.3) is weaker than the condition (2.5) because of
the following elementary imbedding maps

o md 5100 g 55100 dy
Hy (RY) — Fj (R)‘_)Fq (RY), (G > p).
Lemarie-Rieusset proved the above statement by using Hardy-Littlewood
maximal functions theory (as developped for L¢ by Canderén [9] and

Cannone [4]).

In the case of supercritical indexes p > % and ;‘—f —1<s< 2%7 we get the

following consequence.

Proposition 2.5. Letp > g and %—1 <s< 2%. Then for all ¢ > max{p, q},

where
1 1 S

¢ p 4
there exists a positive constant 0,54 such that for all T > 0 and for all
uy € H;(]Rd) with div(ug) = 0 satisfying

(2.6) T2+ g

<94, ~
s—(F-9) 00 = Yq,q,d>
Fy
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NSE has a unique mild solution u € L‘X’([O,T];Hg) and the following in-
equality holds

1_1
e

sup ts U@J)’H < +oo, for all r > max{p, q}.

o<t<T

Remark 2.6. Proposition 2.5 is the theorem of Canone and Meyer [4, 6] if
s =0, p > d, and the condition (2.6) is replaced by the condition

1

T30 o, < By

Note that in the case s = 0 and p > d, the condition (2.6) is weaker than
the above condition because of the following elementary imbedding maps

_(1 d),oo

LP(RY) < F 7 T (RY), (G > p > d).

3. TOOLS FROM HARMONIC ANALYSIS

In this section we prepare some auxiliary lemmas.
The main property we use throughout this paper is that the operator e!*PV
is a matrix of convolution operators with bounded integrable kernels.

Lemma 3.1. Let s > —1. Then the kernel function of A*e®PV is the

function
1 T

WK (ﬁ)’
where the function K is the kernel function of A*e®PV which satisfies the

following inequality

Ki(z) =

1
K (2)] S W'
Proof. See Proposition 11.1 in ([24], p. 107). O

Lemma 3.2. The kernel function K(z) of Ase'®PV satisfies the following
mequality

[Ki(2)] S

A for v1 > 0,7 >0, and v1 + 27 =d + s + 1.

Proof. This is deduced by applying Lemma 3.1 and the Young inequality

[ Ko(2)] =

8

%K(iﬂ S d+1s+1 ‘ 1|
t 2 \/Z t 2 1 +( t)d+s+1
1 < 1

t55 [t~ pefa]r

S




Lemma 3.3. (Sobolev inequalities).
If s1 > 89, 1 < q, @@ < o0, and s — ;il = 59 — {%, then we have the
following embedding mapping

1 3.

In this paper we use the definition of the homogeneous Triebel space F e
in [2, 3, 11, 25]. The following lemma will provide a different characterization
of Triebel spaces F P in terms of the heat semigroup and will be one of the
staple ingredients of the proof of Theorem 2.1.

Lemma 3.4.
Let 1 <p,q < oo and s < 0. Then the two quantities

I ey

Proof. See [5]. O

and ||f|

pew Q€ equivalent.
La q

Lemma 3.5. (Convolution of the Lorentz spaces).

Let 1 <p<oo, 1 <qg<oo,1/p+1/p=1,and 1/¢d +1/q = 1. Then
convolution is a bounded bilinear operator:

(a) from LP9 x L' to [P,

(b) from LP9 x LP- to L™,

(¢) from LP9x LPv9 to LP>% for 1 < p,p1,p2 < 00,1 < q,q1,q2 < 00,1/pa+
1=1/p+1/p1, and 1/go =1/q+ 1/q.

Proof. See Proposition 2.4 (c) in ([24], p. 20). O

Lemma 3.6. Let 0 <1 and v <1 then
t 1
/ (t — T)_VT_GdT = Ct'777Y where C = / (1-— T)_'YT_edT < 0.
0 0

The proof of this lemma is elementary and may be omitted. 0
Let us recall following result on solutions of a quadratic equation in Banach
spaces (Theorem 22.4 in ([24], p. 227)).

Theorem 3.7. Let E be a Banach space, and B : E X EE — E be a contin-

uous bilinear map such that there exists n > 0 so that

1B o)l < nllllyl,

for all x and y in E. Then for any fized y € E such that ||y|| < ﬁ, the
1

equation x =y — B(z,x) has a unique solution T € E satisfying ||Z|| < o
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4. PROOF OF THEOREM 2.1

In this section we shall give the proof of Theorem 2.1.
We now need three more lemmas. In order to proceed, we define an auxiliary

space QZ’T which is made up of the functions u(t, z) such that

.= 2 |u(t, ‘ < 00,
lullgg, = | sup ¢ fut )|, < oo
and
41 I H 5 lu(r, ‘ —0,
oy i e
with

s 1 1

quZdandozzd(——j)

q q

We recall the definition of the auxiliary space H;, - introduced by Cannone

and Planchon [5]. This space is made up of the functions u(¢, z) such that

= | sup [Au(t, @) ,
el Hoi?le u(t, z)]|| <00
and

(4.2) ltiir%) Oiligt’Asu(T,x)“Lp:(),
with

d
p>1land s>——1.
p

The space H, r is continuously embedded into L>([0, T7; HI‘;’ (R?)) because
of the following elementary inequality

Asult, _H Asult, \ .
S At )l < | sup et

Lemma 4.1. Suppose that uy € H;(Rd) with p > 1 and % —-1<s< I%l.
Then for all q satisfying

q > max{p, q},

where

S
d’

SR

1
q
we have

tA i
e“ug € G .
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Proof. First, we consider the case p < ¢. In this case s > 0, applying Lemma
3.3 to obtain ug € L9. We will prove that

sup t2 |e u0|

0<t<oco L S ”uO”an for all ¢ > q.

Indeed, we have the following estimates

o - 1 -112
t2 et uo—‘—i O‘N—_e4 * |uol
‘ ‘ 47-‘-t)d/2 \/E(d )

1 ( |.| ) L2 deg Lol 1

= — * |ug| < sup |z|“ e ™7 ). —— x |uo
W su ) 7 * ol

1
(4.3) < D * ‘uo‘.

From the estimate (4.3), applying Lemma 3.5(c) to obtain

1
021<poo752 ]e uO’HLﬁ S H |.|d_0‘ : ‘UO‘HM S H |.|d—e anH OHqu
< [Juol| . (note that —— € LH*°(RY) with 0 < s < d).

This proves the result. We now prove that

sup 72 }eTA
0<r<t

Set X, (z) =0 for z € {z: |z|]| <n}n{z: |u(zr)| < n} and X,(z) =1
otherwise. We have

lim
t—0

|2

a -1 1 ~|.
(4.4) t2[e"Puo| < C’( e i % | X uo] + WGT x| (1 — Xn)u0|>.

1
ﬂ(d—a)
Let ¢ be fixed such that ¢ < ¢ < ¢ and § = d(% — %) Arguing as in the
proof of the estimate (4.3), we derive

(4.5) Cﬁ 3£ * | Xpug] < C’1| = * ’X u0’
and
0\/(2 e (1= ol = B\/E(i_ﬁ)e 0= X))l
< Csup (Jo*Pe 5" w |(1 - Xy )u
zeRd |47
(4.6) < CtdH ] |1 — X,
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From the estimates (4.4), (4.5), and (4.6), we have

sup T2 ‘e
o<r<t
: * |Xnu0|H . +C’znt%(§_%) Hj_ﬁ * ‘
d(l_1 1
s st toll o+ Cont3 G | = <

(4.7) Cs | Xt | + Cont2 T D||1 = X[ .
For any € > 0, we can take n large enough that
(4.8) Csl| Ao, < 5

Fixed one of such n, there exists ¢y = to(n) > 0 satisfying
(4.9) Cont* |1 = 2, < 5, for t < to,
From the estimates (4.7), (4.8), and (4.9), we have

< e for t < ty.

sup 78 e8| < Cull o]l + Cant XD 1= 2,
o<r<t La

We now consider the case p > ¢. In this case s < 0. We prove that

021<p t2 |e u0|HLq < ||u0||H;, for all § > p.

We have

o 1
ey = ANy = —— K(

where

Pey = Ll e-s ap -
RO = e 16l and 1K) S s

From the above inequality, we have

t2 |e"Puo| < ‘WK<%) s | Asuq|
- W<%>d_5_a[((%) s | A%
(4.10) < sup (|[|z|"* K (z))) |Asu0‘ < ! }Asud.

zeR Hin [ |

From the estimate (4.10), applying Lemma 3.5(c), we have

a 1 .
on el < gt
0<te00 Ol s ~ |ITjd=s
H |,|d_5—06 * ‘ASUO|HL ap H| |d s—a || pa=t=a S _ OOHASUOHLP
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This proves the result. We now claim that

lim
t—0

o4
sup 72 |eTAu0 ‘
o<r<t

Set X, 4(z) =0forz € {z: |z| <nyn{z: |[Aup(z)| <n}and &, (z) =1
otherwise. Let ¢ be fixed such that p < ¢ < ¢ and = d(

=0, forall g>p.
Li

}10 — %) For any
€ > 0, by an arguing similar to the case ¢ > p, there exist a sufficiently large
n and a sufficiently small ¢ty = to(n) such that

1

| . |d—s—a

sup Tf‘eTAu()!H <
0<r<t L

A S
£ || Ao

Ld—s—a’

8 1
+ C?"“HW_S—_W‘

meﬂl B Xn,sHLq < €, for t < t.
0

In the following lemmas a particular attention will be devoted to the
study of the bilinear operator B(u,v)(t) defined by

(4.11) B(u,v)(t) = /0 e(t’T)AIP’V.(u(T) ® v(r))dr.

Lemma 4.2. Let p and s be such that

d d d
p>§cmd——1§s<2—.

D
Then the bilinear operator B is continuous from gjﬁT X ngT into H,, 7, where
1 1 s 5
PR q<q<2p,
and we have the inequality
La+s—9)
(4.12) | B(u,v)| we, S CTHT HUHQZTHUHQZT,

where C 1s a positive constant and independent of T.

Proof. From the equality (4.11), applying Lemma 3.2 to obtain

|A5B(u,v)(t)(x)‘ < /0 ‘Ase(t_T)APV.(u(T, z) @ v(t,z))|dr

_ /Ot
(4.13) < /Ot

where

Ki—r(z) * (u(r,z) @ v(T, 7)) ‘dT

1
(t=7)" |z

* (u(r,7) @ v(T, 7)) ‘dT

1 >0,7%>0,7+2r=d+1+s.
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Using the estimate (4.13) for

d<1+1 2) 1 d+s+d
N = —— )=t
P oq 2 2p 2 4
and applying Lemma 3.6 to obtain

‘ASB(u, v)(t) (x)|

1 t 1
11D */0 ( ‘u(7‘,a:)®v(7,:)s)|d7'

1 d s d
t—r1)2 w2t

N

|

s d
—opt3t3 0<n<t

1 t 1 . o N
S——17 */ T 7~ sup 12 |u(n, )| sup 52 |v(n, z)|dr
(1+5-3) 0o (t—1)2 0<n<t

1 o o ! 1
= ———— % ( supnz|u(n,x)| sup n2|v(n,x — 7 Yt
i ((sup n%[u(n )| sup o )I)/O PR

-

0<n<t 27 2p
1 s—4a 1 a a
(114) =30 — i (sup B fu(n, @) sup ¥ [v(n, 2)]).
( +p d) 0<n<t 0<n<t

From the estimate (4.14), applying Lemma 3.5(c) and Holder’s inequality
in order to obtain

sup ‘ASB(U,U)(T)H < || sup ‘ASB(U,U)(T)H g
o<r<t Lp o<r<t L”z
1 d 1 e} «
S 2 A7) | (. — |l sup n2 |u(n, z)| sup n2|v(n, x ‘ ;
~ |x|d(1+%*§) L1+%1*§~’ 0<nI<)1t77 | (77 )}0<ngtn ‘ (77 )l L3
(4.15) S 60D swp i futr, )| | s nE o)
0<n<t Lillg<n<t La

Let us now check the validity of the condition (4.2) for the bilinear term
B(u,v)(t). In fact, from the estimate (4.15) it follows that

lim
t—0

sup ’ASB(U,U>(T)’HLP =0,

o<r<t
whenever

= lim
La t—0

lim
t—0

(o7 (e}
sup Tf‘u(T, x)“ sup 7‘5‘1}(7', x)”
o<r<t o<r<t

The estimate (4.12) is deduced from the inequality (4.15). O

=0
La

Lemma 4.3. Let q and ¢, be such that d < q < q¢1 < +00. Then the bilinear

operator B is continuous from Gi'n x Gt into GI% for all gy satisfying

q% € (O, %] N (q% — é, q%), and we have the inequality

1(1_d
(4.16) HB(u,v)”ng <or:t q)HUHQZ,lTHUHgZ}T’

where C is a positive constant and independent of T.
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Proof. From the equality (4.11), applying Lemma 3.2 to obtain
t

| B(u, v)(t)(z)] < / |e"TAPY . (u(r, 2) @ v(T, x))|dr
0

:/Ot

K7 (z) * (u(r,2) ® v(7, 2)) ‘dT

K 1
(4.17) SJ/ —————* (u(7,2) ®v(T, x) ‘dT
o [ T=rgap * )
where
Y1 > 0,72 > 0,714—2’)/2 =d+ 1.
Set 1 1 1 1
on = d(; — )00 = d(; — ).
9 ¢ g9 Q2
Using the estimate (4.17) for
1 2 1 d d
71:d<1+___>772:___+_7
@ G 2 2 @

and applying Lemma 3.6 to obtain

1 ! 1
B, 0)(0)@)] £ — 1;)*/0@ Sl el

e 272, Ty
1 ¢ 1 —a o
S e—] */ ——7 " sup 7 [u(n, @)| sup n [o(n, )|dr
|x| o 0 (t _ 7-)2 245 T a1 0<n<t 0<n<t
1 ay a t 1
:ﬁ*<supn2 ‘u(n,xﬂ sup 7 2 |U(77a37)‘> 1_d ., d dr
|Q;‘ a1 0<n<t 0<n<t 0 (t — 7—)2 %a3 Ty o1
1q_dy_o2 1 ag oy
(4.18) =773 AT (Sup n'? |u(n, )| sup \U(n,x)o'
|g;| a1 0<n<t 0<n<t

From the estimate (4.18), applying Lemma 3.5(c) and Holder’s inequality

in order to obtain

a2
7 |B(u, ( +7| ‘
s b7 Bl O, < e, O,
1 d 1 ay ay
<t L A sup nz|u(n,x)| sup n2 |v(n, x ‘
~ ‘x]d(Hé_%) L”é—%’ 0<n<t77 | (77 )‘0<n<t77 ‘ (77 )| L7
(4.19) < 207D sup 7 fu(n,2)]|| Supn%}v(n,xﬂ‘ :
0<n<t Lillo<n<t L1

Let us now check the validity of the condition (4.1) for the bilinear term
B(u,v)(t). In fact, from the estimate (4.19) it follows that

lim
t—0

supt2|Buv )|H =0,
0<r<t L2
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whenever
: o : o
i | sup ¥t ), = b sup ¥ ot =0
The estimate (4.16) is deduced from the inequality (4.19). O]

Proof of Theorem 2.1

(a) Applying Lemma 4.3 for ¢; = go = ¢, we deduce that B is continuous
from QgT X Qg}T to Q(‘;T and we have the inequality

|B(u, U)ng% < CpaT? V70 ||ul| gZ’T”v” G, = CoadTHH D) g;'”,TH”HgiT’

where C, 54 is a positive and independent of 7". From Theorem 3.7 and the
above inequality, we deduce that for any ug € H; satisfying

ollgg, = T2 sup %]

0<t<T

)

NSE has a solution u on the interval (0,7) so that u € ng. We prove that

u € (1 G;r. Indeed, applying Lemma 4.3, we have B(u,u) € G
r>max{p,q}

for all r satisfying % € (0, ﬂ N (% — é, %) Applying Lemma 4.1, we have
e'®uy € G ; for all r satisfying 1 € (0, m). Since u = e®ug — B(u,u),
it follows that u € Gy for all r satisfying % € (0, m) N (% — Cll, %)
Applying again Lemmas 4.3 and 4.1, in exactly the same way, since u € G,

for all r satisfying % S (0, m) N (% — é, %), it follows that u € G; 1 for

1 _d 1
T5(1+8 p)HetA |etA

UOHLL; < m,

where

. . 2 . .
all 7 satisfying X € (O, @X;{pl’q}) N (% —1 22(1 — 1%)7 %)'1By1m(j}bmtlo.n7 we get
u € G - for all 7 satisfying 1 € (0, m) Nn(E—-2n(i- ) 7) with n > 1.
Since Cll — % > 0, it follows that there exists sufficiently large n satisfying

(0, m) N —2n(- %), %) = (0, m) . Therefore u € G 1 for all
r > max{p, ¢}. This proves the result.

We now prove that u € LOO([O,T];H;). Indeed, from u € G, for all r >
max{p, ¢}, applying Lemma 4.2 to obtain B(u,u) € 3 C L>=([0,T; H;)
On the other hand, since u € H;, it follows that e"*uy € L>([0,T7; H;)

Therefore
u = e"uy — B(u,u) € L=([0,T}; H;)
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Finally, we will show that the condition (2.1) is valid when 7" is small enough.
From the definition of QZ,T and Lemma 4.1, we deduce that the left-hand
side of the condition (2.1) converges to 0 when T" goes to 0. Therefore the
condition (2.1) holds for arbitrary ug € H; (RY) when T(ug) is small enough.

(b) From Lemma 3.4, the two quantities ||u0|| 4, and sup $20-9) He Uo HLq
F1 0<t<oo

q
are equivalent. Thus, there exists a positive constant o; 4 such that the con-
dition (2.1) holds for T' = oo whenever HUOH a1 < 044 O]
FA

q

Proof of Proposition 2.2

d_q
By Theorem 2.1, we only need to prove that w € H;, for all p >

1 . l(l_é) .

smax{p,d} and if p > d then sup ¢ "» |u(t,)‘ € LP. Indeed, applying
0<t<T

Lemma 4.2, we deduce that the bilinear operator B is continuous from

4_q
Gh o X G .into HE.. for all p > ¢ and r satisfying d < r < 2p: hence from
d,T d,T 5T b~>35 ymng D3
d_q
ue () Gipand 2p > max{p,d}, we have w = —B(u,u) € H}; .
r>max{p,d}

We now prove that if p > d then sup $2(=5) }u(t, )| € L?. Indeed, we notice
0<t<T

L4 .
that, if ug € Hy , then uy = Al_%vo with vy € LP; hence t%(l_%)‘emuo‘ <
M,,, where M, is the Hardy-Littlewood maximal function of vy (hence
M,, € L?). On the other hand, from u € G, we apply Lemma 4.3 to

r>p

obtain B(u,u) € G 1, hence sup ¢201- )|B (u,u)(t,.)| € LP. Thus

0<t<T
sup t%(l_%)‘u(t, )| < sup t%(l_%)}emuo} + sup ¢70- ‘B u,u)(t,.)| € LP.
0<t<T 0<t<T 0<t<T

OJ
Proof of Proposition 2.5

By Lemma 3.4, we deduce that two quantities

( 77777
o9 - and H sup 23 |e “0|HL«1

o]
q

q

are equivalent. Thus

1_s_1
sup t2( d q)|emuo|H
0<t<T

)00
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The Proposition 2.5 is proved by applying Theorem 2.1 and the above in-
equality. 0
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