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Abstract We propose a projection algorithm for solving split feasibility prob-
lems involving paramonotone equilibria and convex optimization. The pro-
posed algorithm can be considered as a combination of the projection ones for
equilibrium and convex optimization problems. We apply the algorithm for
finding an equilibrium point with minimal environmental cost for a model in
electricity production. Numerical results for the model are reported.
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1 Introduction and the Problem Statement

Let H be a real Hilbert space with inner product 〈., .〉 and its reduced norm
‖.‖, and K be a nonempty closed convex subset of H. Let f : K ×K → R be
a bi-function such that f(x, x) = 0 for all x ∈ K. We consider the following
equilibrium problem, shortly EP,

Find x ∈ K such that f(x, y) ≥ 0 ∀y ∈ K. (EP )

The solution set of this problem is denoted by Sol(EP ).
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This inequality was first used by Nikaido and Isoda in [22] for noncoopera-
tive game. After the publication of the paper by Blum and Oettli [4], Problem
(EP) has attracted many attention and a large number of articles on this
problem have been published (see. e.g. the interesting survey paper [3] and
the references therein).

An interesting feature of Problem (EP) is that, although having a very
simple formulation, it gives a unified formulation for some important problems
such as optimization problems, saddle point, variational inequalities, Kakutani
fixed point and Nash equilibria, in the sense that it includes these problems
as particular cases (see for instance [3] and the references cited there).

Some solution methods are proposed for Problem (EP), among them the
projection method is commonly used. However for monotone equilibrium prob-
lems, the basic projection method may fail to converge. In order to overcome
this disadvantage, the extragradient method (double projection) first proposed
by Korpelevich [15] for saddle point problem was extended to pseudomonotone
EP. Recently an inexact subgradient-projection method has been developed
for solving Problem (EP) with paramonotone equilibrium bifunction [25] in
finite dimensional Euclidean space. This method uses only one projection at
each iteration ensuring convergence. Briefly, at each iteration k, having xk the
next iterate xk+1 is defined as an approximate projection of xk − αkgk onto
K where gk is an approximate diagonal subgradient of the convex function
f(xk, .) at xk. With suitable choice of the stepsize αk, the sequence of iterates
converges to a solution of (EP).

The split feasibility problem in finite-dimensional Hilbert spaces was first
introduced by Censor and Elfving [8] for modeling inverse problems which
arise from phase retrievals and in medical image reconstruction [5]. Recently,
it has been found that this problem can also be used to model the intensity-
modulated radiation therapy [8], [9], and many other fields.

Mathematically, a split feasibility problem in real Hilbert spaces can be
state as follows: Let H1 and H2 be two real Hilbert spaces and C ⊆ H1, Q ⊆ H2

be two nonempty convex sets, A : H1 → H2 be a bounded linear operator.
The split feasibility problem is defined as

Find x∗ ∈ C such that Ax∗ ∈ Q. (SF )

Recently, this problem where C and/or Q are the solution-sets of variational
inequalities and/or fixed point-sets have been considered in some research
papers and several solution algorithms using the metric projection combining
with the proximal mapping have been developed see e.g. [16], [17], [18], [19],
[20], [26].

In this paper we extend the method in [25] to the split feasibility problem
(SF) with C being the solution-set of a paramonotone equilibrium problem in
H1 and Q the solution-set of a mathematical convex program in H2. Mathe-
matically, the problem can be formulated as

Find x∗ ∈ K : f(x∗, y) ≥ 0 ∀y ∈ K and g(Ax∗) ≤ g(u) ∀u ∈ H2, (SEO)
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where g is a properly lower semicontinuous convex function on H2. The pro-
posed algorithm is a combination of the projection one in [25] for the equilib-
rium problem with the Man-Krasnoselskii iterative scheme for the proximal
operator defined by the convex optimization problem, which ensures the strong
convergence. To illustrate the problem we present an equilibrium model with
minimal environmental fee which arises in electricity production. Some com-
putational results are reported to show behaviour of the proposed algorithm.

The paper is organized as follows. The next section are preliminaries. In
the third section we present the algorithm and its convergence. We close the
paper with a practical model in electricity market and some computational
results for the model.

2 Preliminaries

The following lemmas will be used for validity and convergence of the algo-
rithm.

Lemma 1 For x, y, z ∈ H and 0 ≤ a ≤ 1, we have

‖ax+ (1− a)y − z‖2 ≤ a‖x− z‖2 + (1− a)‖y − z‖2. (1)

Proof One has

‖ax+ (1− a)y − z‖2

= a2‖x− z‖2 + (1− a)2‖y − z‖2 + 2a(1− a)〈x− z, y − z〉
= a‖x− z‖2 + (1− a)‖y − z‖2 − a(1− a)

[
‖x− z‖2 + ‖y − z‖2 − 2〈x− z, y − z〉

]
≤ a‖x− z‖2 + (1− a)‖y − z‖2.

Lemma 2 ([2] p. 61). Let C be a nonempty closed convex subset in a Hilbert
space H and PC(x) be the metric projection of x onto C. Then

(i) 〈x− y, PC(x)− PC(y)〉 ≥ ‖PC(x)− PC(y)‖2 ∀x, y ∈ H.
(ii) 〈x− PC(x), PC(x)− y〉 ≥ 0 ∀x ∈ H, y ∈ C.

Lemma 3 (see, e.g. [25]) Let {vk} and {δk} be nonnegative sequences of real
numbers satisfying vk+1 ≤ vk + δk withe

∑∞
k=1 δk < +∞. Then the sequence

{vk} is convergent.

Lemma 4 (see, e.g. [1]) Let H be a real Hilbert space, {ak} be a sequence
of real numbers such that 0 < a < ak < b < 1 for all k = 1, 2, . . . , and let
{vk}, {wk} be sequences in H such that

lim sup
k→+∞

‖vk‖ ≤ c, lim sup
k→+∞

‖wk‖ ≤ c,

and
lim

k→+∞
‖akvk + (1− ak)wk‖ = c, for some c > 0.

Then, limk→+∞ ‖vk − wk‖ = 0.
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3 The Algorithm and its Convergence

We need the following assumptions for the algorithm and its convergence will
be presented below

Assumptions

(A1) For each x ∈ K, f(x, x) = 0 and f(x, .) is lower semicontinuous convex on
K.

(A2) ∂ε2f(x, x) is nonempty for every ε > 0 and x ∈ K and is bounded on any
bounded subset of C.

(A3) f is pseudomonotone on K with respect to every solution of (EP ), that
is f(x, x∗) ≤ 0 for every x ∈ K, x∗ ∈ Sol(EP ), and satisfies the following
condition, called para-monotonicity property

x∗ ∈ Sol(EP ), y ∈ K, f(x∗, y) = f(y, x∗) = 0⇒ y ∈ Sol(EP ).

(A4) For every x ∈ K, f(., x) is weakly upper semicontinuous on K.

Comments for these assumptions, especially for (A2) and (A3) can be found
in [25].

We recall that the proximal mapping of the convex function g with λ > 0,
denoted by proxλg, is defined as the unique solution of the strongly convex
programming problem

proxλg(u) := argmin{g(v) +
1

λ
‖v − u‖2 : v ∈ H2}. P (u)

For λ > 0, we set h(x) := 1
2‖(I − proxλg)Ax‖

2. By using the necessary and
sufficient optimality condition for convex programming, we can see that h(x) =
0 if and only Ax solves P(u) with u = Ax. Note that (see [24] page 52), even
g may not be differentiable, h is always differentiable and ∇h(x) = A∗(I −
proxλg)Ax. Hence h(x) = 0 if and only if ∇h(x) = 0.

3.1 Algorithm

Algorithm 3.1
Take a positive parameters δ, ξ and real sequences {ak}, {δk}, {βk}, {εk},

{ρk} satisfying the conditions:

0 < a < ak < b < 1, 0 < ξ ≤ ρk ≤ 4− ξ, ∀k ∈ N (2)

δk > δ > 0, βk > 0, εk ≥ 0, ∀k ∈ N (3)

lim
k→+∞

ak =
1

2
(4)

∞∑
k=1

βk
δk

= +∞,
∞∑
k=1

β2
k < +∞, (5)

∞∑
k=1

βkεk
δk

< +∞ (6)
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Step 0: Choose x0 ∈ K. Set k = 1.
Step k: Let xk ∈ K.
Take gk ∈ ∂εk2 f(xk, xk). Define

αk =
βk
γk

where γk = max{δk, ‖gk‖}.

Compute yk = PK(xk − αkgk), i.e.

〈yk − xk + αkgk, x− yk〉 ≥ 0 ∀x ∈ K.

Take

µk :=

{
0 if ∇h(yk) = 0,

ρk
h(yk)

‖∇h(yk)‖2 if ∇h(yk) 6= 0
(7)

and compute
zk = PK(yk − µkA∗(I − proxλg)(Ayk)).

Let
xk+1 = akxk + (1− ak)zk.

Remark 1 Note that when g ≡ 0, the problem (SEO) becomes the prob-
lem (EP). In this case the algorithm is reduced to the projection Mann-
Krasnoselskii scheme for (EP).

Remark 2 If we choose εk = 0, then xk = yk and h(xk) = 0 imply that xk
is a solution. Motivated by this fact we call xk an ε-solution if εk ≤ ε and
‖xk − yk‖ ≤ ε, |h(xk)| ≤ ε.

Theorem 1 Suppose that Problem (SEO) admits a solution. Then under As-
sumptions (A1)-(A4) the sequence (xk) generated by Algorithm 3.1 strongly
converges to a solution of (SEO).

We need the following lemmas to the proof of the convergence of the pro-
posed algorithm.

Lemma 5 ([19]) Let S be the set of solutions of the Problem (SEO) and
z ∈ S. If ∇h(yk) 6= 0 then it holds that

‖zk − z‖2 ≤ ‖yk − z||2 − ρk(4− ρk)
h2(yk)

‖∇h(yk)‖2
. (8)

Lemma 6 ([25]) For every k, the following inequalities hold

(i) αk‖gk‖ ≤ βk;
(ii) ‖yk − xk‖ ≤ βk.
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Lemma 7 Let z ∈ S. Then, for every k such that ∇h(yk) 6= 0 , we have

‖xk+1−z‖2 ≤ ‖xk−z||2−(1−ak)ρk(4−ρk)
h2(yk)

‖∇h(yk)‖2
+2(1−ak)αkf(xk, z)+Ak,

(9)
and for every k such that ∇h(yk) = 0 , we have

‖xk+1 − z‖2 ≤ ‖xk − z||2 + 2(1− ak)αkf(xk, z) +Ak, (10)

where Ak = 2(1− ak)(αkεk + β2
k).

Proof By definition of xk+1, in virtue of Lemma 1, we have

‖xk+1 − z‖2 = ‖akxk + (1− ak)zk − z‖2

≤ ak‖xk − z‖2 + (1− ak)‖zk − z‖2. (11)

We consider two cases:
Case 1: If ∇h(yk) 6= 0, then thanks to Lemma 5, we have

‖xk+1 − z‖2 ≤ ak‖xk − z‖2 + (1− ak)

[
‖yk − z||2 − ρk(4− ρk)

h2(yk)

‖∇h(yk)‖2

]
.

(12)
Moreover,

‖yk − z‖2 = ‖z − xk + xk − yk‖2

= ‖xk − z‖2 − ‖xk − yk‖2 + 2〈xk − yk, z − yk〉
≤ ‖xk − z‖2 + 2〈xk − yk, z − yk〉.

In Algorithm 3.1, since yk is chosen such that

〈yk − xk + αkgk, x− yk〉 ≥ 0 ∀x ∈ K,

by taking x = z, we obtain

〈yk − xk + αkgk, z − yk〉 ≥ 0

⇔ 〈αkgk, z − yk〉 ≥ 〈xk − yk, z − yk〉.

Hence,

‖yk − z‖2 ≤ ‖xk − z‖2 + 2〈αkgk, z − yk〉
= ‖xk − z‖2 + 2〈αkgk, z − xk〉+ 2〈αkgk, xk − yk〉. (13)

It follows from gk ∈ ∂εk2 f(xk, xk) that

f(xk, z)− f(xk, xk) ≥ 〈gk, z − xk〉 − εk
⇔ f(xk, z) + εk ≥ 〈gk, z − xk〉. (14)

On the other hand, from Lemma 6 it holds that

〈αkgk, xk − yk〉 ≤ αk‖gk‖‖xk − yk‖ ≤ β2
k.
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From (13), (14) and αk > 0 follows

‖yk − z‖2 ≤ ‖xk − z‖2 + 2αkf(xk, z) + 2αkεk + 2β2
k. (15)

Combining this inequality with (12), we obtain

‖xk+1−z‖2 ≤ ‖xk−z||2+2(1−ak)αkf(xk, z)−(1−ak)ρk(4−ρk)
h2(yk)

‖∇h(yk)‖2
+Ak,

where Ak = 2(1− ak)(αkεk + β2
k).

Case 2: If ∇h(yk) = 0 then, by definition of xk+1, we can write

‖xk+1 − z‖2 ≤ ak‖xk − z‖2 + (1− ak)‖yk − z||2.

Now, by the same argument as in Case 1, we have

‖yk − z‖2 ≤ ‖xk − z‖2 + 2αkf(xk, z) + 2αkεk + 2β2
k.

Then,
‖xk+1 − z‖2 ≤ ‖xk − z||2 + 2(1− ak)αkf(xk, z) +Ak,

where Ak = 2(1− ak)(αkεk + β2
k).

Proof. (of the theorem). Claim 1: {‖xk − z‖2} is convergent for all z ∈ S.
Indeed, let z ∈ S. Since z ∈ Sol(EP ) and f is pseudomonotone on K with

respect to every solution of (EP ), we have

f(xk, z) ≤ 0.

If ∇h(yk) 6= 0, then, since

ρk(4− ρk)
h2(yk)

‖∇h(yk)‖2
≥ 0,

it follows from Lemma 7 that

‖xk+1 − z‖2 ≤ ‖xk − z||2 +Ak, (16)

where Ak = 2(1− ak)(αkεk + β2
k).

Since αk = βk

γk
with γk = max{δk, ‖gk‖},

+∞∑
k=1

αkεk =

+∞∑
k=1

βk
γk
εk ≤

+∞∑
k=1

βk
δk
εk < +∞.

Note that
∑+∞
k=1 β

2
k < +∞ and 0 < a < ak < b < 1, we have

+∞∑
k=1

Ak < 2(1− a)

+∞∑
k=1

(αkεk + β2
k) < +∞.

Now using Lemma 6, we see that {‖xk − z‖2} is convergent for all z ∈ S.
Hence, {xk} is bounded. Then, again by Lemma 6, we can see that {yk} is
bounded too.
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Claim 2: lim supk→+∞ f(xk, z) = 0 for every z ∈ S.
By Lemma 7, for every k, we have

−2(1− ak)αkf(xk, z) ≤ ‖xk − z‖2 − ‖xk+1 − z‖2 +Ak. (17)

Summing up we obtain

∞∑
k=1

−2(1− ak)αkf(xk, z) < +∞. (18)

On the other hand, using Assumption (A2) and the fact that {xk} is bounded,
we see that {‖gk‖} is bounded. Then, there exists L > δ such that ‖gk‖ ≤ L
for every k. Therefore,

γk
δk

= max{1, ‖gk‖
δk
} ≤ L

δ
.

Hence,

αk =
βk
γk
≥ δ

L

βk
δk
.

Since z is a solution, by pseudomonotonicity of f , we have −f(xk, z) ≥ 0 which
together with 0 < a < ak < b < 1 implies

∞∑
k=1

(1− b)βk
δk

[−f(xk, z)] < +∞.

But from
∑∞
k=1

βk

δk
= +∞, it holds that

lim sup
k→+∞

f(xk, z) = 0, ∀z ∈ S.

Claim 3: For any z ∈ S, suppose that {xkj} is the subsequence of {xk}
such that

lim sup
k→+∞

f(xk, z) = lim
j→+∞

f(xkj , z), (19)

and that x∗ is a weakly cluster point of {xkj}. Then x∗ belongs to Sol(EP ).
Without loss of generality, we can assume that xkj weakly converges to x∗

as j →∞. Since f(., z) is upper semicontinuous, by Claim 2, we have

f(x∗, z) ≥ lim sup
j→+∞

f(xkj , z) = 0.

Since z ∈ S and f is pseudomonotone, we have f(x∗, z) ≤ 0. Thus f(x∗, z) = 0.
Again by pseudomotonicity f(z, x∗) ≤ 0. Hence f(x∗, z) = f(z, x∗) = 0. Then
by paramononotonicity (Assumption A3), we can conclude that x∗ is also a
solution of (EP ).

Claim 4: Every weak cluster point x of the sequence {xk} satisfies x ∈ K
and Ax ∈ argming.
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Let x be a weak cluster point of {xk} and {xkj} be a subsequence of
{xk} weakly converging to x. Then x ∈ K. On the other hand, we know that
‖yk − xk‖ ≤ βk and

∑∞
k=1 β

2
k < +∞. Hence,

lim
k→∞

‖yk − xk‖ = 0.

Thus, {ykj} weakly converges to x.
From Lemma 7, if ∇h(yk) 6= 0 then

(1− ak)ρk(4− ρk)
h2(yk)

‖∇h(yk)‖2
≤ ‖xk − z||2 − ‖xk+1 − z‖2 +Ak,

and if ∇h(yk) = 0 then

0 ≤ |xk − z||2 − ‖xk+1 − z‖2 +Ak.

Let N1 := {k : ∇h(yk) 6= 0} and summing up altogether we can write∑
k∈N1

(1− ak)ρk(4− ρk)
h2(yk)

‖∇h(yk)‖2
≤ ‖x0 − z‖2 +

∞∑
k=1

Ak < +∞.

Combining this fact with the assumption ξ ≤ ρk ≤ 4− ξ (for some ξ > 0) and
0 < a < ak < b < 1, we can conclude that∑

k∈N1

h2(yk)

‖∇h(yk)‖2
< +∞. (20)

Moreover, since ∇h is Lipschitz continuous with constant ‖A‖2, we see that
‖∇h(yk)‖2 is bounded. Note that h(yk) = 0 for k 6∈ N1. Consequently,

lim
k→+∞

h(yk) = 0. (21)

By the lower-semicontinuity of h,

0 ≤ h(x) ≤ lim inf
j→+∞

h(ykj ) = lim
k→+∞

h(yk) = 0, (22)

which implies that Ax is a fixed point of the proximal mapping of g. Thus, Ax
is a minimizer of g.

Claim 5: limk→+∞ xk = limk→+∞ yk = limk→+∞ P (xk) = x∗, where x∗ is
a weakly cluster point of the sequence satisfying (19).

From Claim 3 and Claim 4, we can deduce that x∗ belongs to S. By Claim
1 we can assume that

lim
k→+∞

‖xk − x∗‖ = c < +∞.

By Lemma 6, we have

‖zk − x∗‖ ≤ ‖yk − x∗‖
≤ ‖xk − x∗‖+ ‖yk − xk‖
≤ ‖xk − x∗‖+ βk,



10 Le Hai Yen et al.

which implies that

lim sup
k→+∞

‖zk − x∗‖ ≤ lim sup
k→+∞

(‖xk − x∗‖+ βk) = c.

On the other hand,

lim
k→+∞

‖ak(xk − x∗) + (1− ak)(zk − x∗)‖ = lim
k→+∞

‖xk+1 − x∗‖ = c.

By applying Lemma 4 with vk := xk − x∗, wk := zk − x∗, we obtain

lim
k→+∞

‖zk − xk‖ = 0. (23)

Combining this with the fact that x∗ is a weak cluster point of the sequence
{xk}, we see that x∗ is also a weak cluster point of the sequence {zk}. Suppose
{zkj} weakly converge to x∗. Note that

‖xkj+1 − PS(xkj+1)‖2 ≤ ‖xkj+1 − PS(xkj )‖2

≤ ak‖xkj − PS(xkj )‖2 + (1− ak)‖zkj − PS(xkj )‖2.

On the other hand,

‖zkj−PS(xkj )‖2 = ‖zkj−xkj‖2−‖xkj−PS(xkj )‖2−2〈zkj−PS(xkj ), PS(xkj )−xkj 〉.

Hence,

‖xkj+1 − PS(xkj+1)‖2

≤ (2akj − 1)‖xkj − PS(xkj )‖2 + (1− akj )‖zkj − xkj‖2 − 2(1− akj )〈zkj − PS(xkj ), PS(xkj )− xkj 〉.
≤ (2akj − 1)‖xkj − PS(xkj )‖2 + (1− akj )‖zkj − xkj‖2 − 2(1− akj )〈zkj − x∗, PS(xkj )− xkj 〉
−2(1− akj )〈x∗ − PS(xkj ), PS(xkj )− xkj 〉.

Since x∗ ∈ S,

〈x∗ − PS(xkj ), PS(xkj )− xkj 〉 ≥ 0.

The sequence {xkj} is bounded, {xkj − PS(xkj )} is bounded too. Using
this with the facts that limj→+∞ ‖zkj − xkj‖ = 0 and limj→+∞ akj = 1

2 . we
can deduce that

lim
j→∞

‖xkj+1 − PS(xkj+1)‖ = 0. (24)

Now, we show that {PS(xkj )} is a Cauchy sequence. Indeed, for all m > j,
we have

‖PS(xkm)− PS(xkj )‖2

= 2‖xkm − PS(xkm)‖2 + 2‖xkm − PS(xkj )‖2 − 4‖xkm −
1

2
(PS(xkm+1

) + PS(xkj+1
))‖2

≤ 2‖xkm − PS(xkm)‖2 + 2‖xkm − PS(xkj )‖2 − 4‖xkm − PS(xkm)‖2

= 2‖xkm − PS(xkj )‖2 − 2‖xkm − PS(xkm)‖2. (25)
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Then, applying Lemma 3.6 with z = PS(xkj ) successively we obtain

‖xkm − PS(xkj )‖2 ≤ ‖xkm−1 − PS(xkj )‖2 +Akm−1

≤ . . .

≤ ‖xkj − PS(xkj )‖2 +

km−1∑
i=kj

Ai. (26)

From (15) and (25), it follows that

‖PS(xkm)−PS(xkj )‖2 ≤ 2‖xkj −PS(xkj )‖2 + 2

km−1∑
i=kj

Ai− 2‖xkm −PS(xkm)‖2.

From (24) and the fact that limj→∞
∑km−1
i=kj

Ai = 0, we can conclude that

{PS(xkj )} is a Cauchy sequence. Hence, {PS(xkj )} strongly converges to some
point x ∈ S. Since limj→∞ ‖xkj+1 − PS(xkj+1)‖ = 0, we see that {xkj} also
strongly converges to x. Finally, using Claim 1, we can conclude that

lim
k→+∞

xk = lim
k→+∞

yk = lim
k→+∞

P (xk) = x∗

2

3.2 A Practical Model and Computational Results

In this section, we consider an equilibrium-optimization model which can be
regarded as an extension of a Nash-Cournot oligopolistic equilibrium model in
electricity markets. The latter model has been investigated in some research
papers (see e.g. [13,23]). In this equilibrium model, it is assumed that there are
n companies, each company i may possess Ii generating units. Let x denote
the the vector whose entry xj stands for the the power generating by unit j.
Following [13] we suppose that the price pi(s) is a decreasing affine function

of s with s =
∑N
j=1 xj where N is the number of all generating units, that

is pi(s) = α − βis. Then the profit made by company i is given by fi(x) =
pi(s)(

∑
j∈Ii xj) −

∑
j∈Ii cj(xj), where cj(xj) is the cost for generating xj by

generating unit j. Suppose that Ki is the strategy set of company i, that is
the condition

∑
j∈Ii xj ∈ Ki must be satisfied for evey i. Then the strategy

set of the model is K := K1 ×K2...×Kn.
Actually, each company seeks to maximize its profit by choosing the cor-

responding production level under the presumption that the production of
the other companies are parametric input. A commonly used approach to this
model is based upon the famous Nash equilibrium concept.

We recall that a point x∗ ∈ K = K1 × K2 × · · · × Kn is an equilibrium
point of the model if

fi(x
∗) ≥ fi(x∗[xi]) ∀xi ∈ Ki, ∀i = 1, 2, . . . , n,
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where the vector x∗[xi] stands for the vector obtained from x∗ by replacing x∗i
with xi. By taking

f(x, y) := ψ(x, y)− ψ(x, x)

with

ψ(x, y) := −
n∑
i=1

fi(x[yi]), (27)

the problem of finding a Nash equilibrium point of the model can be formulated
as

x∗ ∈ K : f(x∗, x) ≥ 0 ∀x ∈ K. (EP )

We extend this equilibrium model by additionally assuming that to produce
electricity the generating units use some materials. Let al,j denote the quantity
of material l (l = 1, ...,m) for producing one unit electricity by the generating
unit j (j = 1, ..., N). Let A be the matrix whose entries are al,j . Then the entry
l of the vector Ax is the quantity of material l for producing x. Using materials
for production may cause pollution to environment for which companies have
to pay environmental fee. Suppose that g(Ax) is the total environmental fee
for producing x. The task now is to find a production x∗ such that it is a
Nash equilibrium point with minimum environmental fee. This problem can
be formulated as a split feasibility problem of the form

Find x∗ ∈ K : f(x∗, x) ≥ 0 ∀x ∈ K, g(Ax∗) ≤ g(Ax) ∀x ∈ K. (SEP )

As usual, we suppose that, for every j, the cost cj for production and the
environmental fee g are increasingly convex functions. The convexity assump-
tion here means that both the cost and fee for producing a unit production
increases as the quantity of the production gets larger.

Under this convexity assumption, it is not hard to see (see also [23]) that
Problem (EP) with f is given by (27) can be formulated as

Find x∗ ∈ K : 〈B̃1x
∗ − ā, x− x∗〉+ ϕ(x)− ϕ(x∗) ≥ 0 ∀x ∈ K, (28)

where

ā := (α, α, ..., α)T

B1 :=


β1 0 0 ... 0
0 β2 0 ... 0
... ... ... ... ...
0 0 0 0 βn

 , B̃1 :=


0 β1 β1 ... β1
β2 0 β2 ... β2
... ... ... ... ...
βn βn βn ... 0

 ,

ϕ(x) := xTB1x+

N∑
j=1

cj(xj).
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Note that when cj is differentiable convex for every j, then Problem (28)
is equivalent to the variational inequality

Find x∗ ∈ K : 〈B̃1x
∗ − ā+∇ϕ(x∗), x− x∗〉 ≥ 0, ∀x ∈ K. (29)

We tested the proposed algorithm with the cost function given by

cj(xj) =
1

2
pjx

2
j + qjxj , pj > 0.

For this cost function, by using Proposition 3.2 in [14], one can check that the
cost operator in the problem (29) is paramonotone.

We took the sequences of the parameters as

βk =
7

2(k + 1)
, εk = 0, δk = 3, γk = max{3, ||gk||} ∀k

and solved the model with different sizes, ten problems for each size.

The algorithm was coded in Matlab 7.8 on a 8Gb Ram core i7. The main
subproblems were solved with the MATLAB Optimization Toolbox by us-
ing QUADPROG function for the positive semidefinite quadratic function
g(u) := 1/2uTDu + dTu. The computational results are shown in Table 1.
The horizontal and veritcal axes show the average iteration k, average CPU-
times, and error1 := ||x − y||, error2 := h(x), respectively. The parameters
βj , pj , qj , for all j = 1, . . . , n, were generated randomly in the interval (0,1],
[1,3], [1,3] respectively, while the entries of the matricies A, D and vector d
were generated in the interval [-2,30].

Table 1 Algorithm 3.1

size N Prob. Iter CPU-times(s) Error 1 Error 2

6 10 1654 51.13 9.9996.10−5 1.1.10−6

10 10 19793 622.09 9.7011.10−5 7.8.10−4

20 10 25690 1282.10 9.9801.10−5 0.0565
30 10 32001 1059.12 9.9504.10−5 0.3283
50 10 67344 3213.47 9.8034.10−5 2.9610
100 10 72469 3729.56 9.8624.10−5 50.6554

Conclusion. We have proposed an algorithm for solving the split feasibil-
ity problems involving equilibria and optimization in Hilbert spaces. Strong
convergence of the algorithm have been proved. A Nash-Cournot equilibrium
model with minimal environmental cost in electricity production has been
solved by the proposed algorithm. Some computational results have been re-
ported to show efficiency of the algorithm.
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