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A UNICITY THEOREM WITH TRUNCATED COUNTING
FUNCTION FOR MEROMORPHIC MAPPINGS

PHAM HOANG HA

ABSTRACT. In this article, a unicity theorem with truncated multiplicities of
meromorphic mappings in several complex variables sharing few targets are
given. It gives some remarkable improvements for the results in [15].

1. INTRODUCTION

The unicity theorems with truncated multiplicities of meromorphic mappings
of C" into the complex projective space PV (C) sharing a finite set of ¢ fixed
hyperplanes in PV(C) have received much attention in the last few decades, and
they are related to many problems in Nevanlinna theory and hyperbolic complex
analysis (see the references in [1, 8, 14, 15, 16, 3, 4, 5] for the development in
related subjects).

To state some of them, first of all we recall the following.

Let f be a nonconstant meromorphic mapping of C” into PY(C) and H a
hyperplane in PV (C) and k a positive integer or k = co. Denote by v(t,m) the
map of C" into Z whose value vy gy(a) (a € C") is the intersection multiplicity
of the images of f and H at f(a).

For every z € C", we set

0 if v 2) >k,
V(sH),<k(2) = { (r,m)(2)

V(f,H)(Z) if V(f,H)(Z) S k‘,

v () = L) v () >k,
e 0 if Vs, (2) < k.

We now take a linearly nondegenerate meromorphic mapping f of C" into
PN (C), a positive integer d and ¢ hyperplanes Hy, ..., H, in PY(C) in general
position with

dim {Z € c": V(f7Hi)7Sk(z) > 0 and V(f,Hj),Sk(z) > 0} <n-— 2 (1 < 1< j < q)
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We consider the family F(f, {H;}? j=10 ks d) of all meromorphic mappings ¢ :
C" — PN(C) satisfying the conditions

(a) g is linearly nondegenerate,
(b) min {v(y m;) <k, d} = min {v(y ) <. d} (1 <j<q),
(¢) f(z) =g(2) on U‘;:l{z eCn: V(f,Hj),gk(Z) > 0}.
Denote by # S the cardinality of the set S.
In [15], the authors showed that

Theorem 1. (see [15])

(1) If N=1, thenf F
(2) If N >2, thenf F
(3) If N >4, thenf F
(4) If N > 6, then § F

FAHYN kB, 2) <2 for k> 15,
FAHENT B,2) <2 for k> 3N +3+ 55
FAHIN  k,2) <2 for k> 3N + 7+ 2
FAHYN K, 2) <2 for k> 3N + 11+ 2%

A~~~ I~ I/~

We are going to improve Theorem 1. Namely, we prove the following

Theorem 2. Let f', 2, 3 : C* — PN(C) be three meromorphic mappings
and let {H;}!_, be hyperplanes in general position. Let d,k, ki, koi, ks; be the
integers with 1 < ki;, ko, k3 < oo (1 < i < q). We set M = max{kj;}, m =
min{k;;} (1< <3,1<i<q), k=max{t{i € {1,2-,q} |k =m}[1<j <
3}. Defined =0 if M =m and d = min{kj; —m >0[1<j <3;1<i<q}if
M # m.

Assume that the following conditions are satisfied

(a) dim{z € C" : v m,) <k;; > 0 and V(s pyy <, > 0} < n—2
(1<j<31<i<I<q),

(b) min(y(fj7Hi)7Skji7 2) = min(¥(se,m1,), <kyr 2)
(1<j<t<3;1<i<gq),

(c) ff=f7 on Ui_{zeC": V(f1,Ha) <kia(2) >0} (1 <5 <3).

Then ' = f2 or f2 = 3 or f2 = f1 if one of the following conditions is
satisfied

16
) N>23N—-1<q<3N+1,m>3N+1+-———— and
(1) N = <¢<3N+1,m Tt o
2Nk  2N(g—k) 3N?+N

m+1 m+d+1 M+1

(2 —5N —3) >
(2) N=1,9=4 and
3(2k+1)  6(4—k) 6k 24 — 6k 12

<1l4+—.
mt1l mid+rl Mm+1)  MmidiD) - M

We now give some corollaries of Theorem 2.

*) Theorem 1 is deduced immediately from Theorem 2 by choosing M = m
and k = q.
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*) When £k = 1,M = m+dand d =1 or d = 2, by using the case 1 of
Theorem 2, we have the following

Corollary 3. Let f1, f2, f3: C* — PN(C) be three meromorphic mappings and
let {HZ}‘:’QT'1 be hyperplanes in general position. Let k; be the positive integers
with 1 <1 < 3N + 1 satisfying the following conditions

(i) dim{z € C" : v(45 m,),<k, > 0 and v(pi gy <k, >0 <n—2 (1<i<I<
3N +1).
(1) min(v(ps ) <k, 2) = min(pemy <k, 2) (1<7 <t <31 <i <3N+
1).
(iit) 1= on UMz € C™ gy <po (2) > 0} (1< 5 <3).

Then f' = f2 or f2 = 2 or 2 = f' if one of the following conditions is satisfied

(1) N>2,kj=ki+1 for every2 < j <3N +1 and k‘1>3N—|—2—1—ﬁ.

(2) N>2kj=ki+2 forevery2<j <3N+1 and ki >3N—|—1+%.
*) When k£ =1 and M = m +d, by using the proof for the Case 2 of Theorem
2, we have the following

Corollary 4. Let f1, f2, f3: C* — PY(C) be three meromorphic functions and
let {H;}}_, be hyperplanes in general position. Let k; (1 <1i < 4) be the positive
integers satisfying the following conditions

(i) dim{z € C" : v(ps m),<k, > 0 and Vg gy <k, >0 <n—2 (1 <5<
3h1<i<i<A4),
(i) min(v(gs my) <k, 2) = min(y(ge ), <x;,2) (1<j <t <3;1<i<4); and
(iii) f1'=f7 on Upoi{z € C vy <ha(2) > 01 (1< 5 <3).
Assume that one of the following conditions is satisfied

1) k1 =9, ks = ks = kq = 66.
2) ki = 10, ko = k3 = ks = 36.
3) k1 = 11, ky = ks = ky = 26.
4) ky =12, ky = k3 = ky = 21.
5) k1 =13, ko = ks = ks = 18.
(6) ky = 14, ko = k3 = ky = 16.

Then f1 Ef2 or f2 Ef3 or f3 Efl.

(
(
(
(
(

2. BASIC NOTIONS IN NEVANLINNA THEORY
2.1. We set ||z]| = (|12 + -+ |Zn|2)1/2 for z = (21,...,2,) € C" and define
B(r):={z€C":||lz||<r}, S(r)={2z€C":|lz|]|=7} (0<r < o).

Define
Un—1(z) := (dd°]|z] |2)n_1 and

on(2) == dlog||z||> A (ddclog||z||2)n_lon C™\ {0}.
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2.2. Let F' be a nonzero holomorphic function on a domain £2 in C™. For a multi-
ollp

— We
0% z1...0%z,

index a = (aq, ..., an), we set |a| = a1 + ... + a, and DUF =
define the mapping vr : 2 — Z by
vp(z) :=max {m: D*F(z) = 0 for all @ with |a|] < m} (z € Q).

We mean by a divisor on a domain €2 in C™ a mapping v : {1 — Z such that,
for each a € (2, there are nonzero holomorphic functions F' and G on a connected
neighborhood U of a (C Q) such that v(z) = vp(2z) —vg(z) for each z € U outside
an analytic set of dimension < n — 2. Two divisors are regarded as the same if
they are identical outside an analytic set of dimension < n — 2. For a divisor v
on Q we set |v| :={z:v(z) # 0}, which is a purely (n — 1)-dimensional analytic
subset of ) or empty.

Take a nonzero meromorphic function ¢ on a domain €2 in C". For each a € (2,
we choose nonzero holomorphic functions F' and G on a neighborhood U C 2

F
such that ¢ = con U and dim(F~1(0) N G71(0)) < n — 2, and we define the
divisors vy, v by vy, :=vp, v := vg, which are independent of choices of F
and G. Hence they are globally well-defined on €.

2.3. For a divisor ¥ on C™ and for positive integers k, M (or M = oo), we define
the counting functions of v as follows. Set

vM)(2) = min {M, v(2)},

(M) B 0 if I/(Z) > ka
(2) = {V(M)(z) if v(z) <k,

I/(M)(Z) _ {V(M)(z) if v(z) > k,
0 if v(z) <k.

We define n(t) by

[ v(z)vpor ifn>2,
n(t) = lvINB(2) L
> v(z) ifn=1.
l2|<t

. M M
Similarly, we define  n(*)(t), n;k)(t)a n! )(t)'
Define

Similarly, we define N (r,v(M)), N(r, V(SA,;[)), N(r I/(M)) and denote them by

' US>k
NM)( p), Ng\,f)(r, v), Ng,f)(r, v), respectively.
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Let ¢ : C* — C be a meromorphic function. Define Ny,(r) = N(r,v,),

M M M
NSy = NOO (), NG () = NED (1), NOD ) = NOD ().

For brevity we will omit the superscript (M) if M = oc.
2.4. Let f : C* — PN(C) be a meromorphic mapping. For arbitrarily fixed

homogeneous coordinates (wq : - - - : wy) on PV(C), we take a reduced represen-
tation f = (fo:---: fn), which means that each f; is a holomorphic function on
C" and f(z) = (fo(z) : -+ : fn(2)) outside the analytic set {fo =+ = fx =0}

of codimension > 2. Set || f|| = (|f0|2 I |fN|2)1/2-
The characteristic function of f is defined by

T(r, ) = / log]| fllo — / log]| .

5(r) 5(1)

Let H be a hyperplane in PV(C) given by H = {agwg + ... + aywx}, where
A :=(ag,...,an) # (0,...,0). Weset (f,H) = Zi\io a; f;. Then we can define the
corresponding divisor (s gy which is rephrased as the intersection multiplicity of
the image of f and H at f(z). Moreover, we define the proximity function of H

by
LA 1] 7l
— 1 1
. (r) /sg 8 I H)] /5(1) 8 [FH)

where ||H|| = (ZZ 0 lag|?)z.

2.5. Let ¢ be a nonzero meromorphic function on C™, which are occasionally
regarded as a meromorphic mapping into P*(C). The proximity function of ¢ is
defined by

,\)|,_. ~

m(r, @) = /S | Jogma (12 )

2.6. As usual, by the notation ”|| P” we mean the assertion P holds for all
r € [0, 00) excluding a Borel subset E of the interval [0, co) with [ dr < co.

The following results play essential roles in Nevanlinna theory (see [11], [12],
[13]).

First Main Theorem. Let f : C* — PN (C) be a linearly nondegenerate mero-
morphic mapping and H be a hyperplane in PN (C). Then

Nigm)(r) +myu(r) =T(r, f) (r>1).

Second Main Theorem. Let f : C* — PN(C) be a linearly nondegener-
ate meromorphic mapping and Hy, ..., H, be hyperplanes in general position in
PN(C). Then

| (g—N- ZNf;VH +o(T(r, ).
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Logarithmic Derivative Lemma. Let f be a nonzero meromorphic function
on C™. Then

H m(r, Dajff)>: Ologt T(r, ) (a € Z).

3. SOME AUXILIARY LEMMAS

Lemma 3.1. Suppose d > 1 and ¢ > N +2. Then
|| T(r, &) = O(T(r, f1)) for each (1 < o < 3).

Proof. By the Second Main Theorem, we have

q
| (a=N=DT(r, %) < ST NGD (1) +o(T(r, f%)
=1
q
< SN NGy (1) +o(T(r, 1)
=1

q
=S NN () + (T, £)
1=1

< gNT(r, f') + o(T(r, f*)).
Hence || T(r, f) = O(T(r, "))
Similarly, we get ||T(r, f1) = O(T(r, f%)). O

Take 3 mappings f1, f2, 3 with reduced representations f* := (f(‘;C SN f]'f,)
and set T(r) := Y3 _ T(r, f*). For each ¢ = (cq, . .., cy) € CNH1\ {0}, we define
(fF,c) = Zi\io cifF (0 < k < N). Denote by C the set of all c € CV+1\ {0} such
that

dim{z € € : (f*, H)(2) = (f*,¢)(x) = 0} < n— 2.

Lemma 3.2. ([10, Lemma 5.1]) C is dense in CVF1,

k
Lemma 3.3. ([8]) For every c € C, we put FiF = ({f'; C;) Then
T(r, F*) < T(r, f*) + o(T(r)).
Definition 3.4. ([8]) Let Fp,..., Fyy be meromorphic functions on C", where
M > 1. Take a set o := (a?,...,a™~1) whose components o are composed of
n nonnegative integers, and set |a| = [a%] + ... + [aM~1|. We define Cartan’s
auxiliary function by
1 1 . 1
D) D) o DY(4)
3 = ®¥(F, ..., Fy) = FoFyFyy fo o v
Mo1 Mo1 M1
D (5) DY (g) D (7))
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Proposition 3.5. ([7, Proposition 4.9]) Let a = (a?,---,a™) be an admissible
set for F = (fo,- -+, fn) and let h be a holomorphic function. Then,

det (Dao(hF), . DaN(hF)> = BNV det (DQO(F), . DaN(F)>.

Lemma 3.6. ([8]) If ®*(F,G,H) = 0 and ®*(§,&,7) = 0 for all a with
|a| < 1, then one of the following assertions holds:
(i) F=G,G=H or H=F.

(ii) g, % and % are all constant.

Using the same argument in [8], we have both following lemmas

MM -1
Lemma 3.7. Suppose that ®*(Fy, ..., Far) Z 0 with |of < % If
9 = min {VF07S’€07 d} = min {VF17Sk17 d} = .- =min {VFMSka d}

for some d > |a|, then vea(zg) > min {D (), d — |a|} for every zy € {z :
VE, <ko(2) > 0} \ A, where A is an analytic subset of codimension > 2.

Proof. Set Hy := {z : vp, <k,(2) > 0}, then by the assumption we have Hy =
Hy=..= H)y; := H. Denote by A the set of all singularities of H. Then A is an
analytic set of dimension at most n — 2. We assume that zg € H \ A. We choose
a nonzero holomorphic function h on a neighborhood U of zy such that dh has

1
no zero and H NU = {z € U;h(z) = 0}. Set my := vp,(z9) and pg := o for
S
0 < s < M. We can write o5 = h™™sp¢ on a neighborhood V(C U) of 2y, where
s are nowhere vanishing holomorphic functions on V.
We first consider the case v4(z) = d. We have

FO F1 FM
0 0 0
o Fo.D* (3) R.D* () - FuD*(57)

]\/'171 ]\/'171 ' &171

RD* 7 (g) FDY () - Fu D (7))

M .

= (—1)'Fay,
=0

Dalgok
where ; = det( sk=0,..,i—1¢+1,....M; 1l =0,1,...M— 1> are
Pk
meromorphic functions.
al

Ph DY iy

By induction on | o |, we can write each =l where 1y,
Pk Pk
is a holomorphic function, and
I 1 Lit1 Im
Dy DYy DAy DMy,
D D () L e SEe S A

I=(l1,lag) ¥0 PYi-1 Pi+1 PM
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where | = (1, ..., lps) runs through all permutations of {0, 1,...,M — 1} and €(l)
denotes the signature of a permutation {. This implies that v’ <| a | . By the

assumption vg <k (20) > v (20) = d, we have vga(29) > d— | a | .
p 1y > 7,( ) )

After that, we consider the case 1 < vl4 (z0) < d. Then, by the assumption, we
get

m*i=mg=my = =my = vl¥(z).

We now write

o det (Dal(gok —o)ik=1,...,.M;1=0,1,..... M — 1>,

 pop1 M
and o — o = h™™ (@r — Po), where @p, — @ is a holomorphic function.
By applying Proposition 3.5, it follows that

go o MY 1, (DQZ(N Bo)ik =1, M; 1 =0,1,..... M 1>
= 7= et — sk=1,...,.M; (=0,1,..... M -1,
Gop1...pm hmM PR R0
and hence
hm U, -
¢a:ﬁdet<l)a ((pk—go(]);k‘zl,...,M; lZO,l,....,M—1>.
Pop1---PM

O

This yields that vga(29) > m*. The proof is complete.

Lemma 3.8. Suppose that the assumptions in Lemma 3.7 are satisfied. If Fy =
-« = Fpy # 0,00 on an analytic subset H of pure dimension n—1, then vga (zg) >
M,V zg € H.

Lemma 3.9. Let f : C* — PN(C) be a linearly nondegenerate meromorphic map-
ping. Let Hy, Ho, ..., H, be q hyperplanes in PN(C) located in general position.
Assume that k; > N —1 (1 < j <q). Then

| (o-5-1- Zi ) 1o 2(1 ) N 20, )T ),

Proof. By the Second Main Theorem, we have
| (a—=N-1)T(r, f)

— N (N)
- Z N((fJ){j),Sk‘ (r) + N(f,Hj),>kj (r) +o(T(r, f))

q
N
< Z N((J]”VI)fj)vﬁk‘ (r) + L.+ 1 N(vaj)7>kj (r)+o(T(r, f))

q q
N
N Z N((fvl)fj)ékj (r) + Z kj+1 (N(f’Hj)(T) = Npmy) <k (T)>+O(T(T7 f))
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q
Thus we have a desired inequality. O

Lemma 3.10. Assume that there exists ®* = <I>a(ch°0, .. .,chOM) %0 for some

M(M -1
cel,lal < %, 2 > |a| and the assumptions in Lemma 3.7 are satisfied.
Then, for each 0 < i < M, the following holds:
(2=l (1)
H N(fl i0)><kijy —I—MZN(]” ),<kij )
J#do
<N (7, Vgpa)
(M(Mﬂ))
2
<T(r) + ; Nty o, (1) 0T (7))

Proof. The first inequality is deduced immediately from Lemmas 3.7 and 3.8. On
the other hand, we also have

(3.1) N(r,vge) < T(r,®%) + O(1) = N(r,vga) + m(r, ) + O(1).

We easily see that a pole of & is a zero or a pole of some FPU and 02 is

holomorphic at all zeros with multiplicities < &y, of Fgol because of Lemma 3.7

(1 €{0,...,M}). Assume that z is a zero of FZ*' with multiplicity > ki;,- We also
o Jol

D (1/FZ”)

(1/F)
if zp is a pole of ®* then it has the multiplicity < |a| = Zi]\ial || < M(A;[_l).

This implies that

see that if 2z is a pole of , then it has the multiplicity < |ay|. Thus,

(M) M
(3.2) N(r,vge) < Z% Nigi iy g, (1) F Z% N(r, vi5y)
and
M ) iok
» D (o
m(r,8%) < 3 -m(r 7 + 0 L (r P50t
i=0 Pe
M ..
(3.3) <D m(r, F) + o(T(r),

~
Il
=)

where @i = 1/Fl* By (3.1) (3.2) and (3.3), we get

M(M 1)) M .
N(r, vge) < Z ( me) by (1) + > T(r, FP) + o(T(r))
=0

M(M 1)

<T Z ot (1) o(T(r)).

Z]O
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4. PROOF OF THEOREM 2

16
Casel.N22,3N—1§q§3N+1,m>3N+1+mand

2Nk 2N(g—k) 3N*+N

2 —5N — 3 .
(24 ) > i T mrdil ML

First, we need the following

Claim 1. Denote by Q the set of all indices jo € {1,2,...,q} satisfying the
following: There exist ¢ € C and o = («ap, 1) with |a| < 1 such that

O (FLoY, F02, FI°%) £ 0.
Then Q is an empty set.

Proof. Assume that Q is non-empty. For every 1 <i¢ < 3 and jg € Q, by Lemma
3.10, we have

(1) (1)
H N(fl ”O ) +2 Z N(fl ),<kij; (r)
J#jo

1)
ZN(fz i) >,%( r)+o(T(r)),
and hence

() ()
| V0, O+ 2 E N 0, 0
J#Jo

<N -T(r +NZNﬂHm iy (1) +0(T(1)).

This implies that

3
(N) (N)
Z<N(f Hijo), < uo + 2 Z N(fl ), <kij )>

i=1 J#jo

<3NT(r)+ 3N Z N((} (r) + o(T(r))

Z]O

3
<3NT + Z (k + 1> (f%,Hjq),>kij, (T) + O(T(T))
i=1 ijo
3

(4.1) <3NT(r +Z<
=1

><(fl ) = Nipimy) < ”O()>+O(T(T))-
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Hence we see
3

Z( > N 0, )

i=1 N j=1

>/ 3N

3

3N

(4.2) + Zu S >N§;Y> gy (1) + 0T (7).
i=1 270

On the other hand, since 1 — - 3N > 0 and

jo
(43) max{N{y ) o (1) Nipiy (1)} < T ) +o(T(r ), V1<i<3,
we have
(4.4) H 2ZZN§]{Y J iy, (1) S BN+ 1)T(r) + o(T(r)).

=1 j=1

Using Lemma 3.9, we have

q N '
_N-1- T(r, f
H(q ;k‘iﬁrl) . f)
<Z(1— a )N““ (r) + o(T(r, )
= kg + 1) UH) ks oA )
Nk N(q—k) ;

(
<(1- 57 )ZN((;Y (1) + 0T, 1),

= <q—N—1— Al —N(q_k)>T(r)
(

—_

m+1 m+d+1

)ZZ D )+ 0(T(r)).

=1 j=1

(4.5) <
From (4.4) and (4.5), we have

H (_ Nk _N(q—k‘))T(T)

T m+1 m4d+1l

)T + oI ().
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Letting r — +o00, we get

2<q—N—1— all —N(q_k)>§(3N+1)<1— N >

m+1 mi+d+1 M+1
and hence
2Nk  2N(qg—k) 3N?+ N
4.6 2g — 5N — 3) < - .
(4.6) (24 S i Tmrdrl Ml
This is a contradiction. So we have Q = 0. O

Claim 2. Ifﬁ({l,Q,...,q}\Q)Z 3N —1and N > 2 then f! = f2, or f? = f3,
or 3 = fL.
Proof. Indeed, assume that 1,...,3N —1 ¢ Q. By the density of C, it follows that
OUFI FP FP)=0(1<i,j<3N—1,[al<1).

Thus, there exists x;; # 0 such that F;l = XijF;'z, or F;z = XijF;?’ or F;3 =
XijF;'l. We may assume that F;l = Xiij@'z'

Suppose X;; # 1. Then we have the following: If v(s1 gy <p,,(2) > 0 (I # 4, ),
then v( 1 17,y(2) > 0 or v g,y (2) > 0.

1)

1 1 .
So we get >, ; V((f)l,Hl),gku(z) < V((f)1 Hi) ks (2) + VL H) > (z) outside a
finite union of analytic sets of dimension < n — 2. Hence

1) 1)
Z N f1 Hp),<ky ) < ]V(f1 H;),>ky; (T) T N(flij)v>k1j (T)
l#i,j
< 1 N ( )+ 1
= g+ 1 HH) >k " kij+1

1 1
N . N ,
kli _|_ 1 (flsz) (T) + klj _|_ 1 (flvH])(T)

2 1
m——i—lT(T’f ).

By Lemma 3.9 and since k1; > N — 1, we have

(o n-a- T gy Jres

l#1,5

N(fl,Hj),>k1j (T)

IN

(V) )
- IZZ:J< ku + 1>N(f1,Hl),§ku (r)+o(T(r, f)).

This yields that

(q—N—3—l§;ij+1>T(r,fl)
<Z<

>N((]JC\QHZ)7S]€H (r)+o(T(r, f1))
l#i,5
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N 1) ,
§N<1 S M+ 1> 2 N ), <hy, (1) +o(T(r, 7))

I#i,5
N 2N
S(l Y 1>m—_|_1T(7"7f1) +o(T(r, f1)).

Hence

N(g—2) N 2N
—-N-3—-——— )< (1- —
(q m+1 >_< M—|—1>m—|—1

This means that

— 2
son_3_N@=2 _ 2N 2N |
m+1 m+1 (m+1)(M+1)
Thus
N 2N?
(4.7) g—N-3< 14

“m+1 (m+1)(M+1)

16
Moreover, since N > 2, 3N +1 2qandm>3N—|—1—l—m,We have
(3N —3) S Nq
2 “m+1

and
Nk N(q—k:)> Ng _ Ng >3N2+N
m+1 m4d+1 " m+d+1~ M+1~2(M+1)
This implies that

5N +3 Nk N(g—k) 3N?2+N
> Tt m+d+1  2(M+1)
Ngq 2N?

m+1  (m+1)(M+1)

>N+ 3+

Combining the hypothesis and (4.7), we get a contradiction. Hence x;; = 1.

We define the subsets I1, Is and I3 by

Li={i: 1<i<3N-2and Fi_, =F3_},
L={i: 1<i<3N-2and F&_, =F3_},
Li={i: 1<i<3N-2and Fi}_, =Fi\_}
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Then one of them contains at least N indices. We may assume that I, > N.

Then f' = f2. Thus the claim is proved.

From Claim 1 and Claim 2 and ¢ > 3N — 1, Case 1 is proved.
Case 2. Assume that N =1and ¢ =14

For each jy € Q from (4.1), we get

N > NG i, 0)

O
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3
3 A
<3T(r) +Z<km +1>(N<fﬁHm)( ) = N t), <y (7))

3
Z i nsy, (1) +0(T(r))

1)
and Ny gy < ”O( ) < Ngim ) (r) < T
Hence
(1)
253,
=1 j=1
(1)
<3(1 (1-—
(4.8) <3(1+ —— T+ 2(1 _ 3 NG
' - mj, + 1 — mj, + 1 (fH.H
where mj = min{k;; | 1 <i < 3}(1 <5 <4).

On the other hand, from Lemma 3.9, we have

H<2_gkijl+1>T(r,fi)§§;<1— >N(<}3

This implies that

k 4—k ; 1
(2_m+1_m+d+1>T(T’f) §;<1_W>N
Hence
(4.9)

k 4k 32
(2_m+1_m—|—d—|—1> 322322:( >

From (4.8) and (4.9), we have

k 4—k M+1
H2<2_m—|—1_m—|—d+1>( )T
3
1 3 (1)
<3(1 T 1—
> ( +mj0+1) (’f')+ ( mjo+1) (¢ Hjg),<

i=1
This yields that

r ) +o(T(r)) (1 <i<3).

) i, (1) 0T (1)

Z]O

i, (1) 0T (1),

Z]O

1, (1) + 0(T(r £9).

1 i, (P)HO(T(r, ).

((JB H;),<ki; (r)+o(T'(r)).

<k, (1) +0(T(r)).

130

4—k M+1

; 1
ZNQ > (Mol (g & __
(fLH kijo mj, — 2 m+1

m+d+1

)( )

M
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1
—-3(1+ " 1)>T(T) +o(T(r)).
Hence
3 m;, + 1 k 4—k M+1
; N{fhat).< UO(T)Z<mjo—2><2(2_m+1_m+d+1)( )
(4.10) —3(1+ e 1)>T(7~) +o(T(r)).

Assume that $Q > 3, i.e, Q D {jo, j1,72}- By (4.10), we get
302 2

) > M 2(2 — k _ 4—k M+1
ZZN(fZ’Hjs)’Sk”S(T)_Z<mjs—2 o1 mrar A

>> T(r) + o(T(r)).

mj, +1

Since there exists ¢ € C such that ch‘)l - ch‘)z % 0, it follows that

Nf} ity (1) S Npor_pioa () < T(r, f1) +T(r, £2) + O(1).

Similarly, we have

Nf} e, (1) ST )+ T(r, £ 4+ 0(1)

and
2 1
SN, (1) ST )+ T(r, £1) +O(1).
s=0
Hence
1) 2
;N(f%)ékm (r) < 3 T(r)4+0(1) (1 <i<3)
and
3 2 L
(4.12) ZZN((]“)H iy, (1) S2.T(r) +0(1).
i=1 s=0

2
m;. +1 k 4—k M+1
: = Je - -
2.T(r) 2 ><2(2 m+1 m—l—d—l—l)( M )
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Letting r — +o00, we get
2
mj, +1 k 4—k M+1 1
2> (22~ — —3(1 .
T e (mjs—2><( m+1 m—l—d—l—l)( M ) =3 +mjs—|—1)>
On the other hand, the following function is increasing for ¢t > 2
t+1 k 4—k M+1 1
t)y=——=112(2— — —-3(14+——) .
1) (t—2><( m+1 m—l—d—l—l)( M ) ( +t—|—1)>
So we get

m+ 1 k 4—k M+1 1
>3 —— - - - —)).
2_3<m 2)(2(2 m+1 m—l—d—l—l)( M ) 3(1+m )>

This means that

2(m — 2) k 4—k  M+1 1
2> - - —3(1+—)).
3(m—|—1)_<( m+1 m—l—d—l—l)( M ) =3 +m—|—1)>
Thus, we get
32k+1) 6(4—k) 6k 24 — 6k 12

>1+ —.
mt1  midtl Mmt1)  Mmidr1l) - M

This is a contradiction (Remarking that the equality does not happen if
maxi<j<a{m;} > m). Hence §Q < 2.

We now use the same argument in [15] to complete Case 2.

Without loss of generality, we may assume that 1,2 ¢ Q. By the density of C
in C2, it follows that @a(FJO,Fjl,FJQ) =0 foreach 1 <i<2/1<j<2and for
each o = (ay, 1) with || < 1, where FiF = =20

( ) |al TR )

Applying Lemma 3.6 for ¢ = 1, j = 2, we have the following two cases.

(i) There exist 0 < Iy < lz < 2 such that F21l1 = F21l2 . Then fir = fl2,

(ii) There are two distinct constants a, 3 € C\ {0, 1} such that F}? = aF3! =
BF)2.

We may assume that H; = {wy =0}, Hy = {w; =0}, Hs = {wp— cw; =
0} (c € C\{0}). Then

o fo_ o fE
7= =
1
P H) =06 fi—cfl =0 (fS caf?)(‘f—lo): 0.
ozf1
2
(fz,Hs)ZU@fg—cff:0<:>(f8—cﬁf§)<%>:0'
1

Hence {z € C" : (0 1) <kos (2) > 0} C U?:o I(f%). So that N((;‘)),Hg)ékog(r) =0,
and v( 51 p,)(2) = Vf(())_caf?(z) and v 2 p,)(2) = T (z) for z ¢ I(fOYUI(fHU
107).
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Thus, we have v(s1 p,)(2) = VFO o f0 (2) (z € C") and v(s2 g, (2) = Vfg_cﬁf?(z)
(z€C™).

Put H = {wy—caw; = 0}, HY = {wy—cfw; = 0}. Then we have the following:

e Hs, H}, HY are in general position.

_ o 1) _ @ _ @
® V(0. H}) = V(f1,Hz)- This yields V(fO,Hg),Skm = V(A Hy) <k = V(0. Hs), <kos

B . (1) _ M EY)
® V(ro.Hy) = V(f2,Hs) This yields V(f07H§’)7Sk23 - V(f27H3)7Sk23 - V(fO7H3)7Sk03

By Lemma 3.9, we have

2
1 0 1 (1)
H (3 —1-1- Z T 1>T(r,f )= (U 7 N (0.1 <o (7)

7=0
1 (1)
+(1- 1+ klg)N(fO7H§)7Sk13 (r)
1 (1)
+(1- 1+ kzg)N(fovHél)ék% ()

+o(T(r, %))

3 0 1 M
~ (1 Com+ 1>T(T’f )< (1 M+ 1> (N(f07H3)7Sk03(T)

+ N((;())7Hé)7§k13 (T) + N((;()),Hél),SkZi; (T)> +O(T(T7 fo))'

3 0 1 (1)
= (1 T m + 1>T(T’ )< (1 M + 1> (N(f07H3)7Sk03(T)

+ N((;())vHii)vSkOii (T) + N((;()),Hg),gk():; (T)> +O(T(T7 fo))

1
= 30— 7 IVt (1) 0T, 1)),

So we get
(1- 25 )70 < ot ),

This is a contradiction. Case 2 of Theorem 2 is proved.
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