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A UNICITY THEOREM WITH TRUNCATED COUNTING

FUNCTION FOR MEROMORPHIC MAPPINGS

PHAM HOANG HA

Abstract. In this article, a unicity theorem with truncated multiplicities of
meromorphic mappings in several complex variables sharing few targets are
given. It gives some remarkable improvements for the results in [15].

1. Introduction

The unicity theorems with truncated multiplicities of meromorphic mappings
of C

n into the complex projective space P
N(C) sharing a finite set of q fixed

hyperplanes in P
N(C) have received much attention in the last few decades, and

they are related to many problems in Nevanlinna theory and hyperbolic complex
analysis (see the references in [1, 8, 14, 15, 16, 3, 4, 5] for the development in
related subjects).

To state some of them, first of all we recall the following.

Let f be a nonconstant meromorphic mapping of Cn into PN(C) and H a
hyperplane in P

N(C) and k a positive integer or k = ∞. Denote by ν(f,H) the
map of C

n into Z whose value ν(f,H)(a) (a ∈ C
n) is the intersection multiplicity

of the images of f and H at f(a).

For every z ∈ C
n, we set

ν(f,H),≤k(z) =

{
0 if ν(f,H)(z) > k,

ν(f,H)(z) if ν(f,H)(z) ≤ k,

ν(f,H),>k(z) =

{
ν(f,H)(z) if ν(f,H)(z) > k,

0 if ν(f,H)(z) ≤ k.

We now take a linearly nondegenerate meromorphic mapping f of C
n into

P
N(C), a positive integer d and q hyperplanes H1, . . . , Hq in P

N (C) in general
position with

dim {z ∈ C
n : ν(f,Hi),≤k(z) > 0 and ν(f,Hj),≤k(z) > 0} ≤ n− 2 (1 ≤ i < j ≤ q).
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We consider the family F (f, {Hj}
q
j=1, k, d) of all meromorphic mappings g :

C
n → P

N(C) satisfying the conditions

(a) g is linearly nondegenerate,
(b) min {ν(f,Hj),≤k, d} = min {ν(g,Hj),≤k, d} (1 ≤ j ≤ q),

(c) f(z) = g(z) on
⋃q
j=1{z ∈ Cn : ν(f,Hj),≤k(z) > 0}.

Denote by ] S the cardinality of the set S.

In [15], the authors showed that

Theorem 1. (see [15])

(1) If N = 1, then ] F (f, {Hi}
3N+1
i=1 , k, 2) ≤ 2 for k ≥ 15.

(2) If N ≥ 2, then ] F (f, {Hi}
3N+1
i=1 , k, 2) ≤ 2 for k ≥ 3N + 3 + 4

N−1 .

(3) If N ≥ 4, then ] F (f, {Hi}
3N
i=1, k, 2) ≤ 2 for k > 3N + 7 + 24

N−3 .

(4) If N ≥ 6, then ] F (f, {Hi}
3N−1
i=1 , k, 2) ≤ 2 for k > 3N + 11 + 60

N−5 .

We are going to improve Theorem 1. Namely, we prove the following

Theorem 2. Let f1, f2, f3 : C
n −→ P

N (C) be three meromorphic mappings

and let {Hi}
q
i=1 be hyperplanes in general position. Let d, k, k1i, k2i, k3i be the

integers with 1 ≤ k1i, k2i, k3i ≤ ∞ (1 ≤ i ≤ q). We set M = max{kji}, m =
min{kji} (1 ≤ j ≤ 3, 1 ≤ i ≤ q), k = max{]{i ∈ {1, 2 · · · , q} | kji = m} | 1 ≤ j ≤
3}. Define d = 0 if M = m and d = min{kji −m > 0 | 1 ≤ j ≤ 3; 1 ≤ i ≤ q} if

M 6= m.

Assume that the following conditions are satisfied

(a) dim{z ∈ Cn : ν(f j ,Hi),≤kji
> 0 and ν(f j ,Hl),≤kjl

> 0} ≤ n − 2

(1 ≤ j ≤ 3; 1 ≤ i < l ≤ q),
(b) min(ν(f j ,Hi),≤kji

, 2) = min(ν(f t,Hi),≤kti
, 2)

(1 ≤ j < t ≤ 3; 1 ≤ i ≤ q),
(c) f1 ≡ f j on

⋃q
α=1{z ∈ C

n : ν(f1,Hα),≤k1α
(z) > 0} (1 ≤ j ≤ 3).

Then f1 ≡ f2 or f2 ≡ f3 or f3 ≡ f1 if one of the following conditions is

satisfied

(1) N ≥ 2, 3N − 1 ≤ q ≤ 3N + 1, m > 3N + 1 +
16

3(N − 1)
and

(2q − 5N − 3) >
2Nk

m+ 1
+

2N (q − k)

m + d+ 1
−

3N 2 +N

M + 1
.

(2) N = 1, q = 4 and

3(2k+ 1)

m+ 1
+

6(4 − k)

m+ d+ 1
+

6k

M(m+ 1)
+

24 − 6k

M(m+ d+ 1)
< 1 +

12

M
.

We now give some corollaries of Theorem 2.

*) Theorem 1 is deduced immediately from Theorem 2 by choosing M = m
and k = q.
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*) When k = 1,M = m + d and d = 1 or d = 2 , by using the case 1 of
Theorem 2, we have the following

Corollary 3. Let f1, f2, f3 : Cn −→ PN(C) be three meromorphic mappings and

let {Hi}
3N+1
i=1 be hyperplanes in general position. Let ki be the positive integers

with 1 ≤ i ≤ 3N + 1 satisfying the following conditions

(i) dim{z ∈ Cn : ν(f j ,Hi),≤ki
> 0 and ν(f j ,Hl),≤kl

> 0} ≤ n− 2 (1 ≤ i < l ≤

3N + 1).
(ii) min(ν(f j ,Hi),≤ki

, 2) = min(ν(f t,Hi),≤ki
, 2) (1 ≤ j < t ≤ 3; 1 ≤ i ≤ 3N +

1).

(iii) f1 ≡ f j on
⋃3N+1
α=1 {z ∈ C

n : ν(f1,Hα),≤kα
(z) > 0} (1 ≤ j ≤ 3).

Then f1 ≡ f2 or f2 ≡ f3 or f3 ≡ f1 if one of the following conditions is satisfied

(1) N ≥ 2, kj = k1 + 1 for every 2 ≤ j ≤ 3N + 1 and k1 > 3N + 2 + 14
3(N−1) .

(2) N ≥ 2, kj = k1 + 2 for every 2 ≤ j ≤ 3N + 1 and k1 > 3N + 1 + 16
3(N−1) .

*) When k = 1 and M = m+ d, by using the proof for the Case 2 of Theorem
2, we have the following

Corollary 4. Let f1, f2, f3 : Cn −→ P1(C) be three meromorphic functions and

let {Hi}
4
i=1 be hyperplanes in general position. Let ki (1 ≤ i ≤ 4) be the positive

integers satisfying the following conditions

(i) dim{z ∈ C
n : ν(f j ,Hi),≤ki

> 0 and ν(f j ,Hl),≤kl
> 0} ≤ n − 2 (1 ≤ j ≤

3; 1 ≤ i < l ≤ 4),
(ii) min(ν(f j ,Hi),≤ki

, 2) = min(ν(f t,Hi),≤ki
, 2) (1 ≤ j < t ≤ 3; 1 ≤ i ≤ 4); and

(iii) f1 ≡ f j on
⋃4
α=1{z ∈ C

n : ν(f1,Hα),≤kα
(z) > 0} (1 ≤ j ≤ 3).

Assume that one of the following conditions is satisfied

(1) k1 = 9, k2 = k3 = k4 = 66.
(2) k1 = 10, k2 = k3 = k4 = 36.
(3) k1 = 11, k2 = k3 = k4 = 26.
(4) k1 = 12, k2 = k3 = k4 = 21.
(5) k1 = 13, k2 = k3 = k4 = 18.
(6) k1 = 14, k2 = k3 = k4 = 16.

Then f1 ≡ f2 or f2 ≡ f3 or f3 ≡ f1.

2. Basic notions in Nevanlinna theory

2.1. We set ||z|| =
(
|z1|

2 + · · ·+ |zn|
2
)1/2

for z = (z1, . . . , zn) ∈ Cn and define

B(r) := {z ∈ C
n : ||z|| < r}, S(r) := {z ∈ C

n : ||z|| = r} (0 < r <∞).

Define
vn−1(z) :=

(
ddc||z||2

)n−1
and

σn(z) := dclog||z||2 ∧
(
ddclog||z||2

)n−1
on C

n \ {0}.
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2.2. Let F be a nonzero holomorphic function on a domain Ω in Cn. For a multi-

index α = (α1, ..., αn), we set |α| = α1 + ...+ αn and DαF =
∂|α|F

∂α1z1...∂αnzn
. We

define the mapping νF : Ω → Z by

νF (z) := max {m : DαF (z) = 0 for all α with |α| < m} (z ∈ Ω).

We mean by a divisor on a domain Ω in C
n a mapping ν : Ω → Z such that,

for each a ∈ Ω, there are nonzero holomorphic functions F and G on a connected
neighborhood U of a (⊂ Ω) such that ν(z) = νF (z)−νG(z) for each z ∈ U outside
an analytic set of dimension ≤ n − 2. Two divisors are regarded as the same if
they are identical outside an analytic set of dimension ≤ n − 2. For a divisor ν
on Ω we set |ν| := {z : ν(z) 6= 0}, which is a purely (n− 1)-dimensional analytic
subset of Ω or empty.

Take a nonzero meromorphic function ϕ on a domain Ω in Cn. For each a ∈ Ω,
we choose nonzero holomorphic functions F and G on a neighborhood U ⊂ Ω

such that ϕ =
F

G
on U and dim(F−1(0) ∩ G−1(0)) ≤ n − 2, and we define the

divisors νϕ, ν
∞
ϕ by νϕ := νF , ν

∞
ϕ := νG, which are independent of choices of F

and G. Hence they are globally well-defined on Ω.

2.3. For a divisor ν on Cn and for positive integers k,M (or M = ∞), we define
the counting functions of ν as follows. Set

ν(M )(z) = min {M, ν(z)},

ν
(M )
≤k (z) =

{
0 if ν(z) > k,

ν(M )(z) if ν(z) ≤ k,

ν
(M )
>k (z) =

{
ν(M )(z) if ν(z) > k,

0 if ν(z) ≤ k.

We define n(t) by

n(t) =





∫

|ν| ∩B(t)

ν(z)vn−1 if n ≥ 2,

∑
|z|≤t

ν(z) if n = 1.

Similarly, we define n(M )(t), n
(M )
≤k (t), n

(M )
>k (t).

Define

N (r, ν) =

r∫

1

n(t)

t2n−1
dt (1 < r <∞).

Similarly, we define N (r, ν(M )), N (r, ν
(M )
≤k ), N (r, ν

(M )
>k ) and denote them by

N (M )(r, ν), N
(M )
≤k (r, ν), N

(M )
>k (r, ν), respectively.
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Let ϕ : Cn −→ C be a meromorphic function. Define Nϕ(r) = N (r, νϕ),

N
(M )
ϕ (r) = N (M )(r, νϕ), N

(M )
ϕ,≤k(r) = N

(M )
≤k (r, νϕ), N

(M )
ϕ,>k(r) = N

(M )
>k (r, νϕ).

For brevity we will omit the superscript (M ) if M = ∞.

2.4. Let f : Cn −→ PN (C) be a meromorphic mapping. For arbitrarily fixed
homogeneous coordinates (w0 : · · · : wN ) on P

N (C), we take a reduced represen-
tation f = (f0 : · · · : fN ), which means that each fi is a holomorphic function on
C
n and f(z) =

(
f0(z) : · · · : fN(z)

)
outside the analytic set {f0 = · · · = fN = 0}

of codimension ≥ 2. Set ‖f‖ =
(
|f0|

2 + · · ·+ |fN |
2
)1/2

.

The characteristic function of f is defined by

T (r, f) =

∫

S(r)

log‖f‖σn −

∫

S(1)

log‖f‖σn.

Let H be a hyperplane in PN(C) given by H = {a0ω0 + ... + aNωN}, where

A := (a0, ..., aN) 6= (0, ..., 0). We set (f, H) =
∑N

i=0 aifi. Then we can define the
corresponding divisor ν(f,H) which is rephrased as the intersection multiplicity of
the image of f and H at f(z). Moreover, we define the proximity function of H
by

mf,H(r) =

∫

S(r)
log

||f || · ||H ||

|(f, H)|
σn −

∫

S(1)
log

||f || · ||H ||

|(f, H)|
σn,

where ||H || = (
∑N

i=0 |ai|
2)

1
2 .

2.5. Let ϕ be a nonzero meromorphic function on C
n, which are occasionally

regarded as a meromorphic mapping into P
1(C). The proximity function of ϕ is

defined by

m(r, ϕ) :=

∫

S(r)
log max (|ϕ|, 1)σn.

2.6. As usual, by the notation ′′|| P ′′ we mean the assertion P holds for all
r ∈ [0,∞) excluding a Borel subset E of the interval [0,∞) with

∫
E dr <∞.

The following results play essential roles in Nevanlinna theory (see [11], [12],
[13]).

First Main Theorem. Let f : C
n → P

N(C) be a linearly nondegenerate mero-

morphic mapping and H be a hyperplane in P
N(C). Then

N(f,H)(r) +mf,H(r) = T (r, f) (r > 1).

Second Main Theorem. Let f : C
n → P

N(C) be a linearly nondegener-

ate meromorphic mapping and H1, . . . , Hq be hyperplanes in general position in

PN(C). Then

|| (q −N − 1)T (r, f) ≤

q∑

i=1

N
(N)
(f,Hi)

(r) + o(T (r, f)).
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Logarithmic Derivative Lemma. Let f be a nonzero meromorphic function

on Cn. Then ∣∣∣∣
∣∣∣∣ m

(
r,
Dα(f)

f

)
= O(log+ T (r, f)) (α ∈ Z

n
+).

3. Some auxiliary lemmas

Lemma 3.1. Suppose d ≥ 1 and q ≥ N + 2. Then

|| T (r, fα) = O(T (r, f1)) for each (1 ≤ α ≤ 3).

Proof. By the Second Main Theorem, we have

∣∣∣∣ (q −N − 1)T (r, fα) ≤

q∑

i=1

N
(N)
(fα,Hi)

(r) + o(T (r, fα))

≤

q∑

i=1

N ·N
(1)
(fα,Hi)

(r) + o(T (r, fα))

=

q∑

i=1

N ·N
(1)
(f1,Hi)

(r) + o(T (r, fα))

≤ qNT (r, f1) + o(T (r, fα)).

Hence || T (r, fα) = O(T (r, f1)).

Similarly, we get ||T (r, f1) = O(T (r, fα)). �

Take 3 mappings f1, f2, f3 with reduced representations fk := (fk0 : . . . : fkN )

and set T (r) :=
∑3

k=1 T (r, fk). For each c = (c0, . . . , cN) ∈ C
N+1 \ {0}, we define

(fk, c) :=
∑N

i=0 cif
k
i (0 ≤ k ≤ N ). Denote by C the set of all c ∈ C

N+1 \ {0} such
that

dim{z ∈ C
n : (fk, Hj)(z) = (fk, c)(z) = 0} ≤ n− 2.

Lemma 3.2. ([10, Lemma 5.1]) C is dense in CN+1.

Lemma 3.3. ([8]) For every c ∈ C, we put F
jk
c =

(fk, Hj)

(fk, c)
. Then

T (r, F jkc ) ≤ T (r, fk) + o(T (r)).

Definition 3.4. ([8]) Let F0, . . . , FM be meromorphic functions on Cn, where
M ≥ 1. Take a set α := (α0, . . . , αM−1) whose components αk are composed of
n nonnegative integers, and set |α| = |α0| + . . . + |αM−1|. We define Cartan’s
auxiliary function by

Φα ≡ Φα(F0, . . . , FM) := F0F1···FM

∣∣∣∣∣∣∣∣∣

1 1 · · · 1

Dα0
( 1
F0

) Dα0
( 1
F1

) · · · Dα0
( 1
FM

)
...

...
...

...

DαM−1
( 1
F0

) DαM−1
( 1
F1

) · · · DαM−1
( 1
FM

)

∣∣∣∣∣∣∣∣∣
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Proposition 3.5. ([7, Proposition 4.9]) Let α = (α0, · · · , αN) be an admissible

set for F = (f0, · · · , fN ) and let h be a holomorphic function. Then,

det

(
Dα0

(hF ), · · · , DαN

(hF )

)
= hN+1 det

(
Dα0

(F ), · · · , DαN

(F )

)
.

Lemma 3.6. ([8]) If Φα(F,G,H) = 0 and Φα( 1
F ,

1
G ,

1
H ) = 0 for all α with

|α| ≤ 1, then one of the following assertions holds:

(i) F = G,G = H or H = F.

(ii) F
G ,

G
H and H

F are all constant.

Using the same argument in [8], we have both following lemmas

Lemma 3.7. Suppose that Φα(F0, ..., FM) 6≡ 0 with |α| ≤
M(M − 1)

2
. If

ν([d]) := min {νF0,≤k0 , d} = min {νF1,≤k1 , d} = · · · = min {νFM ,≤kM
, d}

for some d ≥ |α|, then νΦα(z0) ≥ min {ν([d])(z0), d − |α|} for every z0 ∈ {z :
νF0,≤k0(z) > 0} \A, where A is an analytic subset of codimension ≥ 2.

Proof. Set Hs := {z : νFs ,≤ks(z) > 0}, then by the assumption we have H0 =
H1 = ... = HM := H . Denote by A the set of all singularities of H. Then A is an
analytic set of dimension at most n− 2. We assume that z0 ∈ H \A. We choose
a nonzero holomorphic function h on a neighborhood U of z0 such that dh has

no zero and H ∩ U = {z ∈ U ; h(z) = 0}. Set ms := νFs (z0) and ϕs :=
1

Fs
for

0 ≤ s ≤M. We can write ϕs = h−ms ϕ̃s on a neighborhood V (⊂ U) of z0, where
ϕ̃s are nowhere vanishing holomorphic functions on V .

We first consider the case ν[d](z0) = d. We have

Φα =

∣∣∣∣∣∣∣∣∣

F0 F1 · · · FM
F0.D

α0
( 1
F0

) F1.D
α0

( 1
F1

) · · · FM .D
α0

( 1
FM

)
...

...
...

...

F0.D
αM−1

( 1
F0

) F1.D
αM−1

( 1
F1

) · · · FM .D
αM−1

( 1
FM

)

∣∣∣∣∣∣∣∣∣

=

M∑

i=0

(−1)iFiψi,

where ψi := det

(
Dαl

ϕk
ϕk

; k = 0, ..., i− 1, i + 1, ...,M ; l = 0, 1, ...,M − 1

)
are

meromorphic functions.

By induction on | αl |, we can write each
Dαl

ϕk
ϕk

as
Dαl

ϕk
ϕk

=
ψk,l

h|α
l|
, where ψk,l

is a holomorphic function, and

ψi =
∑

l=(l1,...,lM)

ε(l)
Dαl1ϕ0

ϕ0
...
Dαliϕi−1

ϕi−1
.
Dαli+1

ϕi+1

ϕi+1
...
DαlMϕM
ϕM

,
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where l = (l1, ..., lM) runs through all permutations of {0, 1, ...,M − 1} and ε(l)
denotes the signature of a permutation l. This implies that ν∞ψi

≤| α | . By the

assumption νFi,≤ki
(z0) ≥ ν[d](z0) = d, we have νΦα(z0) ≥ d− | α | .

After that, we consider the case 1 ≤ ν[d](z0) < d. Then, by the assumption, we
get

m∗ := m0 = m1 = · · · = mM = ν[d](z0).

We now write

Φα =
1

ϕ0ϕ1 · · ·ϕM
det

(
Dαl

(ϕk − ϕ0); k = 1, ...,M ; l = 0, 1, ....,M − 1

)
,

and ϕk − ϕ0 = h−m
∗

(ϕ̃k − ϕ̃0), where ϕ̃k − ϕ̃0 is a holomorphic function.

By applying Proposition 3.5, it follows that

Φα =
hm

∗(M+1)

ϕ̃0ϕ̃1...ϕ̃M
.

1

hm
∗M

det

(
Dαl

(ϕ̃k − ϕ̃0); k = 1, ...,M ; l = 0, 1, ....,M − 1

)
,

and hence

Φα =
hm

∗

ϕ̃0ϕ̃1...ϕ̃M
det

(
Dαl

(ϕ̃k − ϕ̃0); k = 1, ...,M ; l = 0, 1, ....,M − 1

)
.

This yields that νΦα(z0) ≥ m∗. The proof is complete. �

Lemma 3.8. Suppose that the assumptions in Lemma 3.7 are satisfied. If F0 =
· · · = FM 6≡ 0,∞ on an analytic subset H of pure dimension n−1, then νΦα(z0) ≥
M, ∀ z0 ∈ H.

Lemma 3.9. Let f : Cn → PN (C) be a linearly nondegenerate meromorphic map-

ping. Let H1, H2, . . . , Hq be q hyperplanes in P
N(C) located in general position.

Assume that kj ≥ N − 1 (1 ≤ j ≤ q). Then
∣∣∣∣
∣∣∣∣
(
q−N − 1−

q∑

j=1

N

kj + 1

)
T (r, f) ≤

q∑

j=1

(
1−

N

kj + 1

)
N

(N)
(f,Hj),≤kj

(r)+ o(T (r, f)).

Proof. By the Second Main Theorem, we have
∣∣∣∣ (q −N − 1)T (r, f)

≤

q∑

j=1

N
(N)
(f,Hj)

(r) + o(T (r, f))

=

q∑

j=1

N
(N)
(f,Hj),≤kj

(r) +

q∑

j=1

N
(N)
(f,Hj),>kj

(r) + o(T (r, f))

≤

q∑

j=1

N
(N)
(f,Hj),≤kj

(r) +

q∑

j=1

N

kj + 1
N(f,Hj),>kj

(r) + o(T (r, f))

=

q∑

j=1

N
(N)
(f,Hj),≤kj

(r) +

q∑

j=1

N

kj + 1

(
N(f,Hj)(r) −N(f,Hj),≤kj

(r)

)
+o(T (r, f))
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≤

q∑

j=1

(
1 −

N

kj + 1

)
N

(N)
(f,Hj),≤kj

(r) +

q∑

j=1

N

kj + 1
T (r, f) + o(T (r, f)).

Thus we have a desired inequality. �

Lemma 3.10. Assume that there exists Φα = Φα(F
j00
c , . . . , F

j0M
c ) 6≡ 0 for some

c ∈ C, |α| ≤
M(M − 1)

2
, 2 ≥ |α| and the assumptions in Lemma 3.7 are satisfied.

Then, for each 0 ≤ i ≤M, the following holds:
∣∣∣∣ N (2−|α|)

(f i,Hj0),≤kij0
(r) +M

∑

j 6=j0

N
(1)
(f i,Hj),≤kij

(r)

≤N (r, νΦα)

≤T (r) +

M∑

l=0

N
( M(M−1)

2
)

(f l,Hj0),>klj0

(r) + o(T (r)).

Proof. The first inequality is deduced immediately from Lemmas 3.7 and 3.8. On
the other hand, we also have

(3.1) N (r, νΦα) ≤ T (r,Φα) +O(1) = N (r, ν∞Φα) +m(r,Φα) + O(1).

We easily see that a pole of Φα is a zero or a pole of some F j0lc and Φα is

holomorphic at all zeros with multiplicities ≤ klj0 of F j0lc because of Lemma 3.7

(l ∈ {0, . . . ,M}).Assume that z0 is a zero of F j0lc with multiplicity> klj0. We also

see that if z0 is a pole of
Dαi(1/F

j0l
c )

(1/F j0lc )
, then it has the multiplicity ≤ |αi|. Thus,

if z0 is a pole of Φα then it has the multiplicity ≤ |α| =
∑M−1

i=0 |αi| ≤
M (M−1)

2 .
This implies that

(3.2) N (r, ν∞Φα) ≤
M∑

i=0

N
(

M(M−1)
2

)

(f i,Hj0),>kij0
(r) +

M∑

i=0

N (r, ν∞
F

j0i
c

)

and

m(r,Φα) ≤

M∑

i=0

m(r, F j0ic ) + O

(∑
m

(
r,
Dαi(ϕj0kc )

ϕj0kc

))
+O(1)

≤
M∑

i=0

m(r, F j0ic ) + o(T (r)),(3.3)

where ϕj0kc = 1/F j0kc . By (3.1), (3.2) and (3.3), we get

N (r, νΦα) ≤

M∑

i=0

N
(

M(M−1)
2

)

(f i,Hj0),>kij0
(r) +

M∑

i=0

T (r, F j0ic ) + o(T (r))

≤ T (r) +
M∑

i=0

N
(

M(M−1)
2

)

(f i,Hj0),>kij0
(r) + o(T (r)).
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4. Proof of Theorem 2

Case 1. N ≥ 2, 3N − 1 ≤ q ≤ 3N + 1, m > 3N + 1 +
16

3(N − 1)
and

(2q − 5N − 3) >
2Nk

m+ 1
+

2N (q − k)

m+ d+ 1
−

3N 2 +N

M + 1
.

First, we need the following

Claim 1. Denote by Q the set of all indices j0 ∈ {1, 2, . . . , q} satisfying the
following: There exist c ∈ C and α = (α0, α1) with |α| ≤ 1 such that

Φα(F j01
c , F j02

c , F j03
c ) 6≡ 0.

Then Q is an empty set.

Proof. Assume that Q is non-empty. For every 1 ≤ i ≤ 3 and j0 ∈ Q, by Lemma
3.10, we have

∣∣∣∣
∣∣∣∣ N

(1)
(f i,Hj0),≤kij0

(r) + 2
∑

j 6=j0

N
(1)
(f i,Hj),≤kij

(r)

≤T (r) +

3∑

l=1

N
(1)

(f l,Hj0),>klj0
(r) + o(T (r)),

and hence ∣∣∣∣
∣∣∣∣ N

(N)

(f i,Hj0),≤kij0
(r) + 2

∑

j 6=j0

N
(N)

(f i,Hj),≤kij
(r)

≤N · T (r) +N

3∑

l=1

N
(1)

(f l,Hj0),>klj0
(r) + o(T (r)).

This implies that
∣∣∣∣
∣∣∣∣

3∑

i=1

(
N

(N)
(f i,Hj0),≤kij0

(r) + 2
∑

j 6=j0

N
(N)
(f i,Hj),≤kij

(r)

)

≤3NT (r) + 3N

3∑

i=1

N
(1)
(f i,Hj0),>kij0

(r) + o(T (r))

≤3NT (r) +
3∑

i=1

(
3N

kij0 + 1

)
N(f i,Hj0),>kij0

(r) + o(T (r))

≤3NT (r) +

3∑

i=1

(
3N

kij0 + 1

)(
N(f i,Hj0)(r) −N(f i,Hj0),≤kij0

(r)

)
+o(T (r)).(4.1)
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Hence we see
∣∣∣∣
∣∣∣∣

3∑

i=1

(
2

q∑

j=1

N
(N)

(f i,Hj),≤kij
(r)

)

≤3NT (r) +
3∑

i=1

(
3N

kij0 + 1

)
N(f i,Hj0)(r)

+

3∑

i=1

(1 −
3N

kij0 + 1
)N

(N)
(f i,Hj0),≤kij0

(r) + o(T (r)).(4.2)

On the other hand, since 1 −
3N

kij0 + 1
> 0 and

(4.3) max{N
(N)

(f i,Hj0),≤kij0
(r);N(f i,Hj0)(r)} ≤ T (r, f i) + o(T (r, f i)), ∀1 ≤ i ≤ 3,

we have

(4.4)

∣∣∣∣
∣∣∣∣ 2

3∑

i=1

q∑

j=1

N
(N)

(f i,Hj),≤kij
(r) ≤ (3N + 1)T (r) + o(T (r)).

Using Lemma 3.9, we have
∣∣∣∣
∣∣∣∣
(
q −N − 1 −

q∑

j=1

N

kij + 1

)
T (r, f i)

≤

q∑

j=1

(
1 −

N

kij + 1

)
N

(N)
(f i,Hj),≤kij

(r) + o(T (r, f i)).

⇒

(
q −N − 1−

Nk

m+ 1
−

N (q − k)

m+ d+ 1

)
T (r, f i)

≤

(
1 −

N

M + 1

) q∑

j=1

N
(N)
(f i,Hj),≤kij

(r) + o(T (r, f i)).

⇒

(
q −N − 1 −

Nk

m+ 1
−
N (q − k)

m+ d+ 1

)
T (r)

≤

(
1 −

N

M + 1

) 3∑

i=1

q∑

j=1

N
(N)
(f i,Hj ),≤kij

(r) + o(T (r)).(4.5)

From (4.4) and (4.5), we have
∣∣∣∣
∣∣∣∣ 2

(
q −N − 1 −

Nk

m+ 1
−
N (q − k)

m+ d+ 1

)
T (r)

≤(3N + 1)(1−
N

M + 1
)T (r) + o(T (r)).



450 PHAM HOANG HA

Letting r → +∞, we get
∣∣∣∣
∣∣∣∣ 2

(
q −N − 1 −

Nk

m+ 1
−

N (q − k)

m+ d+ 1

)
≤ (3N + 1)

(
1 −

N

M + 1

)

and hence

(4.6) (2q − 5N − 3) ≤
2Nk

m+ 1
+

2N (q − k)

m+ d+ 1
−

3N 2 +N

M + 1
.

This is a contradiction. So we have ]Q = 0. �

Claim 2. If ]

(
{1, 2, . . . , q} \ Q

)
≥ 3N − 1 and N ≥ 2 then f1 ≡ f2, or f2 ≡ f3,

or f3 ≡ f1.

Proof. Indeed, assume that 1, . . . , 3N−1 /∈ Q. By the density of C, it follows that

Φα(F i1j , F
i2
j , F

i3
j ) = 0 (1 ≤ i, j ≤ 3N − 1, |α| ≤ 1).

Thus, there exists χij 6= 0 such that F i1j = χijF
i2
j , or F i2j = χijF

i3
j or F i3j =

χijF
i1
j . We may assume that F i1j = χijF

i2
j .

Suppose χij 6= 1. Then we have the following: If ν(f1,Hl),≤k1l
(z) > 0 (l 6= i, j),

then ν(f1,Hi)(z) > 0 or ν(f1,Hj)(z) > 0.

So we get
∑

l 6=i,j ν
(1)
(f1,Hl),≤k1l

(z) ≤ ν
(1)
(f1,Hi),>k1i

(z) + ν
(1)
(f1,Hj),>k1j

(z) outside a

finite union of analytic sets of dimension ≤ n− 2. Hence
∑

l 6=i,j

N
(1)
(f1,Hl),≤k1l

(r) ≤ N
(1)
(f1,Hi),>k1i

(r) +N
(1)
(f1,Hj),>k1j

(r)

≤
1

k1i + 1
N(f1,Hi),>k1i

(r) +
1

k1j + 1
N(f1,Hj),>k1j

(r)

≤
1

k1i + 1
N(f1,Hi)(r) +

1

k1j + 1
N(f1,Hj)(r)

≤
2

m+ 1
T (r, f1).

By Lemma 3.9 and since k1l ≥ N − 1, we have
∣∣∣∣
∣∣∣∣
(
q −N − 3−

∑

l 6=i,j

N

k1l + 1

)
T (r, f1)

≤
∑

l 6=i,j

(
1 −

N

k1l + 1

)
N

(N)
(f1,Hl),≤k1l

(r) + o(T (r, f1)).

This yields that
(
q −N − 3−

∑

l 6=i,j

N

m+ 1

)
T (r, f1)

≤
∑

l 6=i,j

(
1 −

N

M + 1

)
N

(N)
(f1,Hl),≤k1l

(r) + o(T (r, f1))
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≤N

(
1−

N

M + 1

)∑

l 6=i,j

N
(1)
(f1,Hl),≤k1l

(r) + o(T (r, f1))

≤

(
1 −

N

M + 1

)
2N

m+ 1
T (r, f1) + o(T (r, f1)).

Hence (
q −N − 3 −

N (q − 2)

m+ 1

)
≤

(
1 −

N

M + 1

)
2N

m+ 1
.

This means that

q −N − 3 −
N (q − 2)

m+ 1
≤

2N

m+ 1
−

2N 2

(m+ 1)(M + 1)
.

Thus

(4.7) q −N − 3 ≤
Nq

m+ 1
−

2N 2

(m+ 1)(M + 1)
.

Moreover, since N ≥ 2, 3N + 1 ≥ q and m > 3N + 1 +
16

3(N − 1)
, we have

(3N − 3)

2
≥

Nq

m+ 1

and
Nk

m+ 1
+
N (q − k)

m+ d+ 1
≥

Nq

m+ d+ 1
≥

Nq

M + 1
≥

3N 2 +N

2(M + 1)
.

This implies that

5N + 3

2
+

Nk

m+ 1
+
N (q − k)

m+ d+ 1
−

3N 2 +N

2(M + 1)

>N + 3 +
Nq

m+ 1
−

2N 2

(m+ 1)(M + 1)
.

Combining the hypothesis and (4.7), we get a contradiction. Hence χij = 1.

We define the subsets I1, I2 and I3 by

I1 = {i : 1 ≤ i ≤ 3N − 2 and F i13N−1 = F i23N−1},

I2 = {i : 1 ≤ i ≤ 3N − 2 and F i23N−1 = F i33N−1},

I3 = {i : 1 ≤ i ≤ 3N − 2 and F i33N−1 = F i13N−1}.

Then one of them contains at least N indices. We may assume that ]I1 ≥ N .
Then f1 ≡ f2. Thus the claim is proved. �

From Claim 1 and Claim 2 and q ≥ 3N − 1, Case 1 is proved.

Case 2. Assume that N = 1 and q = 4.

For each j0 ∈ Q, from (4.1), we get
∣∣∣∣
∣∣∣∣

3∑

i=1

(
2

q∑

j=1

N
(1)

(f i,Hj),≤kij
(r)

)
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≤3T (r) +
3∑

i=1

(
3

kij0 + 1

)
(N(f i,Hj0)(r)−N

(1)

(f i,Hj0),≤kij0
(r))

+

3∑

i=1

N
(1)
(f i,Hj0),≤kij0

(r) + o(T (r))

and N
(1)
(f i,Hj0),≤kij0

(r) ≤ N(f i,Hj0)(r) ≤ T (r, f i) + o(T (r)) (1 ≤ i ≤ 3).

Hence
∣∣∣∣
∣∣∣∣2

3∑

i=1

4∑

j=1

N
(1)

(f i,Hj),≤kij
(r)

≤3(1 +
1

mj0 + 1
)T (r) +

3∑

i=1

(1 −
3

mj0 + 1
)N

(1)

(f i,Hj0),≤kij0
(r) + o(T (r))

≤3(1 +
1

mj0 + 1
)T (r) +

3∑

i=1

(1 −
3

mj0 + 1
)N

(1)
(f i,Hj0),≤kij0

(r) + o(T (r)),(4.8)

where mj = min{kij | 1 ≤ i ≤ 3}(1 ≤ j ≤ 4).

On the other hand, from Lemma 3.9, we have

∣∣∣∣
∣∣∣∣
(

2 −

4∑

j=1

1

kij + 1

)
T (r, f i) ≤

4∑

j=1

(
1 −

1

kij + 1

)
N

(1)
(f i,Hj),≤kij

(r) + o(T (r, f i)).

This implies that

(
2−

k

m + 1
−

4 − k

m + d+ 1

)
T (r, f i) ≤

4∑

j=1

(
1−

1

M + 1

)
N

(1)

(f i,Hj),≤kij
(r)+o(T (r, f i)).

Hence
(4.9)
(

2−
k

m+ 1
−

4 − k

m+ d+ 1

)
T (r) ≤

3∑

i=1

4∑

j=1

(
1−

1

M + 1

)
N

(1)

(f i,Hj),≤kij
(r)+ o(T (r)).

From (4.8) and (4.9), we have
∣∣∣∣
∣∣∣∣2
(

2 −
k

m+ 1
−

4 − k

m+ d+ 1

)
(
M + 1

M
)T (r)

≤3(1 +
1

mj0 + 1
)T (r) +

3∑

i=1

(1−
3

mj0 + 1
)N

(1)

(f i,Hj0),≤kij0
(r) + o(T (r)).

This yields that

3∑

i=1

N
(1)

(f i,Hj0),≤kij0
(r) ≥

(
mj0 + 1

mj0 − 2

)(
2(2−

k

m+ 1
−

4 − k

m+ d+ 1
)(
M + 1

M
)
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− 3(1 +
1

mj0 + 1
)

)
T (r) + o(T (r)).

Hence

3∑

i=1

N
(1)
(f i,Hj0),≤kij0

(r) ≥

(
mj0 + 1

mj0 − 2

)(
2(2−

k

m+ 1
−

4 − k

m+ d+ 1
)(
M + 1

M
)

− 3(1 +
1

mj0 + 1
)

)
T (r) + o(T (r)).(4.10)

Assume that ]Q ≥ 3, i.e, Q ⊃ {j0, j1, j2}. By (4.10), we get

∣∣∣∣
∣∣∣∣

3∑

i=1

2∑

s=0

N
(1)
(f i,Hjs),≤kijs

(r) ≥

2∑

s=0

(
mjs + 1

mjs − 2

)(
2(2−

k

m+ 1
−

4 − k

m+ d+ 1
)(
M + 1

M
)

− 3(1 +
1

mjs + 1
)

)
T (r) + o(T (r)).(4.11)

Since there exists c ∈ C such that F j01
c − F j02

c 6≡ 0, it follows that

2∑

s=0

N
(1)

(f i,Hjs),≤kijs
(r) ≤ N

F
j01
c −F

j02
c

(r) ≤ T (r, f1) + T (r, f2) + O(1).

Similarly, we have

2∑

s=0

N
(1)
(f i,Hjs),≤kijs

(r) ≤ T (r, f2) + T (r, f3) + O(1)

and
2∑

s=0

N
(1)

(f i,Hjs ),≤kijs
(r) ≤ T (r, f3) + T (r, f1) +O(1).

Hence
2∑

s=0

N
(1)

(f i,Hjs),≤kijs
(r) ≤

2

3
· T (r) + O(1) (1 ≤ i ≤ 3)

and

(4.12)
3∑

i=1

2∑

s=0

N
(1)

(f i,Hjs),≤kijs
(r) ≤ 2.T (r) +O(1).

From (4.11) and (4.12), we have

2.T (r) ≥
2∑

s=0

(
mjs + 1

mjs − 2

)(
2(2−

k

m+ 1
−

4 − k

m+ d+ 1
)(
M + 1

M
)

− 3(1 +
1

mjs + 1
)

)
T (r) + o(T (r)).
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Letting r → +∞, we get

2 ≥

2∑

s=0

(
mjs + 1

mjs − 2

)(
2(2−

k

m+ 1
−

4− k

m+ d+ 1
)(
M + 1

M
)− 3(1 +

1

mjs + 1
)

)
.

On the other hand, the following function is increasing for t > 2

f(t) =

(
t+ 1

t− 2

)(
2(2 −

k

m+ 1
−

4 − k

m+ d+ 1
)(
M + 1

M
) − 3(1 +

1

t+ 1
)

)
.

So we get

2 ≥ 3.

(
m+ 1

m− 2

)(
2(2−

k

m+ 1
−

4 − k

m+ d+ 1
)(
M + 1

M
) − 3(1 +

1

m+ 1
)

)
.

This means that

2(m− 2)

3(m+ 1)
≥

(
2(2−

k

m+ 1
−

4 − k

m+ d+ 1
)(
M + 1

M
) − 3(1 +

1

m+ 1
)

)
.

Thus, we get

3(2k+ 1)

m + 1
+

6(4− k)

m+ d+ 1
+

6k

M(m+ 1)
+

24− 6k

M(m+ d+ 1)
≥ 1 +

12

M
.

This is a contradiction (Remarking that the equality does not happen if
max1≤j≤4{mj} > m). Hence ]Q ≤ 2.

We now use the same argument in [15] to complete Case 2.

Without loss of generality, we may assume that 1, 2 /∈ Q. By the density of C
in C

2, it follows that Φα(F i0j , F
i1
j , F

i2
j ) = 0 for each 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 and for

each α = (α0, α1) with |α| ≤ 1, where F ikj =
(fk, Hi)

(fk, Hj)
.

Applying Lemma 3.6 for i = 1, j = 2, we have the following two cases.

(i) There exist 0 ≤ l1 < l2 ≤ 2 such that F 1l1
2 = F 1l2

2 . Then f l1 ≡ f l2.

(ii) There are two distinct constants α, β ∈ C \ {0, 1} such that F 10
2 = αF 11

2 =
βF 12

2 .

We may assume that H1 = {ω0 = 0}, H2 = {ω1 = 0}, H3 = {ω0 − cω1 =
0} (c ∈ C\{0}). Then

f0
0

f0
1

= α
f1
0

f1
1

= β
f2
0

f2
1

,

(f1, H3) = 0 ⇔ f1
0 − cf1

1 = 0 ⇔ (f0
0 − cαf0

1 )

(
f1
1

αf0
1

)
= 0,

(f2, H3) = 0 ⇔ f2
0 − cf2

1 = 0 ⇔ (f0
0 − cβf0

1 )

(
f2
1

βf0
1

)
= 0.

Hence {z ∈ C
n : ν(f0,H3),≤k03(z) > 0} ⊂

⋃2
i=0 I(f

i). So that N
(1)
(f0,H3),≤k03

(r) = 0,

and ν(f1,H3)(z) = νf0
0−cαf

0
1
(z) and ν(f2,H3)(z) = νf0

0−cβf
0
1
(z) for z /∈ I(f0)∪I(f1)∪

I(f2).
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Thus, we have ν(f1,H3)(z) = νf0
0−cαf

0
1
(z) (z ∈ Cn) and ν(f2,H3)(z) = νf0

0 −cβf
0
1
(z)

(z ∈ C
n).

Put H ′
3 = {ω0−cαω1 = 0}, H ′′

3 = {ω0−cβω1 = 0}. Then we have the following:

• H3, H
′
3, H

′′
3 are in general position.

• ν(f0,H ′

3)
= ν(f1,H3). This yields ν

(1)
(f0,H ′

3),≤k13
= ν

(1)
(f1,H3),≤k13

= ν
(1)
(f0,H3),≤k03

• ν(f0,H ′′

3 ) = ν(f2,H3). This yields ν
(1)
(f0,H ′′

3 ),≤k23
= ν

(1)
(f2,H3),≤k23

= ν
(1)
(f0,H3),≤k03

By Lemma 3.9, we have
∣∣∣∣
∣∣∣∣
(

3 − 1 − 1 −

2∑

j=0

1

kj3 + 1

)
T (r, f0) ≤ (1 −

1

1 + k03
)N

(1)
(f0,H3),≤k03

(r)

+ (1 −
1

1 + k13
)N

(1)
(f0,H ′

3),≤k13
(r)

+ (1 −
1

1 + k23
)N

(1)
(f0,H ′′

3 ),≤k23
(r)

+ o(T (r, f0)).

⇒

(
1 −

3

m+ 1

)
T (r, f0) ≤

(
1 −

1

M + 1

)(
N

(1)
(f0,H3),≤k03

(r)

+N
(1)
(f0,H ′

3),≤k13
(r) +N

(1)
(f0,H ′′

3 ),≤k23
(r)

)
+o(T (r, f0)).

⇒

(
1 −

3

m+ 1

)
T (r, f0) ≤

(
1 −

1

M + 1

)(
N

(1)
(f0,H3),≤k03

(r)

+N
(1)
(f0,H3),≤k03

(r) +N
(1)
(f0,H3),≤k03

(r)

)
+o(T (r, f0))

= 3(1−
1

M + 1
)N

(1)
(f0,H3),≤k03

(r) + o(T (r, f0)).

So we get (
1 −

3

m+ 1

)
T (r, f1) ≤ o(T (r, f0)).

This is a contradiction. Case 2 of Theorem 2 is proved.
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