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ON THE FIXED-POINT SET AND COMMUTATOR

SUBGROUP OF AN AUTOMORPHISM OF A SOLUBLE

GROUP

B. A. F. WEHRFRITZ

Abstract. Let φ be an automorphism of finite order of a group G. We deduce
consequences for the commutator subgroup [G,φ] of φ on G of hypotheses such
as finiteness and local finiteness on the fixed-point set CG(φ) of φ on G. We
require various solubility or finiteness conditions on G or at least on [G,φ].

Throughout this paper φ denotes an automorphism of a group G of finite and
frequently prime order. We investigate the consequences for

[G,φ] =< g−1.gφ : g ∈ G >

from hypotheses on CG(φ) = {g ∈ G : gφ = g} such as finite or locally finite.
Our starting point is Endimioni and Moravec’s paper [2], where they investigate
this for G a metabelian group. Specifically they prove, see Theorem 5 of [2] that
if G is metabelian, if CG(φ) is a π-group for some set π of primes and if |φ| = p
is prime, then [G,φ] is an extension of a π-group by a nilpotent group of class at
most p (even 1 if p = 2). Our first two theorems are both generalizations of this.
As usual, G′ denotes the derived subgroup of G.

Theorem 1. Let φ be an automorphism of the nilpotent-by-abelian group G with
CG′(φ) a periodic π group for some set π of primes and with φp = 1 for some
prime p. Then [G,φ]G′ is an extension of a π-group by a nilpotent group. Specif-
ically if P = Oπ(G′), then [G,φ]G′/P is nilpotent of class at most 1 if p = 2 and
of class at most ((p − 1)d − 1)/(p − 2) if p is odd, where d denotes the derived
length of [G,φ]G′/P .

Thus the nilpotency class of [G,φ]G′/P can be bounded in terms of p and the
derived length of G only. In particular if G is metabelian then d ≤ 2 and the
nilpotency class of [G,φ]G′/P is at most p (1 if p = 2), which yields a slight
generalization of Theorem 5 of [2] (notice that our hypothesis is on CG′(φ) and
not the whole of CG(φ)). Choosing π = ∅ in Theorem 1 yields the following.
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Corollary 1. Let φ be a fixed-point-free automorphism of prime order of the
nilpotent-by-abelian group G. Then [G,φ] is nilpotent of class bounded in terms
of the order of φ and the derived length of G.

For metabelian groups we can deduce stronger conclusions than those of either
Theorem 1 or Theorem 5 of [2].

Theorem 2. Let φ be an automorphism of the metabelian group G with φp = 1
for some prime p. Set B = CG′(φ)G =< CG′(φ)g : g ∈ G >. Then [G,φ]G′/B is
nilpotent of class at most p (even 1 if p = 2).

If CG′(φ) in Theorem 2 is a (periodic) π-group for some set π of primes, then B
also is a π-group and hence Theorem 5 of [2] follows from Theorem 2. If CG′(φ)
in Theorem 2 has finite exponent, e say, for example if CG′(φ) is finite, then B
has finite exponent e and [G,φ] is an extension of a group of finite exponent by
a nilpotent group of class at most p (1 if p = 2).

Theorem 1 does not extend to soluble groups in general, even to ones of derived
length 3. Further, at least for p = 3, we cannot replace nilpotent-by-abelian by
abelian-by-nilpotent.

Example 1. For each odd prime p there is a polycyclic, abelian-by-finite group
G of derived lingth 3 with an automorphism φ of order p such that |CG(φ)| = p
and such that [G,φ] is not periodic-by-nilpotent.

Example 2. There is a polycyclic, abelian-by-(finite nilpotent) group G with
an automorphism φ of order 3 such that |CG(φ)| = 2 and such that [G,φ] is not
periodic-by-nilpotent.

The above suggests that the prime 2 is different, as indeed it is. For p = 2 we
can prove stronger results, even for soluble groups. In fact we only need some
sort of solubility restriction on [G,φ].

Theorem 3. Let φ be an automorphism of a group G with φ2 = 1 and with
CG(φ) a locally finite π-group for some set π of odd primes.

a) Suppose [G,φ] contains a soluble normal subgroup S of G such that [G,φ]/S
is a locally finite π-group. Then [G,φ]′ ≤ Oπ(G′ ∩ [G,φ]).

b) If [G,φ] is soluble, then [G,φ]′ is a π-group.

Theorem 4. Let φ be an automorphism of a group G with φ2 = 1 and |CG(φ)| =
n <∞.

a) Suppose [G,φ] contains a soluble normal subgroup S of G such that [G,φ]/S
is a locally finite π-group for some set π of primes. If π ⊇ {primes q : q ≤ n},
then [G,φ]′ ≤ Oπ(G′ ∩ [G,φ]).

b) Suppose [G,φ]e is soluble for some positive integer e with [G,φ]/[G,φ]e

locally finite. If π = {primes q : q ≤ n or q|e}, then [G,φ]′ is a locally finite
π-group.

c) Suppose [G,φ] is soluble and π = {primes q : q ≤ n}. Then [G,φ]′ is a
(soluble, locally finite) π-group.

d) Suppose [G,φ] is soluble and φ acts fixed-point freely on G. Then [G,φ] is
abelian.
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Note that in Parts b) and c) of Theorem 4 the set π is finite. Also if [G,φ]
is soluble-by-finite, then [G,φ] satisfies the hypothesis of Part b). Part d) very
slightly extends Theorem 6 of [2], the latter being the case where G itself is as-
sumed soluble. Note also in Theorem 4 that φ-invariant, locally finite subgroups,
more generally φ-invariant subgroups with finite Hirsch number, of G are always
nilpotent-by-finite but need not be abelian-by-finite, see [8].

Theorems 3 and 4 leave a small gap, namely the case where φ2 = 1 and CG(φ)
is an infinite 2-group. For locally nilpotent groups the answer to this is both easy
and more general. Below h(p) denotes the Higman function, e.g. see Section 5.1
of [3].

Proposition. Let φ be an automorphism of the locally nilpotent group G with
φp = 1 for some prime p such that C = CG(φ) is a π-group for some set π of
primes. Set P = Oπ(G). Then G/P is nilpotent of class at most h(p). If p = 2
then G′ ≤ P , φ inverts G/P and G is an extension of a π-group by an abelian
group.

The following is a corollary of the Proposition and Theorem 1; it extends the
latter.

Corollary 2. Let φ be an automorphism of the (locally nilpotent)-by-abelian
group G with CG′(φ) a periodic π group for some set π of primes and with φp = 1
for some prime p. Then H = [G,φ]G′/Oπ(G′) is nilpotent, of class at most 1 if
p = 2 and of class at most ((p− 1)d − 1)/(p− 2) if p is odd, where d denotes the
derived length of H.

A similar type of argument to that proving the Proposition, using Lemma 1
of [9], shows that if φ is an automorphism of a group G with φ2 = 1 and CG(G)
periodic and if G has a local system of (torsion-free)-by-finite subgroups with
finite Hirsch numbers, then [G,φ]′ is periodic.

In places in our arguments we can weaken |φ| prime to |φ| a power of a prime
or sometimes just to |φ| finite. However it is impossible to do this in general.

Example 3. Let p be any prime. Then there exists a polycyclic, metabelian,
abelian-by-finite group G with a fixed-point-free automorphism of order a power
of p such that [G,φ] is not periodic-by-nilpotent.

Lemma 1. Let φ be an automorphism of a group G and A a φ-invariant central
subgroup of G. Define subgroups C, K ≤ G and a map γ : G→ G by C = CG(φ),
K/A = CG/A(φ) and gγ = g−1.gφ = [g, φ]. Then the following hold.

a) (K : CA) = (Kγ.Aγ : Aγ), (K : CA)(A : Kγ.Aγ) = (A : Aγ) and

(K : A)(A : Kγ.Aγ) = (A : Aγ)(C : C ∩A).

b) Suppose A is periodic and φ|A and C ∩A have finite order. Then (A : Aγ)
divides |C ∩A|. If also C is finite, then (K : A) divides |C|.

c) If φ|A has finite order m, then

(Aγ.(C ∩A) : Am)(A : Aγ) = (A : Am)(C ∩A : C ∩Aγ)

and (K : A)(A : Kγ.Aγ)(Aγ.(C ∩A) : Am) = (A : Am)(C : C ∩Aγ).
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In particular if (A : Am) and C are finite, then (K : A) is finite and divides
(A : Am)|C|.

The point of Lemma 1 is that if we replace ‘A abelian normal’ by ‘A central’
in Lemma 1 of [6] and Lemmas 8 and 9 of [7] then we can replace ‘less than or
equal to’ by ‘divides’. This does have some content; for a trivial example consider
G = Sym(3), A = Alt(3) and φ conjugation of G by a 3-cycle. Then |φ| = 3 = |C|,
while (K : A) = (G : A) = 2, which certainly does not divide (A : A3)|C| = 32.
(Here C and K are as in Lemma 1).

Proof. a) By Lemma 1 of [6] we have (K : CA) = (Kγ.Aγ : Aγ). Here A is
central, so γ|K is a homomorphism of K into A (with kernel C), so Kγ is a
subgroup (and not just a subset) of A. Thus

(A : Aγ) = (A : Kγ.Aγ)(Kγ.Aγ : Aγ).

The second and third claims of a) follow.
b) Suppose B ≤ A is finite with Bφ = B and C ∩ A ≤ B. Then ker(γ|B) =

C ∩ B = C ∩ A and so (B : Bγ) = |C ∩ A|. Since φ has finite order, this yields
that (A : Aγ) ≤ |C ∩ A|. Hence we may choose B with A = Aγ.B. Then
(A : Aγ) = (B : B ∩ Aγ), which divides (B : Bγ) = |C ∩ A|. If C is finite,
then a) yields that (K : A) divides (A : Aγ)(C : C ∩ A), which now divides
|C ∩A|(C : C ∩A) = |C|.

c) The first claim is immediate from the proof of Lemma 7 of [7]. Then

(K : A)(A : Kγ.Aγ)(Aγ.(C ∩A) : Am)

= (A : Aγ)(C : C ∩A)(Aγ.(C ∩A) : Am) by Part a)

= (A : Am)(C ∩A : C ∩Aγ)(C : C ∩A) by the first claim of Part c)

= (A : Am)(C : C ∩Aγ),

which divides (A : Am)|C| when the latter is finite. The lemma follows. �

Lemma 2. Let φ be an automorphism of the group G with φm = 1 for some
positive integer m. Define maps γ and ψ of G → G by gγ = g−1.gφ and gψ =
g.gφ.gφ2. . . . .gφm−1 for all g ∈ G. If g, h ∈ G then (gγ.h)ψ ∈ (hGψ)G.

Proof. Let g, h ∈ G. Then

(gγ.h)ψ =

( ∏
1≤i≤m

g−1φi−1.gφi.hφi−1
)
g−1φm.g

= g−1
( ∏

1≤i≤m
gφi.hφi−1.g−1φi

)
g

= g−1((gφ.h.g−1φ)ψ)g ∈ (hGψ)G.

�

Lemma 3. Let φ be an automorphism of the nilpotent-by-abelian group G with
φm = 1 for some power m of a prime and with CG′(φ) a π-group for some set
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π of primes. Then with P = Oπ(G′) and the maps γ and ψ as in Lemma 2, we
have P ⊇ (Gγ.G′)ψ = ([G,φ]G′)ψ.

Proof. Set N = G′ and C = CN (φ); so N is nilpotent and C is periodic. If X is
a finitely generated φ-invariant subgroup of N , then C ∩ X is a finite π-group.
Repeated use of Lemma 1b) yields that φ acts fixed-point freely on X/Oπ(X).
But Oπ(X) = P ∩X. Therefore φ acts fixed-point freely on N/P . Consequently
P ⊇ Nψ by Lemma 14 of [1]. Since G/N is abelian [G,φ]N = Gγ.N . Also by
Lemma 2 we have (Nψ)G ⊇ (Gγ.N)ψ. Thus P = PG = (Gγ.N)ψ. The claims
follow. �

Lemma 4. Let φ be an automorphism of the metabelian group G with φm = 1
for some positive integer m. Set B = CG′(φ)G. Then with γ and ψ as in Lemma
2 we have B ⊇ (Gγ.G′)ψ = ([G,φ]G′)ψ.

If CG′(φ) is a π-group, then so is B and we have Lemma 3 for metabelian
groups with the restriction on the order of φ relaxed. Also the conclusion of
Lemma 4 is stronger than that of Lemma 3; for example, if CG′(φ) is a finite π-
group (or even just of finite exponent) then B has finite exponent while Oπ(G′)
may not have finite exponent.

Proof. Let A = G′. Then A is abelian, Aψγ =< 1 > and hence Aψ ≤ CA(φ) ≤ B.
Consequently B ⊇ (Gγ.A)ψ by Lemma 2 and Lemma 4 follows. �

Proof of Theorem 1. In the notation of Lemma 3 we have P ⊇ ([G,φ]G′)ψ. If φ
acts nontrivially on H = [G,φ]G′/P , then H is nilpotent by [3, 6.4.2] and the
proof of the latter theorem yields the bounds as stated. If φ acts trivially on H,
then H has exponent p (or 1 in the trivial case) again by Lemma 3 and therefore
H is nilpotent of class bounded as claimed, see [4, 7.18] for p > 2, the case p = 2
being well known and very elementary. �

Proof of Theorem 2. Repeat the proof of Theorem 3, but using Lemma 4 in the
place of Lemma 3. �

Lemma 5. Let φ be an automorphism of a group G with φ2 = 1 and with CG(φ)
a locally finite π-group for some set π of primes. Suppose [G,φ] contains a soluble
normal subgroup S of G such that [G,φ]/S is a locally finite π-group. Assume
either that 2 /∈ π or that |CG(φ)| = n is finite with π ⊇ {primes q : q ≤ n}. Then

[G,φ]′ ≤ Oπ(G′ ∩ [G,φ]).

Proof. Of course if φ = 1 the conclusion is vacuous, as indeed it is if S = {1},
so we assume otherwise. Also < S, Sφ > is soluble, normal and φ-invariant, so
we may also assume that S is φ-invariant. Suppose CG(φ) is finite of order n
and π contains all primes q ≤ n. Now Oπ(S) is locally finite and normal in
G, so by Proposition 14 of [7] we may pass to G/Oπ(S) and hence assume that
Oπ(S) = {1} in this case. Now assume 2 /∈ π. If A is any abelian section of
Oπ(S), then A = A2 and A is 2-torsion-free. Thus by repeated use of Lemma 15
of [7] we deduce that the centralizer of φ in G/Oπ(S) is isomorphic to a section
of CG(φ). Thus again we may assume that Oπ(S) = {1}.
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Let A ≤ S be an abelian φ-invariant normal subgroup of G that is maximal
subject to these constraints. Since Oπ(A) = {1} we have that φ acts fixed-point
freely on A and hence [G,φ,A] = {1} by Lemma 1 of [2]. If A < S there exists a
φ-invariant normal subgroup B of G with B′ ≤ A < B ≤ S. Then B is nilpotent
(of class ≤ 2), Oπ(B) ≤ Oπ(S) = {1} and φ acts fixed-point freely on B. Then
B is abelian, e.g. by Higman’s Theorem ([3, 5.1.1]). The maximal choice of A
implies that A = B and consequently A = S.

We have now shown that A is central in [G,φ] and [G,φ]/A is a locally finite
π-group. By a generalization of Schur’s Theorem, Corollary 2 of [4, 4.21], we have
that [G,φ]′ is a π-group. This implies that [G,φ]′ is a π-group in general, that is
even if Oπ(S) 6= {1}, and hence [G,φ]′ ≤ G′ ∩Oπ([G,φ]) = Oπ(G′ ∩ [G,φ]). �

Remark. The central part of the proof of Lemma 5 yields the following. Let φ
be an automorphism of a group G with φ2 = 1 and with CG(φ) a locally finite π-
group for some set π of primes. Suppose [G,φ] contains a soluble normal subgroup
S of G such that [G,φ]/S is a locally finite π-group. If Oπ(S) = {1}, then
[G,φ]′ ≤ Oπ(G′ ∩ [G,φ]). In particular if [G,φ] is soluble with Oπ([G,φ]) = {1},
then [G,φ] is abelian.

Proof of Theorem 3. Part a) follows at once from Lemma 5 and then Part b)
follows from setting S = [G,φ]. �

Proof of Theorem 4. Part a) follows at once from Lemma 5. For Part b) note
that [G,φ] and hence [G,φ]e are normal in G with [G,φ]/[G,φ]e a locally finite
π-group. Thus b) follows from Part a). For Part c) simply choose e = 1 in Part
b). Finally in Part d) we have n = 1 = e and π = ∅. Thus d) follows from Part
c). �

Proof of the Proposition. Let X be a finitely generated, φ-invariant subgroup of
G. Then X is nilpotent, CX(φ) = C ∩ X is a finite π-group and Oπ(X) =
P ∩X is the set of all π-elements of X. Repeated use of Lemma 1b) yields that
CX/(P∩X)(φ) = {1}. Thus φ acts fixed-point freely on X/(P ∩X) and hence by
Higman’s Theorem (e.g. [3, 5.1.1]) the factor X/(P ∩ X) is nilpotent of class
at most h(p). Moreover if p = 2, we have h(2) = 1, X ′ ≤ P ∩ X and φ inverts
X/(P ∩X). A trivial locallization argument using the finiteness of |φ| now yields
the proposition. �

Proof of Corollary 2. Set N = G′ and P = Oπ(N). Then N/P is nilpotent by
the Proposition. Also φ acts fixed-point freely on N/P , see the proof of the
Proposition. Consequently Theorem 1 applies to G/P and Corollary 2 follows.

�

Construction of Example 1. Let ω be a primitive p-th root of unity in the complex
numbers C; recall p is an odd prime. Set

a =

(
ω 0
0 ω−1

)
and b =

(
0 1
1 0

)
,
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R = Z[ω] ≤ C and X =< a, b >≤ GL(2, R); X is dihedral of order 2p. Let

Y = R(2) ∼= Z(2p−2) and let G denote the split extension of Y by X. Clearly G is
polycyclic of derived length 3 and Hirsch number 2p− 2 and is abelian-by-finite.
Let φ denote conjugation by a. Then φ is an automorphism of G of order p. Also
φ acts fixed-point freely on Y , so CG(φ) =< a >. In particular |CG(φ)| = p <∞.

Trivially [G,φ] contains [b, a] = a2 and [(1, 0), φ] = (1, 0)(a − 1) = (ω − 1, 0).
Since p is odd, a2 of order p acts fixed-point freely on the torsion-free group Y .
Therefore < (ω − 1, 0), a2 > and [G,φ] are not periodic-by-(locally nilponent).

Construction of Example 2. The binary tetrahedral group T is the split extension
of a quaternion group Q of order 8 by a cyclic group < c > of order 3. Also T
can be regarded as a subgroup of the multiplicative group of the real quaternion
division algebra D, see [5, page 63]. Let R = Z[T ] ≤ D, let G denote the subgroup
< Q,R > of the split extension of R by T and let φ denote the automorphism of
G induced by conjugation by c.

Clearly φ has order 3 and acts fixed-point freely on R, so CG(φ) = CQ(c) =
< −1 >. Thus |CG(φ)| = 2 < ∞. Also [Q, c] = Q and [R,φ] = R(c − 1) 6= {0}.
But Q acts fixed-point freely on R and trivially R∩ < R(c − 1), Q >≥ R(c − 1)
is torsion-free. Therefore < R(c − 1), Q > is not periodic-by-(locally nilpotent)
and consequently neither is [G,φ]. Trivially G is polycyclic and abelian-by-(finite
nilpotent).

Construction of Example 3. If p = 2, let X =< a, c >, where a has odd order, c
has order 4 and ac = a−1. If p is odd, choose a prime q with p dividing q−1; such
q always exist, indeed infinitely many do for each p by Dirichlet’s Theorem. Let
pr be the largest power of p to divide q − 1. Set X =< a, c >, where a has order
q, c has order pr+1 and c normalizes < a > and acts on it as an automorphism of
order p. Again this is always possible.

In both cases X embeds into the multiplicative group of a division ring D of
characteristic zero by Amitsur’s Theorem, see [5, 2.1.5]. Set R = Z[X] ≤ D
and let G denote the subgroup < a,R > of the split extension of R by X. If φ
denotes the automorphism of G induced by conjugation by c, then φ has order
pr+1 (4 if p = 2) and acts fixed-point freely on R, on < a > and hence on G.
Finally [a, φ] ∈ < a > \{1}, [R,φ] = R(c−1) 6= {0} and [G,φ] is not periodic-by-
(locally nilpotent) as in the previous two constructions. Trivially G is polycyclic,
metabelian and abelian-by-finite.

In the above construction, if q is such that p2 does not divide q − 1 (e.g. if
p ≤ 36 with q = 3, 7, 11, 29, 23, 53, 103, 191, 47, 59, 311 in ascending order of p),
then we can choose φ as in Example 3 but now with order p2. Such a q would exist
for the prime p if ζ(p)−ζ(p2) < p/(p2−1), but I have been unable to confirm this
inequality (ζ denotes the Riemann zeta function; always ζ(p)−ζ(p2) ≤ p/(p2−1)).

Concluding Remarks
Finally we consider what little we can say about G/[G,φ]. Suppose A is an

abelian normal subgroup of the group G. Let φ be an automorphism of G with
Aφ = A and φm = 1 (actually (φ|A)m = 1 would suffice) for some positive
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integer m. As above we define maps γ, ψ : G → G by gγ = g−1.gφ and gψ =
g.gφ.gφ2. . . . .gφm−1 for all g ∈ G.

If a ∈ A, then am ≡ aψ modulo Aγ and aψγ = 1. Hence Am ≤ Aγ.Aψ ≤
[A, φ].CA(φ). Thus we have the series {1} ≤ [G,φ] ≤ [G,φ]Am ≤ [G,φ]A ≤ G,
where [G,φ]Am/[G,φ] is isomorphic to a section of CA(φ), [G,φ]A/[G,φ]Am is
abelian with exponent dividing m and G/[G,φ]A is a section of G/A. In fact if
η denotes the natural projection of G onto G/[G,φ], then

[G,φ]Am/[G,φ] ∼= Amη ≤ CA(φ)η.

In particular if G is metabelian A = G′ and CA(φ) is a π-group for some set π
of primes, then [G,φ]Am/[G,φ] is an abelian π-group and G/[G,φ]A is abelian.
Thus in this case G/[G,φ] is (an abelian π-group)-by-(abelian of exponent divid-
ing m)-by-abelian. This is a very slight generalization of Theorem 4 of [2].
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