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ON THE FIXED-POINT SET AND COMMUTATOR
SUBGROUP OF AN AUTOMORPHISM OF A SOLUBLE
GROUP

B. A. F. WEHRFRITZ

ABSTRACT. Let ¢ be an automorphism of finite order of a group G. We deduce
consequences for the commutator subgroup [G, ¢] of ¢ on G of hypotheses such
as finiteness and local finiteness on the fixed-point set Cg(¢) of ¢ on G. We
require various solubility or finiteness conditions on G or at least on [G, ¢].

Throughout this paper ¢ denotes an automorphism of a group G of finite and
frequently prime order. We investigate the consequences for

(G, ¢]=<g tgp:9€G >

from hypotheses on Ci(¢) = {g € G : g¢p = g} such as finite or locally finite.
Our starting point is Endimioni and Moravec’s paper [2], where they investigate
this for G a metabelian group. Specifically they prove, see Theorem 5 of [2] that
if G is metabelian, if Cg(¢) is a m-group for some set 7 of primes and if |¢| = p
is prime, then [G, ¢] is an extension of a w-group by a nilpotent group of class at
most p (even 1 if p = 2). Our first two theorems are both generalizations of this.
As usual, G’ denotes the derived subgroup of G.

Theorem 1. Let ¢ be an automorphism of the nilpotent-by-abelian group G with
Ce(¢) a periodic m group for some set m of primes and with ¢P = 1 for some
prime p. Then |G, $|G" is an extension of a w-group by a nilpotent group. Specif-
ically if P = Ox(G'"), then [G, ¢|G'/P is nilpotent of class at most 1 if p =2 and
of class at most ((p — 1) —1)/(p — 2) if p is odd, where d denotes the derived
length of |G, ¢|G'/P.

Thus the nilpotency class of [G, $|G’/P can be bounded in terms of p and the
derived length of G only. In particular if G is metabelian then d < 2 and the
nilpotency class of [G,¢]G’/P is at most p (1 if p = 2), which yields a slight
generalization of Theorem 5 of [2] (notice that our hypothesis is on Cg/(¢) and
not the whole of C(¢)). Choosing © = () in Theorem 1 yields the following.
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Corollary 1. Let ¢ be a fixed-point-free automorphism of prime order of the
nilpotent-by-abelian group G. Then [G, ¢| is nilpotent of class bounded in terms
of the order of ¢ and the derived length of G.

For metabelian groups we can deduce stronger conclusions than those of either
Theorem 1 or Theorem 5 of [2].

Theorem 2. Let ¢ be an automorphism of the metabelian group G with ¢P =1
for some prime p. Set B = Cgi(¢) =< Car(¢)? : g € G >. Then [G,¢|G'/B is
nilpotent of class at most p (even 1 if p=2).

If Cr(¢) in Theorem 2 is a (periodic) m-group for some set 7 of primes, then B
also is a m-group and hence Theorem 5 of [2] follows from Theorem 2. If Cgr(¢)
in Theorem 2 has finite exponent, e say, for example if C/(¢) is finite, then B
has finite exponent e and [G, ¢] is an extension of a group of finite exponent by
a nilpotent group of class at most p (1 if p = 2).

Theorem 1 does not extend to soluble groups in general, even to ones of derived
length 3. Further, at least for p = 3, we cannot replace nilpotent-by-abelian by
abelian-by-nilpotent.

Example 1. For each odd prime p there is a polycyclic, abelian-by-finite group
G of derived lingth 3 with an automorphism ¢ of order p such that |Cq(4)| = p
and such that [G, ¢| is not periodic-by-nilpotent.

Example 2. There is a polycyclic, abelian-by-(finite nilpotent) group G with
an automorphism ¢ of order 3 such that |Cg(¢)| = 2 and such that [G, ¢] is not
periodic-by-nilpotent.

The above suggests that the prime 2 is different, as indeed it is. For p = 2 we
can prove stronger results, even for soluble groups. In fact we only need some
sort of solubility restriction on [G, ¢)].

Theorem 3. Let ¢ be an automorphism of a group G with ¢* = 1 and with
Ca(9) a locally finite m-group for some set m of odd primes.

a) Suppose [G, ¢] contains a soluble normal subgroup S of G such that |G, $]/S
is a locally finite w-group. Then [G, 9] < O-(G' NG, ¢]).

b) If [G, ¢] is soluble, then [G,¢|" is a w-group.

Theorem 4. Let ¢ be an automorphism of a group G with ¢* =1 and |Cg(¢)| =
n < oo.

a) Suppose [G, ¢| contains a soluble normal subgroup S of G such that |G, $]/S
is a locally finite m-group for some set m of primes. If m O {primesq : ¢ < n},
then [Ga ¢]I S OW(G/ n [G> d)])

b) Suppose [G,¢]¢ is soluble for some positive integer e with [G,¢]/[G,P|¢
locally finite. If m = {primesq : ¢ < n orgqle}, then [G,¢] is a locally finite
T-group.

¢) Suppose |G, ] is soluble and m = {primes q : ¢ < n}. Then [G,d] is a
(soluble, locally finite) m-group.

d) Suppose [G, @] is soluble and ¢ acts fized-point freely on G. Then |G, @] is

abelian.
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Note that in Parts b) and c) of Theorem 4 the set 7 is finite. Also if [G, @]
is soluble-by-finite, then [G, ¢] satisfies the hypothesis of Part b). Part d) very
slightly extends Theorem 6 of [2], the latter being the case where G itself is as-
sumed soluble. Note also in Theorem 4 that ¢-invariant, locally finite subgroups,
more generally ¢-invariant subgroups with finite Hirsch number, of G are always
nilpotent-by-finite but need not be abelian-by-finite, see [8].

Theorems 3 and 4 leave a small gap, namely the case where ¢? = 1 and Cg(¢)
is an infinite 2-group. For locally nilpotent groups the answer to this is both easy

and more general. Below h(p) denotes the Higman function, e.g. see Section 5.1
of [3].

Proposition. Let ¢ be an automorphism of the locally nilpotent group G with
¢P =1 for some prime p such that C = Cg(¢) is a w-group for some set w of
primes. Set P = Or(G). Then G/P is nilpotent of class at most h(p). If p =2
then G' < P, ¢ inverts G/P and G is an extension of a mw-group by an abelian
group.

The following is a corollary of the Proposition and Theorem 1; it extends the
latter.

Corollary 2. Let ¢ be an automorphism of the (locally nilpotent)-by-abelian
group G with Ce(p) a periodic m group for some set  of primes and with ¢P = 1
for some prime p. Then H = |G, $|G'/O(G') is nilpotent, of class at most 1 if
p =2 and of class at most ((p — 1) —1)/(p —2) if p is odd, where d denotes the
derived length of H.

A similar type of argument to that proving the Proposition, using Lemma 1
of [9], shows that if ¢ is an automorphism of a group G with ¢? = 1 and Cg(G)
periodic and if G has a local system of (torsion-free)-by-finite subgroups with
finite Hirsch numbers, then [G, ¢]" is periodic.

In places in our arguments we can weaken |¢| prime to |¢| a power of a prime
or sometimes just to || finite. However it is impossible to do this in general.

Example 3. Let p be any prime. Then there exists a polycyclic, metabelian,
abelian-by-finite group G with a fixed-point-free automorphism of order a power
of p such that [G, @] is not periodic-by-nilpotent.

Lemma 1. Let ¢ be an automorphism of a group G and A a ¢-invariant central
subgroup of G. Define subgroups C, K < G and a map v : G — G by C = Cg(9),
K/A=Cg/a(¢) and gy = g L.gp = [g,8]. Then the following hold.

a) (K:CA)=(K~v.Ay: Ay), (K :CA)(A: Kv.Avy)=(A: Ay) and

(K:A)(A: Ky.Ay)=(A: Ay)(C:CNA).

b) Suppose A is periodic and ¢|a and C N A have finite order. Then (A : Avy)
divides |C N A|. If also C is finite, then (K : A) divides |C)|.

c) If ¢|a has finite order m, then

(Ay.(CNA): AM)(A: Ay)=(A: AM)(CNA:CnNAy)

and (K : A)(A: Kv.Av)(Ay.(CNA): A™) = (A: A™)(C : C N Av).
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In particular if (A : A™) and C are finite, then (K : A) is finite and divides
(A:A™)|C|.

The point of Lemma 1 is that if we replace ‘A abelian normal’ by ‘A central’
in Lemma 1 of [6] and Lemmas 8 and 9 of [7] then we can replace ‘less than or
equal to’ by ‘divides’. This does have some content; for a trivial example consider
G = Sym(3), A = Alt(3) and ¢ conjugation of G by a 3-cycle. Then |¢p| =3 = |C],
while (K : A) = (G : A) = 2, which certainly does not divide (A : A43)|C| = 32.
(Here C and K are as in Lemma 1).

Proof. a) By Lemma 1 of [6] we have (K : CA) = (K~.Av : Ay). Here A is
central, so y|k is a homomorphism of K into A (with kernel C), so K~ is a
subgroup (and not just a subset) of A. Thus

(A: Avy) = (A: Kv.Av)(K~.Avy : Av).

The second and third claims of a) follow.

b) Suppose B < A is finite with B¢ = B and C N A < B. Then ker(y|p) =
CNB=CnNAandso (B: By)=|CnNA|. Since ¢ has finite order, this yields
that (A : Ay) < |C N A|. Hence we may choose B with A = Av.B. Then
(A: Avy) = (B : BN Ay), which divides (B : By) = |Cn A|. If C is finite,
then a) yields that (K : A) divides (A : Ay)(C : C N A), which now divides
ICNA|[(C:CNA)=|C]|

c¢) The first claim is immediate from the proof of Lemma 7 of [7]. Then
(K:A)(A: Ky.Ay)(Ay.(CNA): A™)

=(A: Ay)(C:CNA)(Ay.(CNA): A™) by Part a)
=(A: AM)(CNA:CNAv)(C:CNA) by the first claim of Part c)
=(A: A")(C:CnNAy),
which divides (A : A™)|C| when the latter is finite. The lemma follows. O
Lemma 2. Let ¢ be an automorphism of the group G with ¢"™ = 1 for some
positive integer m. Define maps v and ¢ of G — G by gy = g~ .g¢ and g =
g.90.9gP°. . ... g™ for all g € G. If g,h € G then (gy.h)p € (hCY)C.

Proof. Let g,h € G. Then

(g7-h)e ( I1 9 '¢" " g9’ he' 1)9 o™

1<i<m

=91< 11 g¢"-h¢"1-91¢i>9

1<i<m

9 (9o h.g " d))g € (h)Y.

O

Lemma 3. Let ¢ be an automorphism of the nilpotent-by-abelian group G with
@™ =1 for some power m of a prime and with Cq/(¢) a mw-group for some set
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7 of primes. Then with P = Or(G") and the maps v and 1) as in Lemma 2, we
have P 2 (G.G') = (G, 6]G' ).

Proof. Set N = G’ and C = Cn(¢); so N is nilpotent and C' is periodic. If X is
a finitely generated ¢-invariant subgroup of N, then C' N X is a finite m-group.
Repeated use of Lemma 1b) yields that ¢ acts fixed-point freely on X/O(X).
But O(X) = PN X. Therefore ¢ acts fixed-point freely on N/P. Consequently
P DO N by Lemma 14 of [1]. Since G/N is abelian [G, ¢]N = Gv.N. Also by
Lemma 2 we have (N¢)¢ D (Gv.N)i. Thus P = PY = (Gv.N)1. The claims
follow. O

Lemma 4. Let ¢ be an automorphism of the metabelian group G with ¢™ =1
for some positive integer m. Set B = Cqr(¢)C. Then with v and ¢ as in Lemma
2 we have B 2 (Gv.G")Y = (|G, ¢]G' ).

If Cer(¢) is a m-group, then so is B and we have Lemma 3 for metabelian
groups with the restriction on the order of ¢ relaxed. Also the conclusion of
Lemma 4 is stronger than that of Lemma 3; for example, if C¢(¢) is a finite 7-
group (or even just of finite exponent) then B has finite exponent while O, (G")
may not have finite exponent.

Proof. Let A = G'. Then A is abelian, Ay =< 1 > and hence A1) < Cy(¢) < B.
Consequently B O (Gv.A)y by Lemma 2 and Lemma 4 follows. O

Proof of Theorem 1. In the notation of Lemma 3 we have P D (|G, ¢|G')y. If ¢
acts nontrivially on H = [G, ¢]G’/P, then H is nilpotent by [3, 6.4.2] and the
proof of the latter theorem yields the bounds as stated. If ¢ acts trivially on H,
then H has exponent p (or 1 in the trivial case) again by Lemma 3 and therefore
H is nilpotent of class bounded as claimed, see [4, 7.18] for p > 2, the case p = 2
being well known and very elementary. O

Proof of Theorem 2. Repeat the proof of Theorem 3, but using Lemma 4 in the
place of Lemma 3. (]

Lemma 5. Let ¢ be an automorphism of a group G with ¢*> = 1 and with Cq(¢)
a locally finite w-group for some set w of primes. Suppose |G, ¢| contains a soluble
normal subgroup S of G such that [G,¢]/S is a locally finite w-group. Assume
either that 2 ¢ 7 or that |Cg(¢)| = n is finite with m O {primesq: q < n}. Then

(G, 4] < O(G'N[G, ).

Proof. Of course if ¢ = 1 the conclusion is vacuous, as indeed it is if S = {1},
so we assume otherwise. Also < .S, 5¢ > is soluble, normal and ¢-invariant, so
we may also assume that S is ¢-invariant. Suppose Cg(¢) is finite of order n
and 7 contains all primes ¢ < n. Now O(S) is locally finite and normal in
G, so by Proposition 14 of [7] we may pass to G/O,(S) and hence assume that
Ox(S) = {1} in this case. Now assume 2 ¢ 7. If A is any abelian section of
Ox(S), then A = A% and A is 2-torsion-free. Thus by repeated use of Lemma 15
of [7] we deduce that the centralizer of ¢ in G/O-(S) is isomorphic to a section
of Cq(¢). Thus again we may assume that Or(S) = {1}.
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Let A < S be an abelian ¢-invariant normal subgroup of G that is maximal
subject to these constraints. Since Or(A) = {1} we have that ¢ acts fixed-point
freely on A and hence [G, ¢, A] = {1} by Lemma 1 of [2]. If A < S there exists a
¢-invariant normal subgroup B of G with B’ < A < B < S. Then B is nilpotent
(of class < 2), Ox(B) < Or(S) = {1} and ¢ acts fixed-point freely on B. Then
B is abelian, e.g. by Higman’s Theorem ([3, 5.1.1]). The maximal choice of A
implies that A = B and consequently A = S.

We have now shown that A is central in [G, ¢] and [G, ¢]/A is a locally finite
m-group. By a generalization of Schur’s Theorem, Corollary 2 of [4, 4.21], we have
that [G, @] is a m-group. This implies that [G, ¢]’ is a m-group in general, that is
even if Or(S) # {1}, and hence [G, ¢]' < G'NOL([G, ¢]) = O-(G'N[G,¢]). O

Remark. The central part of the proof of Lemma 5 yields the following. Let ¢
be an automorphism of a group G with ¢? = 1 and with C(¢) a locally finite 7-
group for some set 7 of primes. Suppose [G, ¢] contains a soluble normal subgroup
S of G such that [G,¢]/S is a locally finite m-group. If Or(S) = {1}, then
(G, 9] < Or(G'N[G,¢]). In particular if [G, ¢] is soluble with O (|G, ¢]) = {1},
then [G, ¢] is abelian.

Proof of Theorem 3. Part a) follows at once from Lemma 5 and then Part b)
follows from setting S = [G, ¢]. O

Proof of Theorem 4. Part a) follows at once from Lemma 5. For Part b) note
that [G, ¢] and hence [G, ¢]¢ are normal in G with [G, ¢]/[G, ¢|° a locally finite
m-group. Thus b) follows from Part a). For Part ¢) simply choose e = 1 in Part
b). Finally in Part d) we have n = 1 = e and © = (). Thus d) follows from Part
c). O

Proof of the Proposition. Let X be a finitely generated, ¢-invariant subgroup of
G. Then X is nilpotent, Cx(¢) = C' N X is a finite w-group and O(X) =
P N X is the set of all m-elements of X. Repeated use of Lemma 1b) yields that
Cx/prx)(¢) = {1}. Thus ¢ acts fixed-point freely on X/(P N X) and hence by
Higman’s Theorem (e.g. [3, 5.1.1]) the factor X /(P N X) is nilpotent of class
at most h(p). Moreover if p = 2, we have h(2) = 1, X’ < PN X and ¢ inverts
X/(PNX). A trivial locallization argument using the finiteness of |¢| now yields
the proposition. O

Proof of Corollary 2. Set N = G' and P = O,(N). Then N/P is nilpotent by
the Proposition. Also ¢ acts fixed-point freely on N/P, see the proof of the

Proposition. Consequently Theorem 1 applies to G/P and Corollary 2 follows.
O

Construction of Example 1. Let w be a primitive p-th root of unity in the complex
numbers C; recall p is an odd prime. Set

w 0 0 1
a:<0 w‘l) and bz(l 0),
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R =Zw] < Cand X =< a,b >< GL(2,R); X is dihedral of order 2p. Let
Y = R® =~ 72r=2) and let G denote the split extension of Y by X. Clearly G is
polycyclic of derived length 3 and Hirsch number 2p — 2 and is abelian-by-finite.
Let ¢ denote conjugation by a. Then ¢ is an automorphism of G of order p. Also
¢ acts fixed-point freely on Y, so Cg(¢) =< a >. In particular |Cg(¢)| = p < oc.
Trivially [G, ¢] contains [b,a] = a® and [(1,0),¢] = (1,0)(a — 1) = (w — 1,0).
Since p is odd, a? of order p acts fixed-point freely on the torsion-free group Y.
Therefore < (w — 1,0),a? > and [G, ¢] are not periodic-by-(locally nilponent).

Construction of Example 2. The binary tetrahedral group 7 is the split extension
of a quaternion group @ of order 8 by a cyclic group < ¢ > of order 3. Also T
can be regarded as a subgroup of the multiplicative group of the real quaternion
division algebra D, see [5, page 63]. Let R = Z[T] < D, let G denote the subgroup
< @, R > of the split extension of R by T and let ¢ denote the automorphism of
G induced by conjugation by c.
Clearly ¢ has order 3 and acts fixed-point freely on R, so Cq(¢) = Cq(c) =

< —1>. Thus [Cg(¢)| = 2 < co. Also [Q,c] = Q and [R,¢] = R(c — 1) # {0}.
But @ acts fixed-point freely on R and trivially RN < R(c —1),Q >> R(c—1)
is torsion-free. Therefore < R(c — 1), > is not periodic-by-(locally nilpotent)
and consequently neither is [G, ¢]. Trivially G is polycyclic and abelian-by-(finite
nilpotent).

Construction of Fxample 3. If p =2, let X =< a,c >, where a has odd order, ¢
has order 4 and a® = a~!. If p is odd, choose a prime ¢ with p dividing ¢ — 1; such
q always exist, indeed infinitely many do for each p by Dirichlet’s Theorem. Let
p" be the largest power of p to divide ¢ — 1. Set X =< a, ¢ >, where a has order
g, ¢ has order p"*! and ¢ normalizes < a > and acts on it as an automorphism of
order p. Again this is always possible.

In both cases X embeds into the multiplicative group of a division ring D of
characteristic zero by Amitsur’s Theorem, see [5, 2.1.5]. Set R = Z[X] < D
and let G denote the subgroup < a, R > of the split extension of R by X. If ¢
denotes the automorphism of G induced by conjugation by ¢, then ¢ has order
p"t! (4 if p = 2) and acts fixed-point freely on R, on < a > and hence on G.
Finally [a,¢] € < a > \{1}, [R,¢] = R(c—1) # {0} and [G, ¢] is not periodic-by-
(locally nilpotent) as in the previous two constructions. Trivially G is polycyclic,
metabelian and abelian-by-finite.

In the above construction, if ¢ is such that p? does not divide ¢ — 1 (e.g. if
p < 36 with ¢ = 3,7,11,29,23,53,103,191,47,59, 311 in ascending order of p),
then we can choose ¢ as in Example 3 but now with order p%. Such a g would exist
for the prime p if ¢(p) —(p?) < p/(p?—1), but I have been unable to confirm this
inequality (¢ denotes the Riemann zeta function; always ¢(p)—((p?) < p/(p*—1)).

Concluding Remarks

Finally we consider what little we can say about G/[G, ¢]. Suppose A is an
abelian normal subgroup of the group G. Let ¢ be an automorphism of G with
Ap = A and ¢™ = 1 (actually (¢|4)™ = 1 would suffice) for some positive
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integer m. As above we define maps 7,9 : G — G by gy = ¢ '.9¢ and g =
§.90.g0%. . ... g™ ! forall g € G.

If a € A, then ¢ = at) modulo Ay and awy = 1. Hence A™ < Av. Ay <
[A, 9].Ca(¢). Thus we have the series {1} < [G, ¢] < [G, 9]A™ < [G,¢9]A < G,
where [G, ¢]A™/[G, ¢] is isomorphic to a section of C4(¢), [G, p|A/[G, ¢]A™ is
abelian with exponent dividing m and G/[G, ¢]A is a section of G/A. In fact if
n denotes the natural projection of G onto G/[G, ¢], then

(G, ¢lA™ /G, o] = A™n < Ca(@)n.

In particular if G is metabelian A = G’ and C4(¢) is a w-group for some set =
of primes, then [G, $]A™/[G, ¢] is an abelian 7w-group and G/[G, ¢]A is abelian.
Thus in this case G/[G, ¢] is (an abelian 7-group)-by-(abelian of exponent divid-
ing m)-by-abelian. This is a very slight generalization of Theorem 4 of [2].
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