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WEIGHTED ESTIMATES FOR SOLUTIONS OF 9-EQUATIONS
ON CLOSED POSITIVE (1,1)-CURRENTS

LE MAU HAI AND NGUYEN XUAN HONG

Dedicated to Tran Duc Van on the occasion of his siztieth birthday

ABSTRACT. In this paper, we give estimates of Héormander type and Donnelly-
Fefferman type for solutions of the 0-equation on a closed positive (1,1)-
current T in a pseudoconvex domain of C"*1.

1. INTRODUCTION

The existence of solutions of d-equations on pseudoconvex domains in C" with
L?-estimates plays an important role in complex analysis of several variables.
The first basic result in this direction is due to Hérmander (see [11, Lemma
4.4.1]). More precisely, he proved the following remarkable result: Let Q be a
pseudoconver domain in C"* and ¢ be a real valued C? smooth function on
satisfying

n n 82(,0 _
1% < » Q W n
C;M \j%::l azjazk(z))\J)\k, VzeQ, YO, ..., ) € C",

where ¢ > 0 is a continuous function in Q. Then for any differential form g €

L%p’qul)(Q, @) with Og = 0 there exists u € L%p,q)(Q, ¢) such that Ou = g and

/]u\ze_“&dv <2/\gl2e_@/cdv,

where dV denotes the Lebesque measure in C™.

The above theorem allows us to construct holomorphic functions with great
flexibility. For instance, we can use this result to give an alternative proof of
the fact that holomorphic functions on a complex submanifold of pseudoconvex
domains extend to global holomorphic functions.

After that, in [9] H. Donnelly and C. Fefferman solved the 0 - equation for 0 -
closed (p, q)-forms on pseudoconvex domains with estimates through the Kéhler
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metric i00¢. We recall the following theorem which is one of the key results in
[9].

Theorem. Let ¢ and 1) be plurisubharmonic functions of class C? on a bounded
pseudoconvex domain 2. Suppose that ¢ satisfies the condition

i0p N\ Op < middyp,

where m > 0 is a constant. Then for any 0-closed (0,1)-form g on Q, there exists
u € L?(Q,v) such that Ou = g and

2 2 —p
/|u| e YdV < C’m/|g|2.85@e dv,
where C' is an absolute constant.

Next, by using a Bochner-Kodaira-Nakano’s type identity, Berndtsson refined
the above result of H. Donnelly and C. Fefferman and showed that we can choose
C = ﬁ, where 0 < ¢ < 1 is arbitrary (see [3], Theorem 3.1). Later on,
by modifying techniques of Berndtsson in [6] Blocki gave better estimates than
the mentioned above result of Berndtsson. More recently, in [1] H. Ahn and
N. Q. Dieu established Donnelly-Fefferman theorem for d-closed (0,r)-forms in
g-pseudoconvex domains and in [10] we have given the weighted estimates of
Hérmander type and Donnelly-Fefferman type for solutions of d-equations in ¢-
pseudoconvex domains. However, the investigation of solutions of d-equation on
currents encounter many difficulties on notions and techniques. Up to now, results
on the direction of study are limited. The first article deals with this problem is
[5]. In this seminal work, B. Berntsson and N. Sibony have shown the existence
of solutions of the d-equation on a closed positive current 7' of bidegree (1,1).
In particular, their method covers the case where T is the current induced by
integration on a pure dimensional complex variety. Following ideas given in [5],
in this paper, we give some weighted estimates of Hormander type and Donnelly-
Fefferman type for solutions of the d-equation on a closed positive (1,1)-current T
in a pseudoconvex domain of C**!. Namely, we prove the following two theorems.

Theorem 1.1. Let D be a pseudoconver domain in C and let T > 0 be a
0-closed (1,1)-current in D. Assume that w is a Kdhler form of a smooth Kdhler
metric in D and ¢ is a plurisubharmonic function in D satisfying

h2w < 26590,

where h is a positive continuous function in D. Then for any (n,q)-form f with
Of NT =0 there is an (n,q — 1)-form u such that Ou = f on T and

1
HUHE)7T,QO < g Hf/h”i,T,gp

Theorem 1.2. Let D be a pseudoconver domain in C* and let T > 0 be
a smooth O-closed (1,1)-current. Let ¢ and v be C?-smooth plurisubharmonic
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functions such that —e~¥ is also a plurisubharmonic function. Assume that 0 <
6 <1 and w is a Kdhler form of a smooth complete Kahler metric in D such that

100y > w.
Then for any (n,q)-form f in D with Of AT = 0 there exists an (n,q — 1)-form
w such that Ou = f onT and
Cn—g+1 /W A *u A wg—1 A Te~#tov

4
< ———¢Cp—
S go(1— g2 e

where x denotes the Hodge operator on T'.

/W/\*f/\wq A Te TV,

The paper is organized as follows. In Section 2, we recall notions needed in the
article, mostly from [5]. Section 3 is devoted to the proofs of the main results of
the paper. In the course of proving these results, we also need Propositions 3.1
and 3.2 which are slight extensions of Theorem 7.2 and Lemma 8.3 in [5].

2. PRELIMINARIES

_ First, we recall some notions and results of the theory of currents and the
0-equation on currents which will be used throughout the paper. We refer the
readers to [5, 8] for more details on these matters.

2.1. Let V be a complex vector space of dimension n. A (g, q)-form u is strongly
positive if it belongs to the cone generated by the forms

100 /\51/\.../\2'04(1 Ay,

where a; € AMY(V*).

A form uw € APP(V*) is positive if and only if uAv is positive for every strongly
positive form v of bidegree (n—¢,n—¢). On a domain 2 of C" a differential form
u € G5 (9) is strongly positive (resp., positive) if for every z € Q, u(z) is strongly
(resp., positive). The two notions of positivity coincide for p = 0,1,n — 1,n.

The space DEH_ML_S)(Q) of currents of bidegree (7, s) on 2 is by definition the
dual of the space D(,,_.,_4)(€2) of test forms on  of bidegree (n —r,n — s), with
respect to the usual inductive topology on the space of test forms.

A current T" on Q of bidegree (p,p) can then be represented as a differential
form of bidegree (p,p) with distributions as coefficients.

A current T of bidegree (p,p) is positive if (T,u) > 0 for all test forms u €
D(y—pn—p)(£2) that are strongly positive. It is easy to see that the notion is local
and the weak limit of positive currents is positive. In this paper, assume that T
is a current of bidegree (1,1). Then we say that T is strictly positive and write
T > 0 if there exists a positive continuous function h such that 7 — hidd|z|> > 0.
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2.2. Assume that T a positive current of bidegree (1,1) on a pseudoconvex do-
main D in C"*!. Below if we say that a positive (1,1)-current 7', it means that
T is a positive current of bidegree (1,1). Assume that u and f are smooth dif-

ferential forms on D. We say that Ou = f on T if ou AT = f AT in the sense of
currents.

In the case 9T = 0 and u, f are differential forms on D coefficients of which
are locally integrable with respect to the trace measure of 1" ( see below) then we
also say Ou = f on T if (u AT) = f AT in the sense of currents. Moreover, we
say that u is 0-closed on T if Ou AT = 0.

2.3. Let T' be a positive (1,1)-current and let w > 0 be a (1,1)-form. Let ¢, =
(—1)9letD)/250 = (—i)q2. These numbers are chosen so that if g is a form of
bidegree (0,q) in C", then ¢,g A g is a positive form.

We define the two Hodge operators * : A 79 — /\g_q’o, f —— *f such that
f =t—g(*f) Nwg on T, where w; = w?/q! and * : /\;—q,o — A7 g — xg
such that xg = ¢,—qg Awg on T.

Assume that (p,q) = (0,q) or (n,q) and f is a (p,q)-form such that f is
smooth. Then we put

Vf =epgx0* f,

where ¢, , is chosen so that if T is closed, then (g,9f)u1 = (99, f)w 1 for every
g which is a (p,q — 1)-form with support in D. Here, we recall that if f,g are
(0, ¢)-forms, then

(f,9)wr = cq/ngAwn_q AT.

In the case f, g are (n,q)-forms then
(f,9)w,r ZT—q/*fA@/\Wq AT.
Assume that @ is a weighted function. Then we put
Uy = ePde” 7.
Now if f, g are (0, ¢)-forms then we define the weighted scalar product
(fs9)wre = cq / FAGAWn_ g ATe™?

and in the case f, g are (n, q)-forms then

(fa g)w,T,go = Cp—q / xf N¥g N\ wq N Te ¥,
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2.4. Let T' > 0 be a positive (1, 1)-form and let o7 be the trace of 7' with respect
to w considered as a form of maximal degree, i.e.,

or =T N wy,.

Assume that ¢ is a weighted function and f € /\%q((C"). The norm of f on T
associated to ¢ is then defined by

|f|U2J,T7ngT =cof NfANwn_gANTe™?.

In the case f is a (¢,0)-form then we put |flu 7y = |flore. When f is a
(n, q)-form, we put |f|i7T7sp = | f|°2J’T7Sp.

Let now 7 > 0 be a (1,1)-current in C"*!. Such a current can be written as
i
T=3 Z Todz; A dzy,
ik

where the coefficients T}, are measures absolutely continuous with respect to the
trace measure op. Let tr(T) be the (0,0)-current defined by tr(T)w,+1 = o
and written T' = Ttr(T) with T > 0 which is a (1, 1)-form. If f is a (p, ¢)-form
in C"*! where (p,q) = (0,q) or (n,q), then we define the L2-norm of f on T
associated to ¢ by

1910 = [ V7P 70

2.5. Let o > 0 be a radial function with compact support in the unit ball of
C™ such that [ o(z)dV = 1. For each ¢ > 0 put g.(z) = #g(z/e),z € C". Let

T =) '"Tr gdzr NdZk be a (p, q)-current, where .’ means that the summation
LK I.K

is taken over increasing multi-indices only, of lengths p and ¢, respectively. Then

we set

T, =Txp. = Z,TI,K * 0:dzr N dzk.
K

Note that T is a smooth differential (p, ¢)-form and T, — T in the weak topology
of currents as ¢ — 0. Now assume that T is a positive (g, ¢)-current. Then the
coefficients T of T are measures. For each test (n—q,n—q)-form v, by Fubini’s

theorem we have
/T€A¢:/TA¢€.

3. PROOFS OF RESULTS

We begin with the following result which is a slight extension of Theorem 7.2
in [5] for the case with weights.
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Proposition 3.1. LetT be a smooth strictly positive (1,1)-form in a domain D
in C"*1 such that OT = 0 and w be a complete smooth Kdhler metric in D. Then
for every C? smooth functions k, @ on D, k> 0 we have

/cn_qﬁ A*a Ni0Op A wy—1 N kTe ¥ — /cn_qﬁ A sa Ni0Ok A wy—1 AN Te ¥

< W02 prp + 2 / Tor A ax A Ok ATe ™| + [Bal pr,

for every (n,q)-form o € Dom(V,) N Dom(d) where + : A\p? — N denotes
the Hodge operator.

Proof. We will use the method of Berndtsson and Sibony in [5]. Note that the

two Hodge operators * : A7 — /\:’}_q’0 and * : A\ — /\Z;q’o are identical. By

Theorem 7.2 in [5], we have the following estimate
/cn_qﬁ A *fNiODp N wy—1 N kTe ¥ — /cn_qﬁ Axf Awg1 Ni0O(KT)e™?

2 = =012

[ f 15 k7, < 2Re(DVo f, fluprp + 1OFIG k10
which holds for any test form f of bidegree (n,q) with support in D such that
xf is smooth. Hence the proposition is proved if we can find a sequence of test
forms «, with support in D such that xq, is smooth and
(3.1) ay — a, da, — da, Vpa, — Ipa in L(T, p).

To achieve this, first we approximate « by forms of compact support. Indeed,
by the completeness of the smooth Kéhler metric w, Lemma 3.9.2 in [2] implies
that there exists an exhausting sequence of cut-off functions y, with uniformly
bounded gradients. Next, we are going to approximate ayx, by smooth forms. By
Proposition 5.4 in [5], we can write ax, = 7, Awy on T where 7, is a (n—g, 0)-form.
Since T is strictly positive, by Proposition 5.4 in [5], we have

Ny = Cn—q * (QXy).

Moreover, the following estimate holds

ol 7 < 5P [xolllel o < 00

Thus, 7, corresponds to a unique L?-form with compact support in C**1.
For € > 0, we put
e = (M) * 0= N\ wy,
where 7, * o, is the convolution of 7, and g.. We claim that the sequence {cv, .}
converges to ary, in L?(T, ) when £ | 0. Indeed, we have

||av,€ - aXva,T,go = H"% * 0 — 77va,T,<p-

However, because suppr, € () we can choose Q € O such that suppn, € Qen.
Since ¢ € C%(D), T is smooth, there exists a constant M depending on ¢, T, w
such that

an * 0 — 77v”w,T790 < MHnU * e — anLz(ﬁ) —0,
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€ — 0. Hence the desired conclusion follows. On the other hand, because T' is
smooth, 0 and ¥, are differential operators with smooth coefficients depending
on 7,. Now it follows from Proposition 1.5.2 in [2] or Lemma 4.1.4 in [11] that

gav@ — d(axw), Yoy — Vp(axy) in L2(T, ©).

Finally, by using a standard diagonal argument, we get the sequence {o,}
satisfying (3.1). The proof of the proposition is complete. O

Next, we give an extension of Lemma 8.3 in [5].

Proposition 3.2. Let D be a bounded domain in C**! and let Dy be an open
set in C" 1 with D € Dy. Let T be a non-negative (1,1)-current in Dy and let
w >0 be a smooth (1,1)-form in Dy. For e > 0,0 >0 we put

Tey=T:+ew and W’ = w + 69|z
Assume that ¢ and h are two continuous functions on Dy. Define

9@ (2) = sup @(¢) and h)(z) = sup h(().
|2—C|<e l2—C|<e

Then for every (n,q)-form f on T there is a (n,q)-form f) on 1oy such that
(FAT) o) = fie) N (e)-
Moreover, for 6 > 0 we have
(3.2 /b llus 1o, < I1F /hlluir
for e > 0 sufficiently small.
We need the following lemma.

Lemma 3.3. With notations and assumptions as in Proposition 3.2, assume that
Y is a (0,n — q)-form with compact support in D. Then

Cn—q / VAP A (wg AR*Te?). < enyg / h%a)qp AP A wg A Teyef®
for every e sufficiently small.

Proof. Choose the balls B(z1,71),..., B(2m,m) such that D € L, B(zj,7;) €
D; and

w < w(z) + gi85|z|2 < w+6i99|z[* on B(zj,r;)

for every j =1,...,m. We can choose functions x; € C§°(B(zj,75)),j=1,...,m
m

such that 0 < x; <1land ) x; =1. Put
j=1

g0 = min{d(suppy;,0B(z;,75)) : j=1,...,m}.
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For every 0 < € < g0/2, we have
Cn—q /¢ A A (wg Ah2Te?).

= Cnq Z / XU A A (wg AR2Te?).
j=1

= Cpq Z /(Xﬂf) AP)e Awy A h2Te?
j=1

<en Y [0 A DA (wl) + 3i0BE ) AT
j=1

q

ey X [unTn (wle) + Gi00LE) AT,
J=1 q

< g Z/ij A A <w(zj) + 22'85]2\2> A h%E)TEeSD(@
i=1 a

< ep—yg Z / X% A P A wg A h%E)TEe“D(@
j=1

< ep—yg / AP A wg A h%e)TEeSD(EX
Therefore, the proof is complete. O

Proof of Proposition 3.2. We use the arguments as in the proof of Lemma 8.3 in
[5]. First, the existence of f.) follows from Proposition 5.4 in [5]. Next, we prove
(3.2). Assume

1f/hllo,7p = 1.

By the definition after Proposition 5.2 in [5], we have that if g is a (n, ¢)-form,
then

(3.3) 19llw. = sup{| /9 AN AT | [Yllore <1} = [+ gllo e,

where 9 is a test (0,n — g)-form. Hence it is enough to prove that for ¢ > 0
sufficiently small and for any test form v of bidegree (0,n — q) satisfying

Cn—q / h%e)w A A wg NTye?e < 1

we have

<1

'/f(a)A¢AT(a)
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For this, we use the identity (f A T). = Je) N T() and Schwarz’s inequality to
obtain
2

2=L/UAT»A¢

‘/f(s) N AT

=L/fATA%

= ‘/*(%) N hefrpe Nwg AT Ne?

<A g ey = g [ W20 AT Ay £ T

because || f/h|lw 1, = 1.
Hence by Lemma 8.2 in [5], we get

2 f 2
= ‘/E ATAhepwge_w

2

Cn—q / h2he A Awg ATe? < ey / P2 (1) Ap)e Awy A Te?
= Cnyq /¢ A A (wg AB*Tef)..
Applying Lemma 3.3 we get
Cnq / h2he Ab. Awy ATe? < enyg / hfg)w A Aw) AT (e < 1
for every e sufficiently small. This finishes the proof of the proposition. O

_ Now we prove the weighted estimates of Hormander type for solutions of the
J-equation on a positive (1, 1)-current (compared with Lemma 4.4.1 in [11]).

Proof of Theorem 1.1. We use similar reasonings as in the proof of Theorem 8.1
and Theorem 8.5 in [5]. Assume first that D is bounded, T', h, ¢, f extend to a
neighborhood of D, T is strictly positive, 7" and ¢ are smooth in D. Moreover,
assume that w is a complete smooth Kéahler metric in D. Note that if « is a
test form of bidegree (n,q), then J,a is a (n,q — 1)-form on T. By applying
Hahn-Banach’s theorem to the antilinear form Y, — (f, a)w 1,0, it suffices to

show that
1
(3.4) |(f @)wrel? < p 1 /RI2 7o 19002 7

for every test form « of bidegree (n, q).

The proof of (3.4) follows by standard arguments that we shall present briefly.
We write

a=a+ a2,
where Oal AT = 0 in the sense of currents and o2 is orthogonal to the kernel of
0 in L%(T,e~¥). In particular, o? is orthogonal to any form of type dv, where v
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is a test (n,q — 1)-form. Thus, 19§00z2 = 0 in the sense of currents and we have
Yoo =Jyal. Since (f,@)w e = (f,a')w1,, it is enough to check

1
(3.5) |(f, e mel* < p 1 /R1% 21900 I
For this, we apply Proposition 3.1 with £ =1 to get
/cn_qml A xad NidDp ANwy 1 ATe™? < ||19¢oz1\|37T7¢.

2

Moreover, since i00¢ > h?w on T we obtain

thale)’TW = /cn_qﬁ1 Axad ANRPw Awy 1 ANTe

< /cn_qﬁl A sat A 0o A wg—1 NTe ¥
12
< H’L9@OZ ||w,T,gp‘

Hence by using Schwarz’s inequality, the inequality (3.5) follows. This is the
proof of the theorem for the case of smooth weight functions . In the general
case, it is enough to consider the smoothing sequence ¢ * o.,& > 0 and applying
the first case proved above with h, ¢ and w replaced by inf|,_¢ <. h(2), we and
. with the note that
inf  h%(2)we(z) < (h2w)-(2) < i0Dpe(2).
lz—¢|<e

After that, by using the Lebesgue dominated convergence theorem, we get the
desired statement for h, ¢ and w by passing to the limit € — 0.

Now we consider the case of general T (not necessarily smooth). We can
assume that ¢ is smooth. Consider an exhaustion of D by relatively compact
strictly pseudoconvex subdomains, and it is enough to prove the theorem in each
such subdomain. In other words, we may assume D is strictly pseudoconvex and
that all data T, h, ¢, f extend to a neighborhood of D. The proof of Lemma
3.9.1 in [2] implies that there exists a positive plurisubharmonic function ¢ in D
such that

n = i00Y
defines a complete Kahler metric in D. Put
W =w+Ap and @ =@+ (2Asup h)1,
D

where A > 0. It suffices to prove the theorem with ¢ and w replaced by ¢* and
w?. After that, by using the Lebesgue dominated convergence theorem, we get
the desired statement for ¢ and w by letting A — 0. To this end, we observe that

w? is a complete Kéhler metric in D. Fix § > 0 and assume that

1f/hllwre = 1.



WEIGHTED ESTIMATES FOR SOLUTIONS OF 9-EQUATIONS 259

Put
Tey=T. + ew?, WM =W + 60022, ¢ = o + (20 sup h)(|z]? + 1)
D

and

P = et (2Asup h)ep + (20 sup h)(|=* +1).
We write

(fAT)e = fey NT ey
Moreover, if w® = w + §idd|z|?, then by Proposition 3.2, we have
”f(&)/h(a) Hw‘s,T(s),cp(E) < 1

for every e sufficiently small. Hence we have

lim Hf(e)/h(e)|!m6,T(5),¢(AE) = )/ he) s 1y 00y < 1

On the other hand, we have 4,02\5) < ™ and h(a)wA"S < 100¢™° when ¢ suffi-

ciently small, so by the previous result there is a (n,q — 1)-form urs5,e) on T
such that

Ours ey NTiey = fioy Ny = (FAT) e
and

[

lu(r5.6) ||3,A,6,T(5),¢A,6 < =lfe)/he) ||3,A,6,T(5),¢A,6

—Q

2
< guf(e)/h(s) HWMS,T(E) 750?5) :

Hence by repeating the arguments in the end of the proof of Theorem 8.1 in [5]
and by letting A — 0, ¢ — 0, § — 0 respectively, we finish the proof of the
theorem. N

Next, we will give a result which extends Theorem 1.4 in [10] to all closed
positive (1, 1)-currents T'.

Corollary 3.4. Let D, T, w be as in Theorem 1.1. Assume that u is a positive
C?-function, h is a positive continuous function and ¢ is a plurisubharmonic
function in D satisfying

100 < (100 — hw)

in the sense of currents. Tfien for any (n,q)-form f with Of NT = 0 there is a
(n,q — 1)-form w such that du = f on T and

Cn—q+1 /ﬁ NxuNwg—1 ANTe %p

1

< —cn_q/ﬁ/\*f/\wq/\Te_wﬁ.
q

h
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Proof. Put 1» = —In . Then by the proof of Theorem 1.3 in [10], it follows that
@ + 1 is a strictly plurisubharmonic function in D and

hw < i00(p + 1))

in the sense of currents. So by Theorem 1.1, there is a (n,q — 1)-form v on T
such that

OuNT =fAT
and
Cn—q+1 /ﬁ AU A wg—1 N Te ¥
1 — —p—p 1
< —Cneq [ *fA*fANwgANTe ?7Y—.
q h
The proof of the corollary is complete. O

We now prove weighted estimates of Donnelly-Fefferman type for solutions of
the d-equation on smooth positive (1, 1)-currents.

Proof of Theorem 1.2. We will consider two cases. First, we assume that 7' is
strictly positive. By Proposition 3.1 with & being replaced by e %%, we get

—Cn—q / sald A xat A 10DV Nwy_y ATe™?
< et |? v+ 2] /79<pa1 Axat A de™ A Te ?|

= [0 12 7 ss0 +2|/19¢—a1 Asal A (600) A Te™ 93|

20 1—-6
< <1 + 1—_5> 10012 750 + W\w&ﬂ N

for every (n,q)-form o' in D such that da! AT = 0 and o' € Dom(9,,).
On the other hand, because —e~¥ is plurisubharmonic, we have
(3.7) i00(—e~¥) = e~ Y (i00y — 10 A ) = 0.
Hence we obtain
160 A 0 12 1150

—Chq /W A xal A 6%idp N A wyy A Te P~

écn_q52 /W Akl A DD A Wg—1 A Te ¢7%,
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Combining this with (3.6) and (3.7), we obtain
(1 —0)cn—q /Fal A xat NidDY A wy g A Te P~
< <1 + %) 100|270 50
+ wcn_q /?«1 A xat NidOY Awyy N Te P70,
Thus, it follows that
O o LA S

Moreover, for any test form « of bidegree (n,q) and by using arguments as in the
proof of Theorem 1.1, we can write

a=at + a2,
where da! AT = 0 and o? is orthogonal to the kernel of J in L%n q)(w,T, ©).
Then, in particular, o is orthogonal to any form of type 93 so ﬁwaz =0 in the
sense of currents. Hence J,a = ﬁgpal. On the other hand, because Of AT = 0
then

(f> O‘)w,T,ap = (f> al)w,T,ap-

We consider the linear form L defined on the range of 9, by

L(ﬁsoa) = (f> O‘)w,T,ap = (f> al)w,T,ap-

Since [[0p0! [loTpr50 = [[0p0 |, 7,0+6p, We have

LW < IFIZ 1ol 12 s
4

2 2
< m\lﬂlw,g)_w||z9¢a\|wvw+6w.

An application of Hahn-Banach’s theorem implies that there exists a (n,q — 1)-
form v such that

(Uaﬁwa)w,T,goJr&lJ = L(79<p04) = (f, O‘)%T#P

and
e — T
By choosing u = e~%%v, we complete the proof for the first case.

Next, the general case where T' is an arbitrary smooth positive (1,1) - current.
We may normalize so that

1l 750 = 1.
For n > 0, we define
T =T + 1idd|z)?.
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Then T is a strictly smooth positive (1,1)-current. In view of Proposition 5.4
in [5], we can write

f/\T — f(’?) /\T(ﬁ)’

where £ is a (n, q)-form which is 8 - closed on T . Moreover, since (K e
> [[)]|w,7,p—sy for every (0,n — g)-form, by the definition (3.3) of (n, ¢)-forms we
have

1F Dz s = sup{,/f(n) AN AT e 2T 1, qin gy < 1}
—supf{] [ £ A0 ATE s ol s < 1)

< Sup{|/f A ATe P ¢ ||l 7,0-50 < 1}

So from the first case proved above, it follows that there is an (n,q — 1)-form
u on T™ such that

M AT = f) A7) = £ AT

and
n) H2 4

Hu(n) w, T o—6¢) < m

4
2 (
|’w,T(n)7¢_5¢ < q5(1 _ (5)2 ”f
By letting n — 0 and repeating the arguments in the end of the proof of Theorem
8.1 in [5], we finish the proof of the theorem. O

Remark 3.5. For a pseudoconvex domain D C C"*! with D # C"*!, the
assumption on the smoothness of 1" in Theorem 1.2 is necessary in view of our
smoothing technique. More precisely, if we replace T' by the smooth (1, 1) forms
T. = T * 0. on domains D, then the condition about the completeness of w on D,
are not satisfied. Indeed, suppose otherwise then there exists a domain D; € D
and a complete Kéahler form wy on D such that

(3.8) 100y > wy.
Since 1) is smooth on Dy € D then there exists M > 0 such that
(3.9) Midd|z|* = i0dy.

On the other hand, because w; is complete then there exists a sequence of cut-
off functions {x;} such that 0 < x; < 1, suppx; € D1, {x;} 1 1 on D; and
|dXjlw, < C where C is a constant. Hence from (3.8) and (3.9), we get

1
C 2 ldxjlur 2 ldxjligay 2 ldXilariva)z12 = 77|95 ioa)-2-

By using the Taylor expansion of x; for sufficiently larger j at a point of the
boundary of Dy, we get a contradiction.
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