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ON THE RATIONAL RECURSIVE SEQUENCE

xn+1 = Axn + Bxn−k +
1 + xnxn−k

pxn + xn−k

ELSAYED M. E. ZAYED

Abstract. In this article, we study the global stability and the asymptotic
properties of the positive solutions of the nonlinear difference equation

xn+1 = Axn + Bxn−k +
1 + xnxn−k

pxn + xn−k

, n = 0, 1, 2, . . .

where the parameters A, B, p and the initial conditions x−k, . . . , x−1, x0 are
arbitrary positive real numbers, while k is a positive integer number. Some
numerical examples will be given to illustrate our results.

1. Introduction

The qualitative study of difference equations is a fertile research area and
increasingly attracts many mathematicians. This topic draws its importance from
the fact that many real life phenomena are modeled using difference equations.
Examples from economy, biology, etc. can be found in [2, 17, 20, 30]. It is
known that nonlinear difference equations are capable of producing a complicated
behavior regardless its order. This can be easily seen from the family xn+1 =
gµ(xn), µ > 0, n ≥ 0. This behavior is ranging according to the value of µ, from
the existence of a bounded number of periodic solutions to chaos.

There has been a great interest in studying the global attractivity, the bound-
edness character and the periodicity nature of nonlinear difference equations. For
example, in the articles [1, 7-15, 22-49] closely related global convergence results
were obtained which can be applied to nonlinear difference equations in prov-
ing that every solution of these equations converges to a period two solution.
For other closely related results, see [3-7, 11, 18, 19] and the references cited
therein. The study of these equations is challenging and rewarding and is still
in its infancy. We believe that the nonlinear rational difference equations are of
paramount importance in their own right. Furthermore the results about such
equations offer prototypes for the development of the basic theory of the global
behavior of nonlinear difference equations.
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The objective of this article is to investigate some qualitative behavior of the
positive solutions of the nonlinear difference equation

(1.1) xn+1 = Axn + Bxn−k +
1 + xnxn−k

pxn + xn−k
, n = 0, 1, 2, . . . ,

where the parameters A,B, p and the initial conditions x−k, . . . , x−1, x0 are ar-
bitrary positive real numbers, while k is a positive integer number. Our interest
in this article is to study the behavior of solutions of Eq. (1) in the general case
where A and B are nonzero positive constants while k is a positive integer num-
ber. For the related work see [33-49]. Let us now recall some well know results
[16] which will be useful in the sequel.

Definition 1.1. A difference equation of order (k + 1) is of the form

(1.2) xn+1 = F (xn, xn−k), n = 0, 1, 2, . . .

where F is a continuous function which maps some set Jk+1 into J where J is
a set of real numbers. An equilibrium point x̃ of this equation is a point that
satisfies the condition x̃ = F (x̃, x̃). That is, the constant sequence {xn}∞n=−k

with xn = x̃ for all n ≥ −k is a solution of that equation.

Definition 1.2. Let x̃ ∈ (0,∞) be an equilibrium point of the difference equation
(2). Then

(i) An equilibrium point x̃ of the difference equation (2) is called locally stable
if for every ε > 0 there exists δ > 0 such that, if x−k, . . . , x−1, x0 ∈ (0,∞) with
|x−k − x̃| + · · · + |x−1 − x̃| + |x0 − x̃| < δ, then |xn − x̃| < ε for all n ≥ −k.

(ii) An equilibrium point x̃ of the difference equation (2) is called locally
asymptotically stable if it is locally stable and there exists γ > 0 such that,
if x−k, . . . , x−1, x0 ∈ (0,∞) with |x−k − x̃| + · · · + |x−1 − x̃| + |x0 − x̃| < γ, then

lim
n→∞

xn = x̃.

(iii) An equilibrium point x̃ of the difference equation (2) is called a global
attractor if for every x−k, . . . , x−1, x0 ∈ (0,∞) we have

lim
n→∞

xn = x̃.

(iv) An equilibrium point x̃ of the equation (2) is called globally asymptotically
stable if it is locally stable and a global attractor.

(v) An equilibrium point x̃ of the difference equation (2) is called unstable if
it is not locally stable.

Definition 1.3. A sequence {xn}∞n=−k is said to be periodic with period p if
xn+p = xn for all n ≥ −k. A sequence {xn}∞n=−k is said to be periodic with prime
period p if p is the smallest positive integer having this property.

Definition 1.4. A positive semi-cycle of {xn}∞n=−k consists of “a string” of terms
{xl, xl+1, . . . , xm} all greater than or equal to x̃, with l ≥ −k and m ≤ ∞ such
that

either l = −k or l > −k and xl−1 < x̃,
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and
either m = ∞ or m < ∞ and xm+1 < x̃.

A negative semi-cycle of {xn}∞n=−k consists of “a string” of terms {xl, xl+1, . . . , xm}
all less than x̃, with l ≥ −k and m ≤ ∞ such that

either l = −k or l > −k and xl−1 ≥ x̃,

and
either m = ∞ or m < ∞ and xm+1 ≥ x̃.

Definition 1.5. Eq. (2) is said to be permanent if there exist positive real
numbers m and M such that for every solution {xn}∞n=−k of Eq. (2) there exists
a positive integer N ≥ −k which depends on the initial conditions, such that

m ≤ xn ≤ M, for all n ≥ N.

The linearized equation of the difference equation (2) about the equilibrium
point x̃ is the linear difference equation

(1.3) zn+1 =
∂F (x̃, x̃)

∂xn
zn +

∂F (x̃, x̃)

∂xn−k

zn−k.

The characteristic equation associated with Eq. (3) is

(1.4) p (λ) = λk+1 − p0λ
k − p1 = 0,

where

(1.5) p0 =
∂F (x̃, x̃)

∂xn
, p1 =

∂F (x̃, x̃)

∂xn−k

.

1.1. Equilibrium points. In this section, we examine the positive equilibrium
points x̃ of Eq. (1). The equilibrium points of Eq. (1) are the solutions of the
equation

(1.6) x̃ = (A + B) x̃ +
1 + x̃2

(p + 1) x̃
.

If 0 < A + B < 1, and (p + 1) [1 − (A + B)] > 1, then the equilibrium points of
Eq. (1) are

(1.7) x̃ = ± 1√
(p + 1) [1 − (A + B)] − 1

.

Theorem 1.6. ([16] The linearized stability theorem). Suppose F is a continu-

ously differentiable function defined on an open neighborhood of the equilibrium

x̃. Then the following statements are true.

(i) If all the roots of the characteristic equation (4) of the linearized equation

(3) have absolute values less than one, then the equilibrium point x̃ of Eq. (2) is

locally asymptotically stable.

(ii) If at least one root of Eq. (4) has the absolute value greater than one, then

the equilibrium point x̃ of Eq. (2) is not locally stable.

(iii) If all the roots of Eq. (4) have absolute values greater than one, then the

equilibrium point x̃ of Eq. (2) is a source.



254 ELSAYED M. E. ZAYED

1.2. Linearization. In this section, we derive the linearized equation of Eq. (1).
To this end, we introduce a continuous function F : (0,∞)2 → (0,∞) which is
defined by

(1.8) F (u0, u1) = Au0 + Bu1 +
1 + u0u1

pu0 + u1
.

Therefore,

(1.9)





∂F (u0,u1)
∂u0

= A +
u2
1
−p

(pu0+u1)
2 ,

∂F (u0,u1)
∂u1

= B +
pu2

0
−1

(pu0+u1)2
.

Lemma 1.7. The function F (u0, u1) is non-decreasing in each of its arguments.

That is F (u0, u1) non-decreasing in u0 for a fixed u1 >
√

p and non-decreasing

in u1 for a fixed u0 > 1√
p
.

From (7) and (9) we have

(1.10)





∂F (x̃,x̃)
∂u0

= A + 1
(p+1) {1 − p [1 − (A + B)]} = ρ0,

∂F (x̃,x̃)
∂u1

= B + [1−(A+B)]
(p+1) = ρ1.

The linearized equation of Eq. (1) about the equilibrium points (7) is

(1.11) zn+1 − ρ0 zn − ρ1 zn−k = 0,

where ρ0 and ρ1 are given by (10).

Theorem 1.8. ([21]) . Assume that ρ0, ρ1 ∈ R and k ∈ {1, 2, . . .}. Then

(1.12) |ρ0| + |ρ1| < 1

is a sufficient condition for the asymptotic stability of the difference equation (2).
Suppose in addition that one of the following two cases holds:

(i) k is an odd integer and ρ1 > 0.
(ii) k is an even integer and ρ0ρ1 > 0.

Then (12) is also a necessary condition for the asymptotic stability of Eq. (2).

Theorem 1.9. ([17]). Consider the difference equation (2) where the function

F ∈ C
(
Ik+1, R

)
and I is an open interval of real numbers. Let x̃ ∈ I be an

equilibrium point of Eq. (2). Suppose also that

(i) F is a nondecreasing function in each of its arguments,

(ii) the function F satisfies the negative feedback property

[F (x, x) − x] (x − x̃) < 0 for all x ∈ I − {x̃} .

Then the equilibrium point x̃ of Eq. (2) is a global attractor for all solutions of

Eq. (2).
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Theorem 1.10. ([17]). Let [a, b] be an interval of real numbers and assume that

F : [a, b] × [a, b] → [a, b] is a continuous function satisfying the following two

conditions:

(i) F (x, y) is non-decreasing in each of its arguments.

(ii) If (m,M) ∈ [a, b] × [a, b] is a solution of the system m = F (m,m) and

M = F (M,M) , then m = M.

Then Eq. (2) has a unique equilibrium x̃ ∈ [a, b] and every solution of Eq. (2)
converges to x̃.

2. Local stability

In this section, we investigate the local stability of the positive solutions of
Eq. (1).

Theorem 2.1. If 0 < p [1 − (A + B)] < 1
2 and 0 < A + B < 1, then the

equilibrium points x̃ given by (7) are not stable.

Proof. From (10) and the assumptions of this theorem, we get

|ρ0| + |ρ1| =

∣∣∣∣A +
1

(p + 1)
{1 − p [1 − (A + B)]}

∣∣∣∣

+

∣∣∣∣B +
[1 − (A + B)]

(p + 1)

∣∣∣∣

=
2p (A + B) − p + 2

p + 1
>

2
(
p − 1

2

)
− p + 2

p + 1
= 1.

This contradicts Theorem 3 and consequently the points x̃ are not stable. Now,
the proof is complete. �

Theorem 2.2. If p [1 − (A + B)] = 1 and 0 < A + B < 1, then the equilibrium

points x̃ are locally asymptotic stable.

Proof. From (10) and the assumptions of this theorem, we get

|ρ0| + |ρ1| =

∣∣∣∣A +
1

(p + 1)
{1 − p [1 − (A + B)]}

∣∣∣∣

+

∣∣∣∣B +
[1 − (A + B)]

(p + 1)

∣∣∣∣

=
p (A + B) + 1

p + 1
< 1,

and by Theorem 3 the proof is complete. �

Theorem 2.3. If p [1 − (A + B)] > 1, 0 < A + B < 1 and

A >
{p [1 − (A + B)] − 1}

p + 1
,

then the equilibrium points x̃ are locally asymptotic stable.
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Proof. From (10) and the assumptions of this theorem, we get

|ρ0| + |ρ1| =

∣∣∣∣A +
1

(p + 1)
{1 − p [1 − (A + B)]}

∣∣∣∣

+

∣∣∣∣B +
[1 − (A + B)]

(p + 1)

∣∣∣∣

<
1

p + 1
{(A + B) (p + 1) + [1 − (A + B)]}

=
p (A + B) + 1

p + 1
< 1,

and by Theorem 3 the proof is complete. �

Theorem 2.4. If p [1 − (A + B)] > 1, 0 < A + B < 1 and −1
2(p+1) < A <

{p[1−(A+B)]−1}
p+1 , then the equilibrium points x̃ are locally asymptotic stable.

Proof. From (10) and the assumptions of this theorem, we get

|ρ0| + |ρ1| =

∣∣∣∣A +
{1 − p [1 − (A + B)]}

(p + 1)

∣∣∣∣ +

∣∣∣∣B +
[1 − (A + B)]

(p + 1)

∣∣∣∣

=
{p [1 − (A + B)] − 1}

p + 1
− A + B +

[1 − (A + B)]

p + 1

<1 − (A + B) − 1

2 (p + 1)
+ B = 1 − A − 1

2 (p + 1)
< 1,

and by Theorem 3 the proof is complete. �

3. Periodic solutions

In this section, we investigate the periodic character of the positive solutions
of Eq. (1).

Theorem 3.1. (1) If k is an even positive integer, then Eq. (1) has no solutions

of prime period two for all A,B, p ∈ (0,∞) .

(2) If k is an odd positive integer, then Eq. (1) has no solutions of prime

period two for all A,B, p ∈ (0,∞) such that Ap − B + 1 6= 0.

Proof. Assume for the sake of contradiction that there exists distinct positive
real numbers Φ and Ψ, such that

. . . ,Φ,Ψ,Φ,Ψ, . . .

is a prime period two solution of Eq. (1). If k is even, then xn = xn−k. It follows
from the difference equation (1) that

Φ = (A + B)Ψ +
1 + Ψ2

(p + 1) Ψ
and Ψ = (A + B)Φ +

1 + Φ2

(p + 1) Φ
.

Consequently, we obtain

(3.1) (p + 1) ΦΨ = (A + B) (p + 1) Ψ2 + Ψ2 + 1,
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and

(3.2) (p + 1) ΦΨ = (A + B) (p + 1) Φ2 + Φ2 + 1.

By subtracting (13) from (14), we deduce that

(3.3)
(
Φ2 − Ψ2

)
{1 + (A + B) (p + 1)} = 0.

Since (A + B) (p + 1)+1 6= 0, then we have Φ = Ψ. This is a contradiction. This
proves that Eq. (1) has no solutions of prime period two if k is even. Also, if k

is odd, then xn+1 = xn−k. It follows from the difference equation (1) that

Φ = AΨ + BΦ +
1 + ΦΨ

pΨ + Φ
and Ψ = AΦ + BΨ +

1 + ΦΨ

pΦ + Ψ
.

Consequently, we obtain

(3.4) pΦΨ + Φ2 = ApΨ2 + AΦΨ + BpΦΨ + BΦ2 + ΦΨ + 1,

and

(3.5) pΦΨ + Ψ2 = ApΦ2 + AΦΨ + BpΦΨ + BΨ2 + ΦΨ + 1.

By subtracting (16) from (17), we deduce that

(3.6)
(
Φ2 − Ψ2

)
{1 + Ap − B} = 0.

Since Ap − B + 1 6= 0, then we have Φ = Ψ. This is a contradiction. This proves
that Eq. (1) has no solutions of prime period two if k is odd. The proof of
Theorem 10 is now complete. �

4. Boundedness character

In this section, we investigate the boundedness character of the solutions of
Eq. (1).

Theorem 4.1. Let {xn}∞n=−k be a solution of Eq. (1) with 0 < A+B < 1. Then

the following statements are true.

(i) Suppose p < 1 and for some N ≥ 0, the intial conditions

xN−k+1, . . . , xN−1, xN ∈ [p, 1] ,

then

(4.1) xn ∈
[
(A + B) p +

1

2

(
1 + p2

)
,
3

p

]
, for all n ≥ N.

(ii) Suppose p > 1 and for some N ≥ 0, the intial conditions

xN−k+1, . . . , xN−1, xN ∈ [1, p] ,

then

(4.2) xn ∈
[
1

p
(A + B + 1) , (A + B) p +

1

2

(
1 + p2

) ]
, for all n ≥ N.
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Proof. First of all, if for some N ≥ 0, the initial conditions xN−k+1, . . . , xN−1, xN ∈
[p, 1] and p < 1, then

xn+1 = Axn + Bxn−k +
1 + xnxn−k

pxn + xn−k

≥ (A + B) p +
1 + p2

p2 + p

≥ (A + B) p +
1

2

(
1 + p2

)
,

and

xn+1 = Axn + Bxn−k +
1 + xnxn−k

pxn + xn−k

≤ (A + B) +
2

1 + p
≤ 1 +

2

1 + p

≤ 1

p
+

2

p
=

3

p
,

and hence the proof of part (i) is complete. Secondly, if for some N ≥ 0, the
initial conditions xN−k+1, . . . , xN−1, xN ∈ [1, p] and p > 1, then

xn+1 = Axn + Bxn−k +
1 + xnxn−k

pxn + xn−k
≥ (A + B) +

2

p + 1

≥ (A + B) +
1

p
≥ 1

p
(A + B + 1) ,

and

xn+1 = Axn + Bxn−k +
1 + xnxn−k

pxn + xn−k
≤ (A + B) p +

1 + p2

p2 + p

≤ (A + B) p +
1 + p2

2p
≤ (A + B) p +

1

2

(
1 + p2

)
,

and hence the proof of part (ii) is complete. Therefore, the proof of Theorem 11
is now complete. �

4.1. Semi-cycle analysis.

Theorem 4.2. Assume that F ∈ C
[
(0,∞)2 ; (0,∞)

]
is a continuous function

such that F (x, y) is non-decreasing in each of its arguments. Let x̃ be an equi-

librium point of Eq. (1). Then except possibly for the first semi-cycle, every

oscillatory solution of Eq. (1) has semi-cycle of length at least k.

Proof. The proof is obvious when k = 1. We just give the proof for k = 2. The
proof is similar for k ≥ 3 which is omitted here. Let {xn} be a solution of Eq.
(1) with at least three semi-cycles. Then there exists N ≥ 0 such that either

xN−1 < x̃ ≤ xN+1,

or

xN−1 ≥ x̃ > xN+1.

We first assume that

xN−1 < x̃ ≤ xN+1.
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Since the function F (x, y) is non-decreasing in each of its arguments, then we get

xN+2 = F (xN+1, xN−1) = AxN+1 + BxN−1 +
1 + xN+1xN−1

pxN+1 + xN−1

= Ax̃ + BxN−1 +
1 + x̃xN−1

px̃ + xN−1
= F (x̃, xN−1) ≤ F (x̃, x̃) = x̃,

and hence

(4.3) xN+2 ≤ x̃.

Also for x̃ < xN , we have

xN+3 = F (xN+2, xN ) = AxN+2 + BxN +
1 + xN+2xN

pxN+2 + xN

= Ax̃ + BxN +
1 + x̃xN

px̃ + xN
= F (x̃, xN ) ≥ F (x̃, x̃) = x̃,

and hence

(4.4) xN+3 ≥ x̃.

From (21) and (22) we have

(4.5) xN+2 ≤ x̃ ≤ xN+3.

Similarly, we can prove this theorem if xN−1 ≥ x̃ > xN+1 which is omitted here.
The proof of Theorem 12 is now complete. �

5. Global stability

In this section, we investigate the global stability of the positive solutions of
Eq. (1).

Theorem 5.1. Consider the difference Eq. (1). If p [1 − (A + B)] > 1 and

0 < A + B < 1, then the equilibrium points

x̃ =
±1√

(p + 1) [1 − (A + B)] − 1

of Eq. (1) are global attractors.

Proof. We shall prove this theorem using two different ways because they are
both interesting to the readers. First of all, we consider the function

(5.1) F (x, y) = Ax + By +
1 + xy

px + y
.

If the function (24) satisfies the two conditions (i), (ii) of Theorem 4, then the
equilibrium points x̃ of Eq. (1) are global attractors. With reference to Lemma
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2, the condition (i) is obvious. It remains to prove the condition (ii) as follows:

[F (x, x) − x] (x − x̃)

=

[
(A + B)x +

1 + x2

x (p + 1)
− x

][
x − ±1√

(p + 1) [1 − (A + B)] − 1

]

=

{
1 + x2 (A + B) − x2p [1 − (A + B)]

p + 1

}

±
{

x2 {(p + 1) [1 − (A + B)] − 1} − 1

x (p + 1)
√

(p + 1) [1 − (A + B)] − 1

}
.

Since p [1 − (A + B)] > 1 and 0 < A + B < 1, then we have

[F (x, x) − x] (x − x̃) <
1 + x2 [(A + B) − 1]

p + 1
± x

√
(p + 1) [1 − (A + B)] − 1

p + 1

∓ 1

x (p + 1)
√

(p + 1) [1 − (A + B)] − 1

<
±x2 {(p + 1) [1 − (A + B)] − 1}

(p + 1) x
√

(p + 1) [1 − (A + B)] − 1
+

+
x
√

(p + 1) [1 − (A + B)] − 1 ∓ 1

(p + 1) x
√

(p + 1) [1 − (A + B)] − 1

=
±1

(p + 1)





(
x
√

(p + 1) [1 − (A + B)] − 1 ± 1
2

)2
− 5

4

x
√

(p + 1) [1 − (A + B)] − 1





.(5.2)

From (25) we discuss the following two cases:

Case 1. If 0 < x ≤
√

5−1

2
√

(p+1)[1−(A+B)]−1
and x̃ = 1√

(p+1)[1−(A+B)]−1
, then the

inequality (25) reduces to

[F (x, x) − x] (x − x̃) <
1

(p + 1)





(
x
√

(p + 1) [1 − (A + B)] − 1 + 1
2

)2
− 5

4

x
√

(p + 1) [1 − (A + B)] − 1





< 0.(5.3)

This proves that the positive equilibrium point

x̃ =
+1√

(p + 1) [1 − (A + B)] − 1

of Eq. (1) is a global attractor.
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Case 2. If x ≥ 1+
√

5

2
√

(p+1)[1−(A+B)]−1
and x̃ = −1√

(p+1)[1−(A+B)]−1
, then the

inequality (25) reduces to

[F (x, x) − x] (x − x̃) <
−1

(p + 1)





(
x
√

(p + 1) [1 − (A + B)] − 1
)2

− 5
4

x
√

(p + 1) [1 − (A + B)] − 1





< 0.(5.4)

This proves that the negative equilibrium point

x̃ =
−1√

(p + 1) [1 − (A + B)] − 1

of Eq. (1) is a global attractor. The proof of Theorem 13 is now complete.
Secondly, since the function F (x, y) given by (24) is nondecreasing in each of

its arguments, then if (m,M) is a solution of the system

m = F (m,m) and M = F (M,M),

then we get

m = (A + B)m +
1 + m2

(p + 1) m
,

and

M = (A + B)M +
1 + M2

(p + 1) M
.

Consequently, we have

(5.5) (p + 1) m2 = (A + B) (p + 1) m2 + m2 + 1,

(5.6) (p + 1) M2 = (A + B) (p + 1) M2 + M2 + 1.

By subtracting (28) from (29) we get

(5.7) (m − M) (m + M) {(p + 1) [1 − (A + B)] − 1} = 0.

Since (p + 1) [1 − (A + B)] > 1, then we deduce from (30) that m = M. Accord-
ing to Theorem 5, the equilibrium points x̃ are global attractors. Therefore, the
proof of Theorem 13 is now complete. �

On combining Theorem 8 or 9 together with Theorem 13, we have the following
result:

Theorem 5.2. If p [1 − (A + B)] > 1, 0 < A + B < 1 and either A >
{p[1−(A+B)]−1}

p+1 or −1
2(p+1) < A <

{p[1−(A+B)]−1}
p+1 , then the equilibrium points

x̃ =
±1√

(p + 1) [1 − (A + B)] − 1

of Eq. (1) are globally asymptotically stable.
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6. Numerical examples

In order to illustrate the results of the previous sections and to support our
theoretical discussions, we consider several interesting numerical examples in this
section. These examples represent different types of qualitative behavior of solu-
tions to the nonlinear difference equation (1).

Example 1. Figure 1 shows that the solution of Eq. (1) has no positive solutions
of prime period two if k = 4, x−4 = 1, x−3 = 2, x−2 = 3, x−1 = 4, x0 = 5, A =
300, B = 100, p = 50.
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Example 2. Figure 2 shows that the solution of Eq. (1) has no positive solutions
of prime period two if k = 3, x−3 = 2, x−2 = 3, x−1 = 4, x0 = 5, A = 3, B =
10, p = 5.

Example 3. Figure 3 shows that the solution of Eq. (1) is global stability if
k = 3, x−3 = 2, x−2 = 3, x−1 = 4, x0 = 5, A = 0.5, B = 0.25, p = 5.
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Figure 3. (xn+1 = 0.5xn + 0.25xn−4 + 1+xnxn−4
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Example 4. Figure 4 shows that the solution of Eq. (1) is not stable if k =
3, x−3 = 2, x−2 = 3, x−1 = 4, x0 = 5, A = 0.5, B = 0.25, p = 1.
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