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ON LOCALLY NILPOTENT MAXIMAL SUBGROUPS OF THE

MULTIPLICATIVE GROUP OF A DIVISION RING

BUI XUAN HAI

Abstract. Let D be a division ring with the center F and D
∗ be the mul-

tiplicative group of D. In this paper we study locally nilpotent maximal sub-
groups of D

∗. We give some conditions that influence the existence of locally
nilpotent maximal subgroups in division ring with infinite center. Also, it is
shown that if M is a locally nilpotent maximal subgroup that is algebraic over
F , then either it is the multiplicative group of some maximal subfield of D or
it is center-by-locally finite. If, in addition we assume that F is finite and M

is nilpotent, then the second case cannot occur, i.e. M is the multiplicative
group of some maximal subfield of D.

1. Introduction

In this paper we consider a question on the existence of maximal subgroups of
the multiplicative group D∗ of a division ring D with the center F . In Section 2,
we restrict this question to the case of a division ring algebraic over its infinite
center, otherwise, D would be commutative by Jacobson Theorem [4, p. 219]. A
class of examples is given where D∗ does not admit neither maximal subgroups nor
locally nilpotent maximal subgroups. Also, here we investigate some properties
which influence the existence of maximal subgroups.

Throughout this paper, we use the standard symbols and notation. In partic-
ular, if S ⊆ D is a nonempty subset of a division ring D then CD(S) denotes the
centralizer of S in D, i.e.

CD(S) = {x ∈ D| xa = ax for all a ∈ S}.

If F ⊆ K is a field extension and a ∈ K is an algebraic element over F , then
we denote by min(F, a) the minimal polynomial of a, i.e. the irreducible monic
polynomial in F [X] which has a as its root. If every element of D is algebraic
over its center F , then we say that D is algebraic over F . An element a in D is
said to be radical over F if there exists some positive integer n(a) depending on

a such that an(a) ∈ F . A subset S ⊆ D is radical over F if every its element is
radical over F . If G is a group, then the center of G is denoted by Z(G). Finally,
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in this paper “a normal maximal subgroup” means “a maximal subgroup which
is normal”. Similarly for other constructions: for example, “a locally nilpotent
maximal subgroup” means “a maximal subgroup which is locally nilpotent”, etc...

2. A division ring with infinite center

In the first we consider a special class of division rings including the division
ring of real quaternions. In fact, for a division ring D belonging to this class we
assume that D contains some algebraic closure of its center.

Lemma 2.1. Let D be a division ring which is algebraic over its center F and

suppose that D contains an algebraic closure L of F . Then, for any element a in

D, there exists some element b in D∗ such that bab−1 ∈ L.

Proof. Suppose that a ∈ D is arbitrary. Denote by min(F, a) the minimal poly-
nomial of a over F . Since L is an algebraic closure of F,min(F, a) has some
root, say ω in L. Thus, a and ω have the same minimal polynomial over F .
By Dickson’s Theorem [4, p. 265], there exists some element b in D∗ such that
bab−1 = ω ∈ L. �

Theorem 2.1. If D is a division ring as in Lemma 2.1, then D∗ has no normal

maximal subgroups.

Proof. Let L ⊆ D be an algebraic closure of F and suppose that M is a normal
maximal subgroup of D∗. Then, D∗/M ' Zp for some prime number p. Consider
an arbitrary element a in D∗. By Lemma 2.1, there exists some element b in
D∗ such that bab−1 ∈ L. Since L is an algebraic closure of F , the polynomial
f(X) = Xp − bab−1 ∈ L[X] has some root c in L; hence

f(c) = cp − bab−1 = 0.

It follows that a = b−1cpb = (b−1cb)p ∈ M . Hence, D∗ = M that is a contra-
diction. �

Since the division ring H of real quaternions satisfies the supposition of Lemma
2.1 above, the result obtained in Theorem 2.1 generalizes Theorem 13 in [1].

As some interesting application of this theorem, we shall obtain again a series
of fields (including the field of complex numbers) whose multiplicative groups
contain no maximal subgroups.

Corollary 2.1. Every algebraically closed field contains no maximal subgroups.

This conclusion does not need Theorem 2.1. One can see it directly as follows.
The multiplicative group of an algebraically closed field is obviously a divisible
abelian group by the solvability of polynomials Xn − a. Since divisible abelian
groups cannot contain maximal subgroups, the corollary follows.

Notice that from the proof of Theorem 2.1, it follows easily that multiplicative
groups of the considered division rings are (not necessarily abelian) divisible
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groups. This observation is calling author’s attention to the following question:
are these groups always complete?

Lemma 2.2. Suppose that a finite field extension F ⊂ K does not have proper

intermediate subfields. Then:

(i) either K is separable over F , or

(ii) K is purely inseparable over F . Moreover, in this case, charF = p > 0,K
is radical over F and [K : F ] = p.

Proof. If there exists a separable over F element a in K \ F , then K = F (a) is
separable over F . Suppose that every element of K\F is inseparable over F . Then
K is purely inseparable over F . Clearly, in this case, we have charF = p > 0.
Now, consider some element a in K \ F . We can find some positive integer
n = n(a) depending on a such that apn

∈ F . Suppose that n is a minimal

positive integer such that apn

∈ F . Setting b = apn−1

, we have bp ∈ F and b 6∈ F .
It follows that K = F (b) and min(F, b) = Xp − bp, so [K : F ] = p. �

Theorem 2.2. If D is a division ring as in Lemma 2.1, then D∗ contains no

locally nilpotent maximal subgroups.

Proof. If D is a field, then by Corollary 2.1, D contains no maximal subgroups.
Now, suppose that D is non-commutative and M is a locally nilpotent maximal
subgroup of D∗. By [3, Th. 3.2], M is the multiplicative group of some maximal
subfield K of D. Moreover, M contains F . Since D is non-commutative, K 6= F
and by [2, Th. 1], there are no proper intermediate subfields of the field extension
F ⊂ K and Gal(K/F ) = {IdK}. If a ∈ K \ F , then K = F (a). Since a is
algebraic over F , it follows that [K : F ] = [F (a) : F ] < ∞. By Lemma 2.1, there
exists some element b in D∗ such that bab−1 ∈ L (L is an algebraic closure of
F , lying in D). Therefore, bKb−1 = bF (a)b−1 ⊆ L and bK∗b−1 ⊆ L∗. Since
K∗ = M is maximal in D∗, bK∗b−1 is maximal in D∗. This forces L∗ = bK∗b−1

and consequently L = bKb−1. Hence, one can suppose that K = L. In particular,
it follows that F ⊂ K is a normal extension.

By Lemma 2.2, either K is separable over F or K is radical over F and [K :
F ] = p = charF > 0. In the first case, since K is normal over F , it follows that
F ⊂ K is a Galois extension. Therefore, |Gal(K/F )| = [K : F ] 6= 1, that is a
contradiction. In the last case, for any u ∈ D∗, there exists v ∈ D∗ such that
vuv−1 ∈ L = K; hence u ∈ v−1Kv. Since K is radical over F, u is radical over
F too. Thus, we have proved that D is radical over F . Now, by Kaplansky’s
Theorem (see [4, p. 259]), D is commutative, that is again a contradiction. �

Note that in [2], it was proved that the division ring of real quaternions does not
contain nilpotent maximal subgroups. So, the theorem we have proved strongly
generalizes this result.

Now, suppose that M is a maximal subgroup of D∗ and P is the prime subfield
of F . Denote by P (Z(M)) the subfield of D generated by Z(M), i.e. P (Z(M))
is the minimal subfield of D containing Z(M). It was proved in [2] that F ⊆
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P (Z(M)). Moreover, if F is infinite then Z(M) = M∩F if and only if P (Z(M)) =
F (see [2, Prop. 1]). Using this fact we can prove the following result.

Proposition 2.1. Let D be a non-commutative division ring with infinite center

F . Then the following conditions are equivalent:

(i) Z(M) = M ∩ F for every maximal subgroup M of D∗.

(ii) D∗ contains no maximal subgroups that are multiplicative groups of some

division subrings of D.

Proof. Suppose that (i) holds and M is a maximal subgroup of D such that K :=
M ∪{0} is a division subring of D. By [2, Prop. 1], F = P (Z(M)) = P (Z(K)) =
Z(K). By [2, Lem. 6], K∗ is self-normalized in D∗. So CD(K) = Z(K), hence
CD(K) = F . By Double Centralizer Theorem we have CD(CD(K)) = K. It
follows that K = CD(CD(K)) = CD(F ) = D, that is a contradiction in view of
the maximality of M = K∗ in D∗.

Conversely, suppose that D∗ contains no maximal subgroups that are multi-
plicative groups of some division subrings of D and M is a maximal subgroup
of D. By setting K := M ∪ {0} we have K ⊆ CD(Z(M)). So by maximality of
K∗ := M in D∗, either CD(Z(M))∗ = K∗ or CD(Z(M))∗ = D∗. Since by suppo-
sition, K is not a division subring, we have CD(Z(M))∗ = D∗; hence, Z(M) ⊆ F
and consequently Z(M) = M ∩ F . �

Corollary 2.2. Let D be a non-commutative division ring that is algebraic over

its center F . If Z(M) = M ∩ F for every maximal subgroup M of D∗, then D
contains no locally nilpotent maximal subgroups.

Proof. Suppose that Z(M) = M ∩F for every maximal subgroup M of D∗. If M
is a locally nilpotent maximal subgroup of D∗, then by [3, Th. 3.2], M ∪ {0} is
the maximal subfield of D that is a contradiction to the conclusion of Proposition
2.1 above. �

Note that in [2], it was proved that in the division ring of real quaternions
for every maximal subgroup M , we have Z(M) = M ∩ F . Hence, in view of
Proposition 2.1 and Corollary 2.2 above we have the following corollary.

Corollary 2.3. The division ring H of real quaternions contains no maximal

subgroups that are multiplicative groups of some division subrings of H. Also, H
contains no locally nilpotent maximal subgroups.

Note that the last assertion of this corollary could also follow from Theorem
2.2 above.

3. A division ring with finite center

Let D be a non-commutative division ring with finite center F . In this section,
we give some characterization of nilpotent maximal subgroups of D∗ that are
algebraic over F . Recall that a group G is said to be center-by-locally finite if
G/Z(G) is a locally finite group.
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Lemma 3.1. Let D be a non-commutative division ring with center F and sup-

pose that M is a locally nilpotent maximal subgroup of D∗ that is algebraic over

F . Then:

(i) either F ∗ ⊆ M and there exists a maximal subfield K of D such that

M = K∗ or,

(ii) M is center-by-locally finite.

Proof. Since M is maximal in D∗, either M = F (M)∗ or F (M) = D. If M =
F (M)∗, then F ∗ ⊆ M and by [3, Th. 2.2], K = F (M) is the maximal subfield of
D.

Now, suppose that F (M) = D. Since M is algebraic over F , we have D =
F (M) = F [M ]; so M is absolutely irreducible. By [5, Th. 5.7.11, p. 215], M is
center-by-locally finite. �

Now, we are ready to prove the following result for a division ring with finite
center.

Theorem 3.1. Let D be a non-commutative division ring with center F and

suppose that M is a nilpotent maximal subgroup of D∗ that is algebraic over F .

If F is finite, then M is the multiplicative group of some maximal subfield of D.

Proof. Suppose that F is finite. In view of Lemma 3.1, it suffices to show that
the case (ii) cannot occur. Thus, suppose that F (M) = D. Since M is maximal
in D∗, we can show that F ∗ ⊆ M . If not, we have F ∗M = D∗, so D′ = M ′ ⊆ M .
Then D∗ is solvable and by Hua’s Theorem (see, for example [4, p. 223]) it
follows that D is commutative, that is a contradiction. Therefore F ∗ ⊆ M , so
F ∗ = Z(M). By Lemma 3.1 (ii), M/F ∗ is locally finite. Consider arbitrary
elements x, y in M . Then, the subgroup 〈xF ∗, yF ∗〉 of M/F ∗ generated by xF ∗

and yF ∗ is finite. Suppose that g is the restriction of the natural homomorphism
M −→ M/F ∗ on the subgroup 〈x, y〉. Then, we have Kerg = 〈x, y〉 ∩ F ∗ and
Img = 〈xF ∗, yF ∗〉. Since F ∗ and 〈xF ∗, yF ∗〉 are both finite, it follows that 〈x, y〉
is finite. Therefore, 〈x, y〉 is cyclic and in particular, x, y commute with each
other. So, M is abelian and consequently, D = F (M) is commutative, that is a
contradiction. �
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