
ACTA MATHEMATICA VIETNAMICA 303
Volume 35, Number 2, 2010, pp. 303–317

ON THE GENERALIZED CONVOLUTION FOR THE FOURIER

SINE AND THE KONTOROVICH-LEBEDEV TRANSFORMS

TRINH TUAN, NGUYEN XUAN THAO, NGUYEN VAN MAU

Abstract. A generalized convolution for the Fourier sine transform and the
Kontorovich - Lebedev integral transform is introduced. Several properties
of this generalized convolution and its application to solve certain systems of
integral equations are considered.

1. Introduction

Convolutions and generalized convolutions for various integral transforms re-
ceived great attention from mathematicians in the last years. For recent surveys
and related works on the subject we refer the reader to [4 − 10, 12, 13]. In this
paper we introduce a generalized convolution for the Fourier sine transform and
the Kontorovich-Lebelev integral transform (see (3.1)). We study several prop-
erties of this new generalized convolution and apply them to solve some systems
of integral equations in closed form.

This paper is organized as follows. In Section 3 we introduce some function
spaces in which the introduced convolution (3.1) is meaningful, and then we
prove the factorization property for this convolution (3.2). Some relations of the
generalized convolution (3.1) with well-known ones are also proved. Algebraic
properties of this new convolution are demonstrated. For this purpose, in Section
2 we recall some well-known convolutions and their properties. In Section 4 we
apply the generalized convolution (3.1) to solve in closed form two systems of
integral equations, which seem to be difficult to solve by other techniques.

2. Well-known Convolutions

Let f, g ∈ L1(R), the convolution for the Fourier integral transform is defined
by (see [11])

(2.1) (f ∗
F
g)(x) =

1√
2π

+∞
∫

−∞

g(y)f(x− y)dy, x ∈ R.
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We have

(2.2) F (f ∗
F
g)(y) = (Ff)(y)(Fg)(y), ∀y ∈ R.

Here F is the Fourier transform (see [3, 11])

(Ff)(y) =
1√
2π

+∞
∫

−∞

f(x)e−ixydx, x ∈ R.

For f, g ∈ L1(R+), we define the generalized convolution for the Fourier sine and
cosine transforms by [11]

(2.3) (f ∗
1
g)(x) =

1√
2π

+∞
∫

0

f(u)
(

g(|x − u|) − g(x + u)
)

du, x > 0,

for which we have the factorization formula

(2.4) Fs(f ∗
1
g)(y) = (Fsf)(y)(Fcg)(y), ∀y > 0.

Here Fc, Fs respectively denote the Fourier cosine and the Fourier sine transforms
(see [3, 11])

(Fcf)(y) =

√

2

π

+∞
∫

0

f(x) cos(xy)dx, (Fsf)(y) =

√

2

π

+∞
∫

0

f(x) sin(xy)dx, y > 0.

We note that the generalized convolution for the Fourier sine and the Fourier
cosine transforms was introduced in 1951 by I.N. Sneddon [11]. Further, the
convolution of two functions f, g ∈ L1(R+) with a weight function η(y) = sin y
for the Fourier sine transform is defined by [4,6]

(

f
η∗
Fs

g
)

(x) =
1

2
√

2π

+∞
∫

0

f(x)
[

g(x+ t+ 1) + g(|x− t+ 1|) sign(x− t+ 1)(2.5)

+ g(|x + t− 1|) sign(x+ t− 1) + g(|x − t− 1|) sign(x− t− 1)
]

dt, x > 0,

for which we have

(2.6) Fs

(

f
η∗
Fs

g
)

(y) = η(y)(Fsy)(y)(Fsg)(y), ∀y > 0.

The convolution for the Kontorovich-Lebedev transform of f, g ∈ Lp(R+) was
studied in [4, 14, 15]

(2.7) (f ∗
K
g)(x) =

1

2x

+∞
∫

0

+∞
∫

0

exp
[

− 1

2

(xu

v
+
xv

u
+
uv

x

)]

f(u)g(v)dudv, x > 0,

for which the following factorization equality holds

(2.8) K(f ∗
K
g)(y) = (Kf)(y)(Kg)(y), ∀y > 0,
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here K is the modified Kontorovich-Lebedev transform [3, 15]

(2.9) (Kf)(y) =
2

π2

+∞
∫

0

Kiy(x)x
−1f(x)dx, y > 0,

with Kiy(x) being the Macdonald function (formula 1.98 [15], p. 14)

Kiy(x) =

+∞
∫

0

e−xcoshu cos yu du, y > 0, x > 0.

The generalized convolution for the Fourier cosine and the Fourier sine transforms
for f, g ∈ L1(R+) is introduced in [7]

(2.10) (f ∗
2
g)(x) =

1√
2π

+∞
∫

0

f(u)
[

sign(u− x)g(|u − x|) + g(u+ x)
]

du, x > 0,

which satisfies the factorization identity

(2.11) Fc(f ∗
2
g)(y) = (Fsf)(y)(Fsg)(y), ∀y > 0.

In [9] we introduce the following two generalized convolutions with the weight
function γ1(y) = y for the Kontorovich-Lebedev, Fourier sine and the Fourier

cosine transforms for f ∈ L1

(

R+,
1
x

)

and g ∈ L1

(

R+

)

(

f
γ1∗
3
g
)

(x) =
1

π2

+∞
∫

0

+∞
∫

0

[

sinh(x+ v)e−ucosh(x+v)+

+ sinh(x− v)e−ucosh(x−v)
]

f(u)g(v)dudv, x > 0,(2.12)

(

f
γ1∗
4
g
)

(x) =
1

π2

+∞
∫

0

+∞
∫

0

[

sinh(x+ v)e−ucosh(x+v)−

− sinh(x− v)e−ucosh(x−v)
]

f(u)g(v)dudv, x > 0,(2.13)

which respectively satisfy the factorization identities:

Fs(f
γ1∗
3
g)(y) = γ1(y)(Kf)(y)(Fcg)(y), ∀y > 0,(2.14)

Fc(f
γ1∗
4
g)(y) = γ1(y)(Kf)(y)(Fsg)(y), ∀y > 0.(2.15)

Here K denotes the Kontorovich-Lebedev transform (2.9).
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3. A new Generalized Convolution for the Fourier sine Transform

and the Kontorovich-Lebedev Transform

Denote by L1

(

R+,
1√
x3

)

and L1(R+) respectively the set of all functions f and

g defined on (0,+∞) such that

+∞
∫

0

1√
x3

|f(x)|dx < +∞ and

+∞
∫

0

|g(x)|dx < +∞.

Definition 1. The generalized convolution of two functions f and g for the

Fourier sine transform and the Kontorovich-Lebedev integral transform is defined

as follows

(3.1)

(f ∗ g)(x) =
1

π2

+∞
∫

0

+∞
∫

0

1

u

[

e−ucosh(x−v) − e−ucosh(x+v)
]

f(u)g(v)dudv, x > 0.

The following theorem gives a quite different result from [14] where in the
factorization equality only one integral transform is involved.

Theorem 3.1. Suppose that f ∈ L1

(

R+,
1√
x3

)

and g ∈ L1

(

R+

)

. Then the

generalized convolution (f∗g)(x) belongs to L1(R+) and satisfies the following

factorization property

(3.2) Fs(f∗g)(y) = (Kf)(y)(Fsg)(y), ∀y > 0.

Here, K denotes the Kontorovich - Lebedev transform (9).

Proof. Since coshx > 1, we have e−ucoshx 6 e−u, for any x ∈ R and any u > 0.
Hence

∣

∣

∣

+∞
∫

0

+∞
∫

0

1

u

[

e−ucosh(x−v) − e−ucosh(x+v)
]

f(u)g(v)dudv
∣

∣

∣

6

+∞
∫

0

+∞
∫

0

1

u
e−ucosh(x−v) |f(u)| |g(v)|dudv +

+∞
∫

0

+∞
∫

0

1

u
e−ucosh(x+v) |f(u)| |g(v)|dudv

6 2

+∞
∫

0

+∞
∫

0

1

u
e−u |f(u)| |g(v)|dudv.
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Furthermore, by hypothesis f(u) ∈ L1

(

R+,
1√
u3

)

, it follows that

f(u) ∈ L1

(

R+,
e−u

u

)

. Therefore,

∣

∣

∣

(

f ∗ g
)

(x)
∣

∣

∣
=

1

π2

∣

∣

∣

+∞
∫

0

+∞
∫

0

1

u

[

e−ucosh(x−v) − e−ucosh(x+v)
]

f(u)g(v)dudv
∣

∣

∣

6
2

π2

+∞
∫

0

+∞
∫

0

1

u
e−u |f(u)| |g(v)|dudv

=
2

π2

+∞
∫

0

e−u

u
|f(u)| du

+∞
∫

0

|g(v)| dv < +∞.(3.3)

This shows the existence of the generalized convolution (3.1).

Again, since cosh(x− v) >
(x− v)2

2
, we have e−ucosh(x−v) 6 e−u

(x−v)2

2 . Be-

sides,

+∞
∫

0

e−u
(x−v)2

2 dx =

√

2

u

+∞
∫

0

e−
(√

u

2
(x−v)

)2

d
(

√

u

2
((x− v)

)

=

√

2

u

+∞
∫

−v
√

u

2

e−s2
ds 6

√

2

u

+∞
∫

−∞

e−s2
ds =

√

2π

u
, ∀u, v > 0.

Hence, in view of the hypothesis f(u) ∈ L1

(

R+,
1√
u3

)

and g ∈ L1

(

R+

)

, we have

+∞
∫

0

+∞
∫

0

+∞
∫

0

e−ucosh(x−v) |f(u)|
u

|g(v)|dudvdx

6

+∞
∫

0

+∞
∫

0

√
2π√
u

|f(u)|
u

|g(v)|dudv =
√

2π

+∞
∫

0

|f(u)|√
u3

du

+∞
∫

0

|g(v)|dv < +∞.(3.4)

Similarly,

(3.5)

+∞
∫

0

+∞
∫

0

+∞
∫

0

e−ucosh(x+v) |f(u)|
u

|g(v)|dudvdx < +∞.



308 TRINH TUAN, NGUYEN XUAN THAO AND NGUYEN VAN MAU

It follows from (3.1), (3.4) and (3.5) that

+∞
∫

0

∣

∣(f∗g)(x)
∣

∣dx 6
1

π2

+∞
∫

0

+∞
∫

0

+∞
∫

0

1

u

[

e−ucosh(x−v)

+ e−ucosh(x+v)
]

|f(u)| |g(v)|dudvdx < +∞.(3.6)
Thus, (f ∗ g)(x) belongs to L1(R+).
Now we prove the factorization property (3.2). We have

(Kf)(y)(Fsg)(y) =

√

8

π5

+∞
∫

0

+∞
∫

0

1

u
sin(yv)Kiy(u)f(u)g(v)dudv, y > 0.

Using formula 1.98 in ([15], p. 14) we obtain

(Kf)(y)(Fsg)(y)

=

√

8

π5

+∞
∫

0

+∞
∫

0

1

u
sin(yv)f(u)g(v)

[

+∞
∫

0

cos(yα) e−ucoshαdα
]

dudv

=

√

8

π5

+∞
∫

0

+∞
∫

0

1

u
f(u)g(v)

{

+∞
∫

0

[

sin y(α+ v) − sin y(α− v)
]

e−ucoshαdα
}

dudv.

(3.7)

Since,
+∞
∫

0

sin y(α+ v) e−ucoshαdα =

+∞
∫

v

sin(yt) e−ucosh(t−v)dt,(3.8)

+∞
∫

0

sin y(α− v) e−ucoshαdα =

+∞
∫

−v

sin(yt) e−ucosh(t+v)dt,(3.9)

we have

+∞
∫

0

[

sin y(α+ v) − sin y(α− v)
]

e−ucoshαdα

(3.10)

=

+∞
∫

v

sin(yt) e−ucosh(t−v)dt−
0
∫

−v

sin(yt) e−ucosh(t+v)dt−
+∞
∫

0

sin(yt) e−ucosh(t+v)dt

(3.11)

=

+∞
∫

0

sin(yt)
[

e−ucosh(t−v) − e−ucosh(t+v)
]

dt.

(3.12)
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Using (3.7)-(3.12) we obtain

(Kf)(y)(Fsg)(y)

=
1

π2

√

2

π

+∞
∫

0

+∞
∫

0

1

u
f(u)g(v)

{

+∞
∫

0

sin(yt)
[

e−ucosh(t−v) − e−ucosh(t+v)
]

dt
}

dudv

=

√

2

π

+∞
∫

0

sin(yt)
{ 1

π2

+∞
∫

0

+∞
∫

0

1

u
f(u)g(v)

[

e−ucosh(t−v) − e−ucosh(t+v)
]

dudv
}

dt

= Fs(f ∗ g)(y).

Thus, the factorization equality (3.2) is proved. �

Proposition 3.1. For f(x) ∈ L1

(

R+,
1√
x3

)

and g ∈ L1

(

R+

)

, the generalized

convolution (16) can be represented in the form

(f∗g)(x) =

√
2

π
√
π

+∞
∫

0

1

u
f(u)

[

(sign vg(|v|) ∗
F
e−u.coshv)(x)

]

du, x > 0.

Here the convolution (· ∗
F
·) is defined by formula (2.1).

Proof. Since f(u) ∈ L1

(

R+,
1√
u3

)

, from (3.1) we have

(f∗g)(x) =
1

π2

+∞
∫

0

+∞
∫

0

1

u

[

e−u.cosh(x−v) − e−u.cosh(x+v)
]

f(u)g(|v|)dudv

=
1

π2

+∞
∫

0

1

u
f(u)

[

+∞
∫

0

e−u.cosh(x−v)g(|v|)dv +

−∞
∫

0

e−ucosh(x−t)g(| − t|)dt
]

du

=
1

π2

+∞
∫

0

1

u
f(u)

[

+∞
∫

0

e−u.cosh(x−v) sign vg(|v|)dv +

0
∫

−∞

e−u.cosh(x−v) sign vg(|v|)dv
]

du

=
1

π2

+∞
∫

0

1

u
f(u)

[

+∞
∫

−∞

e−u.cosh(x−v) sign vg(|v|)dv
]

du

=

√
2

π
√
π

+∞
∫

0

1

u
f(u)

[

sign vg(|v|) ∗
F
e−ucoshv

)

(x)
]

du.

The proof is complete. �
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Remark 3.2. Since sign v · g(|v|) is an odd function and e−ucoshv is an even

function in v, using Proposition 1 we get the following indentity

(f ∗ g)(x) =

√
2

π
√
π

+∞
∫

0

1

u
f(u)

[(

g(v) ∗
1
e−ucoshv

)

(x)
]

du, x > 0,

where the convolution (· ∗
1
·) is given by (2.3).

Proposition 3.2. For f, g ∈ L1

(

R+,
1 +

√
x3

√
x3

)

, the generalized convolution

(3.1) is not commutative. Moreover,

(f ∗ g)(x) = (g ∗ f)(x) +

+∞
∫

0

1

u

(

∣

∣

∣

∣

f(u) f(v)
g(u) g(v)

∣

∣

∣

∣

∗
1
e−ucoshv

)

(x)du.

Proof. From the hypothesis, it is clear that f, g ∈ L1

(

R+,
1√
x3

)

and f, g ∈
L1(R+). Using the above remark we obtain

(f∗g)(x) − (g∗f)(x) =

=

√
2

π
√
π

[

+∞
∫

0

1

u
f(u)

[(

g(v) ∗
1
e−ucoshv

)

(x)
]

du−
+∞
∫

0

1

u
g(u)

[(

f(v) ∗
1
e−ucoshv

)

(x)
]

du

=

√
2

π
√
π

+∞
∫

0

1

u

[

f(u)
(

g(v) ∗
1
e−ucoshv

)

(x) − g(u)
(

f(v) ∗
1
e−ucoshv

)

(x)
]

du

=

√
2

π
√
π

+∞
∫

0

1

u

[(

f(u)g(v) ∗
1
e−ucoshv

)

(x) −
(

g(u)f(v) ∗
1
e−ucoshv

)

(x)
]

du

=

√
2

π
√
π

+∞
∫

0

1

u

((

f(u)g(v) − g(u)f(v)
)

∗
1
e−ucoshv

)

(x)dx

=

√
2

π
√
π

+∞
∫

0

1

u

(

∣

∣

∣

∣

f(u) f(v)
g(u) g(v)

∣

∣

∣

∣

∗
1
e−ucoshv

)

(x)du.

The proposition is proved. �

Proposition 3.3. The generalized convolution (3.1) is not associative and sat-

isfies the following equalities

(a) f∗(g η∗
Fs

h) = (f∗g) η∗
Fs

h, where f ∈ L1

(

R+,
1√
x3

)

, g, h ∈ L1(R+),

(b) g
η∗
Fs

(f∗h) = (f∗g) η∗
Fs

h, where f ∈ L1

(

R+,
1√
x3

)

, g, h ∈ L1(R+),



GENERALIZED CONVOLUTION FOR THE Fs AND THE K − L TRANSFORMS 311

(c) (f∗g) ∗
1
h = f∗(g ∗

1
h), where f ∈ L1

(

R+,
1√
x3

)

, g, h ∈ L1(R+),

(d) f∗(g∗h) = g∗(f ∗ h), where f, g ∈ L1

(

R+,
1√
x3

)

, h ∈ L1(R+),

(e) f∗
(

g
η∗
Fs

(h
γ1∗
3
k)
)

= (f ∗ g) η∗
Fs

(h
γ1∗
3
k), where f ∈ L1

(

R+,
1√
x3

)

,

h ∈ L1

(

R+,
1

x

)

, g, k ∈ L1(R+),

(g) f∗
(

g∗
1
(h∗

2
k)
)

= (f ∗ g)∗
1
(h ∗

2
k), where f ∈ L1

(

R+,
1√
x3

)

,

g, h, k ∈ L1(R+) and the convolutions (· η∗
Fs

·), (· ∗
1
·), (· ∗

2
·), (· γ1∗

3
·) are respec-

tively defined by (2.5), (2.3), (2.10) and (2.12).

Proof. a) From the factorization property

Fs(f ∗ g)(y) = (Kf)(y)(Fsg)(y), ∀y > 0,

we have

Fs

(

f∗(g η∗
Fs

h)
)

(y) = (Kf)(y)Fs(g
η∗
Fs

h)(y)

= (Kf)(y)η(y)(Fsg)(y)(Fsh)(y)

=
(

(Kf)(y)(Fsg)(y)
)

η(y)(Fsh)(y)

= Fs(f ∗ g)(y)η(y)(Fsh)(y)

= Fs

((

f ∗ g)
) η∗

Fs

h
)

(y), ∀y > 0.

This shows that

f ∗
(

g
η∗
Fs

h
)

= (f ∗ g) η∗
Fs

h.

The proofs of equalities (b), (c) and (d) are similar to that of (a).
e) From the factorization properties of the convolutions (3.2), (2.6) and (2.14)

for y > 0 we have

Fs

(

f ∗
(

g
η∗
Fs

(h
γ1∗
3
k)
))

(y) = (Kf)(y)Fs

(

g
η∗
Fs

(

h
γ1∗
3
k
))

(y)

= η(y)(Kf)(y)(Fsg)(y)Fs(h
γ1∗
3
k)(y)

= η(y)Fs(f ∗ g)(y)Fs(h
γ1∗
3
k)(y)

= Fs

(

(f ∗ g) η∗
Fs

(h
γ1∗
3
)
)

(y).

Thus,

f ∗
(

g
η∗
Fs

(h
γ1∗
3
k)
)

= (f ∗ g) η∗
Fs

(h
γ1∗
3
k).

One can easily obtain part (e) in a similar way. �

Proposition 3.4. There does not exist the unit element for the generalized con-

volution (3.1).
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Proof. We prove that there does not exist the left unit element for the generalized

convolution (16). Suppose that there exists e ∈ L1

(

R+,
1√
x3

)

such that

(e ∗ f)(x) = f(x), ∀f ∈ L1(R+).

From Theorem 3.1, we have

(Fsf)(y) = Fs(e ∗ f)(y) = (Ke)(y)(Fsf)(y), ∀y > 0.

Therefore

(Fsf)(y)
[

1 − (Ke)(y)
]

= 0.

This shows that

(Ke)(y) = 1.

Hence

(3.13) e(y) = K−1(1), ∀y > 0.

Here K−1 denotes the inverse Kontorovich-Lebedev transform. From formula
9.7.4 in ([1], p. 199) the right hand side of (3.13) does not converge. Hence the
equality (3.13) does not hold. This contradiction means the unit element of the
generalized convolution (3.1) does not exist. The theorem is proved. �

4. Application to Solving Systems of Integral Equations

Not many systems of integral equations of the second kind can be solved in
closed form. The generalized convolution (3.1) introduced in this paper allows us
to get the solutions in closed form for two systems of integral equations.

a) Consider the system of integral equations

f(x) + λ1

+∞
∫

0

θ1(x, u)g(u)du = h(x), x > 0,

λ2

+∞
∫

0

θ2(x, t)f(t)dt + g(x) = k(x), x > 0.(4.1)

Here

θ1(x, u) =
1

4π

+∞
∫

0

1

u

[

e−ucosh(x−v) − e−ucosh(x+v)
]

ϕ(v)dv;

and

θ2(x, t) =
1

2π

+∞
∫

0

ψ(u)
[

sign(|x− t| − u) ξ
(
∣

∣|x− t| − u
∣

∣

)

+ ξ(|x− t| + u)

− sign(x+ t− u) ξ
(

|x+ t− u|
)

− ξ(x+ t+ u)
]

du;

ϕ ∈ L1

(

R+,
1√
x3

)

, k, ψ, h, ξ ∈ L1(R+) are given; λ1, λ2 are complex constants;

and f, g are unknown functions.
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Theorem 4.1. With the condition

(4.2) 1 − λ1λ2Fc

(

(ϕ ∗ ψ) ∗
2
ξ
)

(y) 6= 0, ∀y > 0,

the system (3.13) has a unique solution in L1(R+) which is represented by

f(x) =h(x) − λ1(ϕ ∗ k)(x) + (h ∗
1
q)(x) − λ1

(

(ϕ∗k) ∗
1
q
)

(x),(4.3)

g(x) =k(x) − λ2

(

ψ ∗
1
(ξ ∗

2
h)
)

(x) + (k ∗
1
q)(x) − λ2

(

(ψ
1∗ (ξ ∗

2
h)) ∗

1
q
)

(x).(4.4)

Here, q ∈ L1(R+) is defined by

(Fcq)(y) =
λ1λ2Fc

(

(ϕ∗ψ) ∗
2
ξ
)

(y)

1 − λ1λ2Fc

(

(ϕ∗ψ) ∗
2
ξ
)

(y)
, ∀y > 0,

and the convolutions (· ∗
1
·), (· ∗

2
·), (· ∗ ·) are defined respectively by (2.3), (2.10),

(3.1).

Proof. System (4.1) can be rewritten in the form

f(x) + λ1(ϕ ∗ g)(x) = h(x),

λ2

(

f ∗
1
(ψ ∗

2
ξ)
)

(x) + g(x) = k(x), x > 0.

Using the factorization properties (2.4), (2.11), (3.2) we have

(Fsf)(y) + λ1(Kϕ)(y)(Fsg)(y) = (Fsh)(y),

λ2(Fsf)(y)(Fsψ)(y)(Fsξ)(y) + (Fsg)(y) = (Fsk)(y).

To solve for (Fsf)(y) and (Fs(g)(y) from this system we note that

∆ =

∣

∣

∣

∣

1 λ1(Kϕ)(y)
λ2(Fsψ)(y)(Fsξ)(y) 1

∣

∣

∣

∣

= 1 − λ1λ2Fs(ϕ∗ψ)(y)(Fsξ)(y) = 1 − λ1λ2Fc

(

(ϕ ∗ ψ) ∗
2
ξ
)

(y) 6= 0, ∀y > 0,

then

1

∆
= 1 +

λ1λ2Fc

(

(ϕ ∗ ψ) ∗
2
ξ
)

(y)

1 − λ1λ2Fc

(

(ϕ ∗ ψ) ∗
2
ξ
)

(y)
.

In virtue of Wiener-Lévy’s theorem [2], from condition (28) there is a function
q(x) ∈ L1(R+) such that

λ1λ2Fc

(

(ϕ ∗ ψ) ∗
2
ξ
)

(y)

1 − λ1λ2Fc

(

(ϕ ∗ ψ) ∗
2
ξ
)

(y)
= (Fcq)(y).

Thus,
1

∆
= 1 + (Fcq)(y),

and

∆1 =

∣

∣

∣

∣

(Fsh)(y) λ1(Kϕ)(y)
(Fsk)(y) 1

∣

∣

∣

∣

= (Fsh)(y) − λ1Fs(ϕ∗k)(y).
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Therefore

(Fsf)(y) =
1

∆
∆1 =

[

1 + (Fcq)(y)
][

(Fsh)(y) − λ1Fs(ϕ ∗ k)(y)
]

= (Fsh)(y) − λ1Fs(ϕ ∗ k)(y) + (Fcq)(y)(Fsh)(y)

− λ1(Fcq)(y)Fs(ϕ ∗ k)(y), ∀y > 0.

It follows that

(Fsf)(y) = (Fsh)(y)−λ1Fs(ϕ∗k)(y)+Fs(h∗
1
q)(y)−λ1Fs

(

(ϕ∗k)∗
1
q
)

(y), ∀y > 0.

Hence

f(x) = h(x) − λ1(ϕ ∗ k)(x) + (h ∗
1
q)(x) − λ1

(

(ϕ ∗ k) ∗
1
q
)

(x) ∈ L1(R+).

Similarly,

∆2 =

∣

∣

∣

∣

1 (Fsh)(y)
λ2(Fsψ)(y)(Fsξ)(y) (Fsk)(y)

∣

∣

∣

∣

= (Fsk)(y) − λ2(Fsψ)(y)Fc(ξ ∗
2
h)(y)

= (Fsk)(y) − λ2Fs

(

ψ ∗
1
(ξ ∗

2
h)
)

(y).

Therefore

(Fsg)(y) =
1

∆
∆2 =

[

1 + (Fcq)(y)
][

(Fsk)(y) − λ2Fs

(

ψ ∗
1

(ξ ∗
2
h)
)

(y)
]

= (Fsk)(y) − λ2Fs

(

ψ ∗
1

(ξ ∗
2
h)
)

(y) + (Fcq)(y)(Fsk)(y) − λ2(Fcq)(y)Fs(ψ ∗
1

(ξ ∗
2
h)
)

(y)

= (Fsk)(y) − λ2Fs

(

ψ ∗
1

(ξ ∗
2
h)
)

(y) + Fs(k ∗
1
q)(y) − λ2Fs

(

((ψ ∗
1
(ξ ∗

2
h)) ∗

1
q
)

(y), ∀y > 0.

Hence

g(x) = k(x) − λ2

(

ψ ∗
1
(ξ ∗

2
h)
)

(x) + (k ∗
1
q)(x) − λ2

(

(ψ ∗
1
(ξ ∗

2
h)
)

∗
1
q
)

(x) ∈ L1(R+).

One can easily verify that f and g given by (4.3), (4.4) satisfy the system (4.1).
The proof is complete. �

b) Consider the system of integral equations

f(x) + λ1

+∞
∫

0

θ1(x, u)g(u)du = k(x), x > 0,

λ3

+∞
∫

0

θ3(x, v)f(v)dv + g(x) = k(x), x > 0.(4.5)

Here

θ1(x, u) =
1

4π

+∞
∫

0

1

u

[

e−ucosh(x−v) − e−ucosh(x+v)
]

ϕ(v)dv;
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and

θ3(x, v) =
1

π2
√

2π

+∞
∫

0

+∞
∫

0

ψ(u)
{[

sinh(x+ t)e−ucosh(x+t) + sinh(x− t)e−ucosh(x−t)
]

×
[

sign(v − t)ξ(|v − t|) + ξ(v + t)
]}

dudt, x > 0;

ϕ ∈ L1

(

R+,
1√
x3

)

, ψ ∈ L1

(

R+,
1

x

)

, h, k, ξ ∈ L1(R+) are given; λ1, λ2 are

complex constants; and f, g are unknown functions.

Theorem 4.2. With the condition

(4.6) 1 − λ1λ2Fc

(

ψ
γ1∗
4

(ϕ ∗ ξ)
)

(y) 6= 0, ∀y > 0,

the system (4.5) has the unique solution in L1(R+):

f(x) = h(x) − λ1(ϕ ∗ k)(x) + (h ∗
1
l)(x) − λ1

((

ϕ ∗ k
)

∗
1
l
)

(x),(4.7)

g(x) = k(x) − λ2

(

ψ
γ1∗
3

(h ∗
2
ξ)
)

(x) + (k ∗
1
l)(x) − λ2

((

ψ
γ1∗
3

(

h ∗
2
ξ) ∗

1
l
)

(x).(4.8)

Here, l ∈ L1(R+) is defined by

λ1λ2Fc

(

ψ
γ1∗
4

(

ϕ ∗ ξ
))

(y)

1 − λ1λ2Fc

(

ψ
γ1∗
4

(

ϕ ∗ ξ
))

(y)
= (Fcl)(y),

where the convolutions (·∗ ·), (·∗
1
·), (·γ1∗

3
·), (·γ1∗

4
·) and (·∗

2
·) are defined respectively

by (3.1), (2.3), (2.13) and (2.11).

Proof. System (4.5) can be rewritten in the following form

f(x) + λ1(ϕ ∗ g)(x) = h(x),

λ2

(

ψ
γ1∗
3

(f ∗
2
ξ)
)

(x) + g(x) = k(x), x > 0.

Using the factorization properties (3.2), (2.14), (2.11) and (2.15) we get

(Fsf)(y) + λ1(Kϕ)(y)(Fsg)(y) = (Fsh)(y),

λ2γ1(y)(Kψ)(y)Fc(f ∗
2
ξ)(y) + (Fsg)(y) = (Fsk)(y), ∀y > 0.(4.9)

To solve for (Fsf)(y) and (Fsg)(y) from this system we note that

∆ =

∣

∣

∣

∣

1 λ1(Kϕ)(y)
λ2γ1(y)(K

−1ψ)(y)(Fsξ)(y) 1

∣

∣

∣

∣

=λ1λ2γ1(y)(Kψ)(y)Fs(ϕ ∗ ξ)(y)

=1 − λ1λ2Fc

(

ψ
γ1∗
4

(

ϕ ∗ ξ
))

(y) 6= 0, ∀y > 0,

1

∆
= 1 +

λ1λ2Fc

(

ψ
γ1∗
4

(

ϕ ∗ ξ
))

(y)

1 − λ1λ2Fc

(

ψ
γ1∗
4

(

ϕ ∗ ξ
))

(y)
.
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In virtue of Wiener-Lévy’s theorem [2], from condition (4.6) there is a unique
function l(x) ∈ L1(R+) such that

λ1λ2Fc

(

ψ
γ1∗
4

(

ϕ ∗ ξ
))

(y)

1 − λ1λ2Fc

(

ψ
γ1∗
4

(

ϕ ∗ ξ
))

(y)
= (Fcl)(y).

Thus,
1

∆
= 1 + (Fcl)(y).

Solving the linear system (4.9) we obtain

(Fsf)(y) =
[

1 + (Fcl)(y)
][

(Fsh)(y) − λ1Fs(ϕ ∗ k)(y)
]

= (Fsh)(y) − λ1Fs(ϕ ∗ k)(y) + (Fcl)(Fsh)(y) − λ1(Fcl)(y)Fs(ϕ ∗ k)(y)
= (Fsh)(y) − λ1Fs(ϕ ∗ k)(y) + Fs(h ∗

1
l)(y) − λ1Fs

(

(ϕ ∗ k) ∗
1
l
)

(y), ∀y > 0,

and

(Fsg)(y) =
[

1 + (Fcl)(y)
][

(Fsk)(y) − λ2Fs

(

ψ
γ1∗
3

(h ∗
2
ξ)
)

(y)
]

= (Fsk)(y) − λ2Fs

(

ψ
γ1∗
3

(h ∗
2
ξ)
)

(y) + (Fcl)(Fsk)(y)

− λ2(Fcl)(y)Fs

(

ψ
γ1∗
3

(h ∗
2
ξ)
)

(y)

= (Fsk)(y) − λ2Fs

(

ψ
γ1∗
3

(h ∗
2
ξ)
)

(y) + Fs(h ∗
1
l)(y)

− λ2Fs

((

ψ
γ1∗
3

(h ∗
2
ξ)
)

∗
1
l
)

(y), ∀y > 0.

Hence

f(x) =h(x) − λ(ϕ ∗ k)(x) + (h ∗
1
l)(x) − λ1

(

(ϕ ∗ k) ∗
1
l
)

(x) ∈ L1(R+),

g(x) =k(x) − λ2

(

ψ
γ1∗
3

(h ∗
2
ξ)
)

(x) + (k ∗
1
l)(x) − λ2

((

ψ
γ1∗
3

(h ∗
2
ξ)
)

∗
1
l
)

(x) ∈ L(R+).

One can easily verify that f and g given by (4.7), (4.8) satisfy the system (4.5).
The theorem is proved. �

Acknowledgments

The authors would like to express their deep thank to Prof. Dr. Vu Kim Tuan
for his valuable suggestions.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas,

Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics Se-
ries 55, 1964.

[2] N. I. Achiezer, Lectures on Approximation Theory. Science Publishing House, Moscow,
1965.

[3] H. Bateman and A. Erdelyi, Tables of Integral Transforms, V. 2. Mc Graw - Hill, New
York, 1954.



GENERALIZED CONVOLUTION FOR THE Fs AND THE K − L TRANSFORMS 317

[4] V.A. Kakichev, On the convolution for integral transforms (Russian). Izv. AN BSSR, Ser.

Fiz. Mat. 1967, N.2, 48-57.
[5] V.A. Kakichev and Nguyen Xuan Thao, On the design method for the generalized integral

convolution, Izv. Vuzov. Mat, 1998, N.1, 31- 40 (in Russian).
[6] Nguyen Xuan Thao and Nguyen Thanh Hai, Convolution for Integral Transform and their

Application, Russian Academy Moscow, 1997.
[7] V.A. Kakichev, Nguyen Xuan Thao, and Vu Kim Tuan, On the generalized convolution

for Fourier Cosine and Sine transforms, East- West J. Math. 1998, V. 1, 85-90.
[8] Nguyen Xuan Thao and Trinh Tuan, On the generalized convolution for I-transform, Acta

Math. Vietnam. 28 (2003), 135-145.
[9] Nguyen Xuan Thao and Trinh Tuan, On the generalized convolutions of the integral

Kontorovich-Lebedev, Fourier Sine and Cosine transforms, Annales Univ. Sci. Budapest,

Sect. Comp. 25 (2005), 37-51.
[10] Trinh Tuan, On the generalized convolution with a weight function for the Fourier Cosine

and the inverse Kontorovich-Lebedev integral transformations, Nonlinear Func. Anal. Appl.

12 (2) (2007), 325-341.
[11] I. N. Sneddon, Fourier Transform. McGray Hill, New York, 1951.
[12] H. M. Srivastava and Vu Kim Tuan, A new convolution theorem for the Stieltjes transform

and its application to a class of singular integral equations, Arch. Math. 64 (1995), 144-149.
[13] Vu Kim Tuan and M. Saigo, Convolution of Hankel transform and its applications to an

integral involving Bessel function of first kind, J. Math. and Math. Sci. 18 (2), 545-550.
[14] S. B. Yakubovich, On the convolution for Kotorovich-Lebedev integral transform and its

application to integral transform, DAN BSSR 31 (1987), 101-103 (in Russian).
[15] S. B. Yakubovich, Index Transforms. World Scientific Publishing Company, Singapore, New

Jersey, London and Hong Kong, 1996.

Department of Mathematics, Electric Power University

235 Hoang Quoc Viet, Hanoi, Vietnam

E-mail address: tuantrinhpsac@yahoo.com

Faculty of Applied Mathematics and Informatics

Hanoi University of Technology

1 Dai Co Viet, Hanoi, Vietnam

E-mail address: thaonxbmai@yahoo.com

Department of Mathematics, Vietnam National University

334 Nguyen Trai, Hanoi, Vietnam

E-mail address: maunv@vnu.edu.vn


