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AN EXTENSION OF MICHAEL’S SELECTION THEOREM

LIANG-JU CHU AND CHIEN-HAO HUANG

Abstract. In this paper, we extend earlier Michael’s selection theorem in
the general nonconvex setting. Indeed, we deal with the case of almost lower
semicontinuous multifunctions T on a zero-dimensional paracompact topolog-
ical space X. Based on a kind of equicontinuous property, we prove that any
a.l.s.c. ECP multifunction from X into a complete metric space Y still has a
continuous selection.

1. Introduction and preliminaries

A paracompact space is a topological space in which every open covering admits
an open locally finite refinement. A topological space X is said to be zero-
dimensional, denoted by dimX = 0, if every finite open covering of X has a
disjoint finite open refinement. The following Michael’s selection theorem [10,
Theorem 2] might be considered as a starting point of the present paper:

Theorem 1.1. If X is paracompact and zero-dimensional, Y a complete metric
space, and T : X −→ 2Y is a l.s.c. multifunction such that T (x) is closed for
all x ∈ X, then T admits a continuous selection f : X −→ Y ; that is, f is a
continuous single-valued function such that f(x) ∈ T (x) for all x ∈ X.

Continuous selection plays an important role in optimization theory, especially
in the proof of existence of fixed points for a multifunction, see for example [1, 5,
6, 9, 12, 13]. In this paper, we shall extend the above Michael’s selection theorem
to almost lower semicontinuous multifunctions, which are weaker than usual lower
semicontinuity. Beyond the convexity and compactness, the results derived here
generalize various earlier ones from classic continuous selection theory, as will be
indicated below.

For any set Y , let 2Y denote the collection of all nonempty subsets of Y . When
Y is a metric space with a metric d, we may define the ε−neighborhood of a subset
A of Y by

Bε(A) := {y ∈ Y | d(y,A) < ε},
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where d(y,A) := inf{d(x, y) | x ∈ A}. The closure and interior of A shall be
denoted by A and intA, respectively.

A multifunction T from X to Y is simply a function which assigns each point
x of X to a (possibly empty) subset T (x) of Y . We shall say that T is lower
semicontinuous (l.s.c.) at x, provided for any open set G, with G ∩ T (x) 6= ∅,
there is a neighborhood Vx of x such that G∩ T (z) 6= ∅ for all z ∈ Vx. T is lower
semicontinuous, if T is l.s.c. at each x ∈ X. Unfortunately, lower semicontinuity
is not necessarily often absent in many optimization problems. This has forced
many researchers to employ some weaker continuity, such as [2, 5, 7, 11, 12]. A
multifunction T : X −→ 2Y is almost lower semicontinuous (a.l.s.c.) at x, if for
any ε > 0, there exists a neighborhood Vx of x such that

⋂

z∈Vx

Bε(T (z)) 6= ∅.

T is almost lower semicontinuous, if it is a.l.s.c. at each x. It should be noted
that an a.l.s.c. multifunction does not have a continuous selection in general; for

example, let T : R −→ 2R2

be defined by

T (x) :=







{(t, xt) | 0 ≤ t ≤ 1} , if x is irrational;
{(t, 0) | 0 ≤ t ≤ 1} , if x is rational and x 6= 0;
{(1, 0)} , if x = 0 .

Then such a multifunction T is a.l.s.c., but T has no continuous selection (see
[11]).

Given a multifunction T : X −→ 2Y , we call a single-valued function f : X −→
Y to be an ε−approximate selection for T , provided that f(x) ∈ Bε(T (x)) for all
x ∈ X. For each ε > 0, we define

Cε(T ) := {f : X −→ Y | f is continuous, and f(x) ∈ Bε(T (x)), ∀ x ∈ X}.

Under this notion, we shall say that T : X −→ 2Y is an ECP multifunction,
if it has the equicontinuous property : for any x ∈ X and ε > 0, there exist
σ := σ(ε) > 0, and a neighborhood Nx of x, such that

(1) d(f(z), f(x)) < σ
2
, ∀ f ∈ Cσ

2

(T ), ∀ z ∈ Nx;

(2) d(y1, y2) < ε, ∀ y1, y2 ∈
⋂

z∈Nx
Bσ(T (z)).

Recently, we proved the following selection theorem [4, Theorem 3.6] for an
a.l.s.c. C-set-valued multifunction:

Theorem 1.2. Let X be paracompact, Y a complete LC-metric space, Z a closed
subset of X, with dimX Z ≤ 0, and T : X −→ 2Y be a multifunction. If there is
an a.l.s.c. ECP multifunction S : X −→ 2Y satisfying

(1) S(x) is a C-set for all x ∈ X \ Z, closed for all x ∈ X, and S(x) ⊂
T (x), ∀ x ∈ X,

(2) for each x ∈ X, Bη(T (x)) is compact for some η > 0,
(3) S has the one-point extension property,

then T admits a continuous selection.
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As a special case where Z = X, we have the following result at once.

Corollary 1.3. Let X be paracompact, with dim X = 0, Y a complete LC-
metric space, and T : X −→ 2Y be a multifunction. If there is an a.l.s.c. ECP
multifunction S : X −→ 2Y satisfying

(1) each S(x) is closed and S(x) ⊂ T (x), ∀ x ∈ X,
(2) for each x ∈ X, Bη(T (x)) is compact for some η > 0,
(3) S has the one-point extension property,

then T admits a continuous selection.

Here, we say that a multifunction S : X −→ 2Y has the one-point extension
property, provided that for each l.s.c. multifunction L : X −→ 2Y with L(z) ⊂
S(z), ∀ z ∈ X, and for each (x, a) ∈ G(S) \ G(L) (i.e., the point (x, a) lies
on the graph of S, but not on the graph of L), there is a l.s.c. multifunction
L∗ : X −→ 2Y such that (x, a) ∈ G(L∗) and

L(z) ⊂ L∗(z) ⊂ S(z), ∀ z ∈ X.

In the sequel, we shall show that the so-called “one-point extension property” in
Corollary 1.3 is redundant. In order to develop our main result, let us begin with
listing some basic known lemmas, which will be used in the next section.

Lemma 1.4. Let X be a topological space, and (Y, d) be a metric space. Then
a multifunction T : X −→ 2Y is l.s.c. at x ∈ X if, and only if, for each ε > 0
and y ∈ T (x), there exists a neighborhood Vx of x such that y ∈ Bε(T (z)) for all
z ∈ Vx.

Lemma 1.5. Let (Y, d) be a metric space, A ⊂ Y , and α > 0, β > 0. Then

(1) Bα(Bβ(A)) ⊂ Bα+β(A);

(2) Bα(Bβ(A)) ⊂ Bα+β(A).

Lemma 1.6. Let S : X −→ 2Y and Si : X −→ 2Y be l.s.c. for each i ∈ I.

(1) S is l.s.c.. (Here, S(x) := S(x), ∀ x ∈ X.)
(2) The multifunction T : X −→ 2Y , defined by T (x) :=

⋃

i∈I Si(x), ∀ x ∈ X,
is l.s.c..

(3) If α : A −→ Y is a continuous selection of S on a nonempty closed
subset A of X, that is, α(x) ∈ S(x) for all x ∈ A, then the following
multifunction T : X −→ 2Y is l.s.c., where

T (x) :=

{

S(x) , if x ∈ X \ A,
{α(x)} , if x ∈ A.

2. Main Selection Theorem

In order to develop our main existence results, we assume throughout this
section that X is paracompact, with dim X = 0, and Y is a metric space. First, we
establish a key existence of an ε−approximate selection for a.l.s.c. multifunctions.
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Theorem 2.1. If T : X −→ 2Y is an a.l.s.c. multifunction, then for any ε > 0,
T has a continuous ε−approximate selection.

Proof. The proof goes along the line of [10, Theorem 2] with some changes per-
taining to the present contex. For a fixed ε > 0, we define Uy := {x ∈ X | y ∈
Bε(T (x))} for each y ∈ Y . Since T is a.l.s.c. at each x ∈ X, there is a neighbor-
hood Wx of x such that

⋂

z∈Wx
Bε(T (z)) 6= ∅, say yx ∈ Bε(T (z)) for all z ∈ Wx.

That is,

x ∈ Wx ⊂ {z ∈ X | yx ∈ Bε(T (z))}.

Consequently, we have x ∈ intUy for some y ∈ Y , and hence {intUy | y ∈ Y } is
an open cover of X. Since X is paracompact and zero-dimensional, there exists a
locally finite disjoint open cover V of X, which is a refinement of {intUy | y ∈ Y }.
Thus, for each V ∈ V, we can pick one yV ∈ Y such that V ⊂ intUyV , and define

a single-valued function f : X −→ Y by f(x) = yV for all x ∈ V . Then f is
clearly continuous, as shown in [10].

Now, we verify that f(x) ∈ Bε(T (x)) for all x ∈ X. For each x ∈ X, there
exists a unique V ∈ V such that x ∈ V . It follows that x ∈ intUyV ⊂ UyV , and
hence,

f(x) = yV ∈ Bε(T (x)).

This shows that f is a continuous ε−approximate selection of T . �

According to Theorem 2.1, we remark that for each ε > 0 and for any a.l.s.c.
multifunction T : X −→ 2Y , the set

Cε(T ) := {f : X −→ Y | f is continuous, and f(x) ∈ Bε(T (x)), ∀ x ∈ X}

is not empty.

Proposition 2.2. For each ε > 0, the multifunction Tε : X −→ 2Y , defined by

Tε(x) := {f(x) | f ∈ Cε(T )}, ∀ x ∈ X,

is l.s.c.. In particular, Tε(x) 6= ∅ for all x ∈ X.

Proof. Since Cε(T ) 6= ∅ for all ε > 0, it follows that Tε(x) 6= ∅ for all x ∈ X. For
any open set G, with G ∩ Tε(x) 6= ∅, there exists f ∈ Cε(T ) such that f(x) ∈ G,
which implies x ∈ f−1(G). Since f is continuous, f−1(G) is open, and hence,
there is a neighborhood Nx of x such that x ∈ Nx ⊂ f−1(G). Thus, for any
z ∈ Nx, we have f(z) ∈ G. Consequently,

Tε(z)
⋂

G 6= ∅, ∀ z ∈ Nx.

This shows that Tε is l.s.c. at x. Therefore, we complete the proof. �

We remark that both sets Cε(T ) and Tε(x) are not empty, whenever T is an
a.l.s.c. multifunction. Also, by the definitions of Cε(T ) and Tε, we have

(1) if ε1 ≤ ε2, then Cε1(T ) ⊂ Cε2(T ), and Tε1(x) ⊂ Tε2(x), ∀ x ∈ X;
(2) Tε(x) ⊂ Bε(T (x)), ∀ x ∈ X.
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Proposition 2.3. Let Y be a complete metric space. If for each x ∈ X, there
exists some η := η(x) > 0 such that Bη(T (x)) is compact, then for any x ∈ X
and ε > 0, there is δ := δ(x, ε) > 0 such that Tδ(x) ⊂ B ε

2

(T0(x)), where

T0(x) :=
⋂

ε>0

Tε(x), ∀ x ∈ X.

Moreover, T0(x) 6= ∅, ∀ x ∈ X.

Proof. For contradiction, we assume that there exist some x0 ∈ X and ε0 > 0
such that for any δ > 0, we always have

Tδ(x0) 6⊂ B ε0

2

(T0(x0)).

For this x0, there exists η > 0 such that Bη(T (x0)) is compact. Now, we take a
sequence {δn}∞n=1 with δ1 = η and δn ↓ 0 as n → ∞ such that

Tδn
(x0) 6⊂ B ε0

2

(T0(x0)),

i.e., for each n there exists yn such that

yn ∈ Tδn
(x0), but yn /∈ B ε0

2

(T0(x0)).

Since δn ↓ 0, we have {yn}
∞

n=1 ⊂ Tη(x0). By the compactness of Bη(T (x0)), there

exists a subsequence of {yn} which converges to some y0 ∈ Bη(T (x0)). Without
loss of generality, we may assume that yn → y0. Thus, for any ε > 0, we have
δn < ε

2
and d(yn, y0) < ε

2
for all sufficiently large n. Since yn ∈ Tδn

(x0), taking
fn ∈ Cδn

(T ) such that fn(x0) = yn, we have

fn(x) ∈ Bδn
(T (x)) ⊂ B ε

2

(T (x)), ∀ x ∈ X.

Now, we define a multifunction F : X −→ 2Y by

F (x) =

{

B ε

2

(fn(x)) , if x 6= x0,

{y0} , if x = x0.

Therefore, for each sufficiently large n, it is easy to check that F is l.s.c., and each
F (x) is a closed set. According to Theorem 1.1, F admits a continuous selection
gn. By Lemma 1.5, the above information yields

gn(x) ∈ F (x) ⊂ B ε

2

(fn(x)) ⊂ B ε

2

(B ε

2

(T (x))) ⊂ Bε(T (x)), ∀ x ∈ X,

i.e., gn ∈ Cε(T ), and hence,

y0 = gn(x0) ∈ Tε(x0), ∀ ε > 0.

It follows that y0 ∈ T0(x0). But for all sufficiently large n, yn ∈ (B ε0

2

(T0(x0)))
C

implies y0 ∈ (B ε0

2

(T0(x0)))
C , which contradicts with y0 ∈ T0(x0). Moreover, if

T0(x) = ∅ for some x ∈ X, then Tδ(x) ⊂ B ε

2

(T0(x)) = ∅. This leads a contra-

diction, by Proposition 2.2. Thus, T0(x) 6= ∅ for all x ∈ X. Hence, the proof is
complete. �
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Proposition 2.4. Let Y be a complete metric space, and T : X −→ 2Y be an
ECP multifunction. If for each x ∈ X, there exists some η := η(x) > 0 such that
Bη(T (x)) is compact, then for any ε > 0,

Tσ

2

(x) ⊂ Bε(T0(x)), ∀ x ∈ X,

where T0 : X −→ 2Y is defined in Proposition 2.3, and σ := σ( ε
2
) is taken as in

the definition of ECP .

Proof. For any fixed x ∈ X and ε > 0, by using the ECP of T , there exist a
corresponding positive number σ := σ( ε

2
) and a neighborhood Nx of x, such that

(1) d(f(z), f(x)) < σ
2
, ∀ f ∈ Cσ

2

(T ), ∀ z ∈ Nx;

(2) d(y1, y2) < ε
2
, ∀ y1, y2 ∈

⋂

z∈Nx
Bσ(T (z)).

We first claim that d(y1, y2) < ε
2

for all y1, y2 ∈ Tσ

2

(x). By the definition of

Tσ

2

(x), there exist f1, f2 ∈ Cσ

2

(T ) such that f1(x) = y1 and f2(x) = y2. It follows

that for i = 1, 2, we have

yi = fi(x) ∈ Bσ

2

(fi(z)) ⊂ Bσ

2

(Bσ

2

(T (z))) ⊂ Bσ(T (z)), ∀ z ∈ Nx.

Thus, y1, y2 ∈
⋂

z∈Nx
Bσ(T (z)), and hence, d(y1, y2) < ε

2
.

Now, applying Proposition 2.3, we have some δ := δ(x, ε) > 0 such that Tδ(x) ⊂
B ε

2

(T0(x)). If δ ≥ σ
2
, it is clear that

Tσ

2

(x) ⊂ Tδ(x) ⊂ B ε

2

(T0(x)) ⊂ Bε(T0(x)).

If δ < σ
2
, we are able to show that Tσ

2

(x) ⊂ B ε

2

(Tδ(x)). Assume not. Then there

exists y1 ∈ Tσ

2

(x) but y1 /∈ B ε

2

(Tδ(x)), i.e., d(y1, y2) > ε
2

for all y2 ∈ Tδ(x). This

is impossible because y2 ∈ Tδ(x) ⊂ Tσ

2

(x). Thus, by Lemma 1.5, we still have

Tσ

2

(x) ⊂ B ε

2

(Tδ(x)) ⊂ B ε

2

(B ε

2

(T0(x))) ⊂ Bε(T0(x)).

�

Proposition 2.5. Under the same condition of Proposition 2.4, if T (x) is closed
for all x ∈ X, then T0 : X −→ 2Y is a l.s.c. multifunction such that T0(x) ⊂ T (x)
for all x ∈ X.

Proof. First, we notice that T0(x) 6= ∅, ∀ x ∈ X, by Proposition 2.3. Next, for
any ε > 0, by Proposition 2.4, we have σ := σ( ε

4
) > 0 such that

Tσ

2

(x) ⊂ B ε

2

(T0(x)), ∀ x ∈ X.

Now, for any y ∈ T0(x), we have y ∈ Tσ

2

(x). By Proposition 2.2, Tσ

2

is l.s.c.. Thus,

for each x ∈ X, there exists a neighborhood Vx of x, such that y ∈ B ε

2

(Tσ

2

(z))

for all z ∈ Vx, by Lemma 1.4. It follows that

y ∈ B ε

2

(B ε

2

(T0(z))) ⊂ Bε(T0(z)), ∀ z ∈ Vx.
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This shows that T0 is also l.s.c.. Further, since T (x) is closed for all x ∈ X, we
have

T0(x) :=
⋂

ε>0

Tε(x) ⊂
⋂

ε>0

Bε(T (x)) = T (x) = T (x), ∀ x ∈ X.

Therefore, the proof is complete. �

According to the above propositions, we are now in a position to establish our
main selection theorem, which extends Theorem 1.1 to a.l.s.c. multifunctions,
and improves Corollary 1.3, instead of the one-point extension property.

Theorem 2.6. Let X be paracompact, with dim X = 0, Y a complete metric
space, and T : X −→ 2Y be a multifunction. If there is an a.l.s.c. ECP multi-
function S : X −→ 2Y satisfying

(1) each S(x) is closed, and S(x) ⊂ T (x), ∀ x ∈ X,
(2) for each x ∈ X, Bη(S(x)) is compact for some η > 0,

then T admits a continuous selection.

Proof. Let Sε(x) := {f(x) | f ∈ Cε(S)} for each ε > 0. Then by a parallel
argument of Proposition 2.2, the multifunction Sε : X −→ 2Y is l.s.c.. Further, by
Proposition 2.5, the multifunction S0, defined by S0(x) :=

⋂

ε>0 Sε(x), ∀ x ∈ X,
is also l.s.c.. In addition, S0(x) 6= ∅ and S0(x) ⊂ S(x) for all x ∈ X. It follows
from Lemma 1.6 that S0 is also a l.s.c. multifunction having nonempty closed
images. By Michael’selection theorem (see Theorem 1.1), S0 admits a continuous
selection f , and hence,

f(x) ∈ S0(x) ⊂ S(x) = S(x) ⊂ T (x), ∀ x ∈ X.

This says that f is also a continuous selection for T . �

Corollary 2.7. Let X be paracompact, with dimX = 0, and Y be a complete
metric space. If T : X −→ 2Y is an a.l.s.c. ECP multifunction satisfying

(1) T (x) is closed for all x ∈ X,
(2) for each x ∈ X, Bη(T (x)) is compact for some η > 0,

then T admits a continuous selection.

Corollary 2.8. Let X be paracompact, with dimX = 0, and Y be a complete
metric space. If T : X −→ 2Y is an a.l.s.c. ECP multifunction such that T (x)
is compact for all x ∈ X, then T admits a continuous selection.
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