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ROBUST STABILIZATION OF LINEAR POLYTOPIC
CONTROL SYSTEMS WITH MIXED DELAYS

LE VAN HIEN AND VU NGOC PHAT

ABSTRACT. In this paper, a class of uncertain linear polytopic systems with
mixed delays in state and control is studied. Using an improved parameter de-
pendent Lyapunov-Krasovskii functional approach and linear matrix inequal-
ity technique, delay-dependent sufficient conditions for the robust stabilization
of the system are first established in terms of the Mondié-Kharitonov type’s
linear matrix inequality (LMI) conditions. A numerical example is presented
to demonstrate that the feedback control designed based on the obtained con-
dition is effective, even though neither nominal control systems are control-
lable.

1. INTRODUCTION

The existence of time delays in both state and control may be the source of in-
stability and serious deterioration in the performance of the closed-loop systems.
The analysis of the stability and stabilization of time-delay control systems and
the synthesis of feedback controllers for them are important both in theory and
practice [3, 7, 12, 15]. When the system has only time delay in control input, one
way to solve the stabilization problem of the system is the so-called reduction
method [1], which reduces the system to a delay-free ordinary system by certain
state transformation but the complete transformation can only be obtained for
exactly known of the model and time delay. The results have been developed in
[4, 9, 10, 11] for uncertain linear systems with state and input delays. However,
stabilizing memory controllers obtained by this method are distributed and more
complicated than memoryless feedback controllers, and therefore difficult to im-
plement. Another type of uncertain delay systems, namely the linear system with
polytopic-type uncertainties, has also received much attention in recent years [8,
14, 16]. However, the distributed delays are not taken into account in the men-
tioned papers. In practice, systems with distributed delays in both state and
input have many important applications in various areas [6, 11, 13, 17]. Theoret-
ically, systems with discrete and distributed delays in both state and control are
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much more complicated, especially for the case where the system matrices belong
to some convex polytope. To the best of our knowledge, so far, no result on the
stabilization for uncertain linear polytopic systems with discrete and distributed
delays in both state and control is available in the literature, which is still open
and remains unsolved. This motivates our present investigation.

In this paper, we develop robust stability problem for uncertain linear poly-
topic control systems with mixed delays. The novel feature of the results ob-
tained in this paper is twofold. First, the system considered in this paper is
convex polytopic uncertain subjected to discrete and distributed delays in both
the state and control. Second, by employing an improved parameter-dependent
Lyapunov Krasovskii functional and linear matrix inequality technique, delay-
dependent sufficient conditions for the exponential stabilization of the system are
first obtained in terms of the Mondié-Kharitonov type’s LMI conditions [12]. The
conditions do not require any assumption on the controllability of the nominal
control system. The approach also allows to compute simultaneously the two
bounds that characterize the exponential stability rate of the solution.

The paper is organized as follows: Section 2 presents notations, definitions
and some well-known technical propositions needed for the proof of the main
result. Delay-dependent robust stabilization conditions of the system are pre-
sented in Section 3. Numerical example is given in Section 4. The paper ends
with conclusions and cited references.

2. PRELIMINARIES

The following notations and definitions will be employed throughout this pa-
per. RT denotes the set of all real non-negative numbers; R" denotes the n-
dimensional Euclidean space with the scalar product (.,.); R™*" denotes the
space of all matrices of (n x r)-dimensions; A” denotes the transpose of A,
I, denotes the identity matrix in R"™*"; A\(A) denotes the set of all eigenval-
ues of A, Amax(A) = max{ReX : A € A(4)}, Amin(4A) = min{Re X : A € A(4)};
matrix @ > 0 (Q > 0, resp.) means @ is semi-positive definite matrix i.e.
(Qx,xz) > 0,V € R" (positive definite, resp. i.e. (Qz,x) > 0,Vz € R",x # 0),
A > B means A — B > 0; C([a,b], R") denotes the set of all R"-valued con-
tinuous functions on [a,b]; the segment of the trajectory z(t) is denoted by
zy ={x(t +s):s €t € [—h,0]} with its norm [|z¢| = supsej_p 0 |2t + 5)||-

Consider a linear uncertain polytopic system with discrete and distributed
delays in state and control of the form

t
&(t) = Aox(t) + Arz(t — 7) —|—A2/ x(s)ds + Bou(t)
t—7

t
+ Biu(t —r) +Bg/ u(s)ds, te R,

.Q?(t) - ¢(t)a te [_h70]7

(2.1)
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where h = max{7,r},z(t) € R" is the state, u(t) € R™ is the control, 7 > 0,7 > 0
are time delays; ¢(t) € C(|—h, 0], R™) is the initial function with the norm ||¢|| =
SUp_p<s<o ||¢(s)]]. The matrices Ay, Bi,k = 0,1,2, are subject to uncertainties
and belong to the polytope Q given by

=1 i=1

p p

where p > 1 and Ay;, By; are given real matrices.
In this paper, a memoryless parameter-dependent state feedback controller

(2.2) u(t) = K(&)x(t),
is employed to stabilize (2.1).

Definition 2.1. Given a > 0, system (2.1) is a-robustly stabilizable if there
exists a linear state feedback control law (2.2) such that any solution of the
closed-loop system satisfies the following inequality

AN >0, a(t. o) < Ne[¢], t>0.

The objective of this paper is to design the memoryless feedback control law
that makes the system (2.1) robustly stabilizable. For this purpose, the following
technical propositions are first introduced.

Proposition 2.1. (Schur complement lemma) [2]. Let X,Y,Z be any ma-
trices with appropriate dimensions, where X = X', Y = YT > 0. Then
X +ZTY =17 <0 if and only if

x z7 <0
Z =Y ’
Proposition 2.2. (Matrix Cauchy inequality) For any symmetric positive defi-
nite matric M € R™" and x,y € R", we have
2(z,y) < (Ma,z) + (M~ 'y,y).
The above proposition is easily proved by completing the square.

Proposition 2.3. [5] For any symmetric positive definite matric W € R"™ ",
scalar v > 0, and vector function w : [0,v] — R™ such that the integrals concerned
are well defined, we have

(/OVW(S)CZS)TW </0Vw(s)ds) < V/OVWT(S)WW(S)ds_

3. MAIN RESULTS

For given a > 0,7 > 0,7 > 0, symmetric positive definite matrices F;, Q;, R; €
R™™ semi-positive definite matrix S € R™ ™ and matrices Y; € R™*" i =
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1,2,...,p, we denote

p p p p
P=Y"&P, Q=) &Qi R=) &R, Y=>) &Y,
=1 =1 =1 =1
Gij = BOiY} + YVJTB%; + 620” (BhB%; + TBQZ‘B%D s
Tij = AoiPj + PjA + Gij + Qj + TRj, Hy = (AP AxP; Y],

1
D; = diag {e_QaTQj, fG_MTRj, ,ufm} , =1+ 7“)_1,
T

Ty Ay P Az P v’
PjAT, —e207Q); 0 0 T H.
Mi P'7 47R'7Y' = 1 = *J g )
(P, Qj, R;,Yj) PjA%;‘ 0 _;6—2CMTRj 0 <H£ —Dj>
Y; 0 0 — I,
S 0 00 Pj 0 0 0
0 0 0 O 0 0 0 O ..
S_ 0 0 0 0 9 N(P])_ 0 O 0 0 9 Z?j_1’27 ’p7
0 0 0 O 0 0 0 O
A-(P)= min {Amin(F)}, >‘+(P) = max {Amax(F)},
i=1,2,...,p i=1,2,...,p
)‘+(Q) = max {Amax(Qi)}, )‘+(R) = max {Amax(Ri)},
i=1,2,....p i=1,2,....,p
)‘+(YTY) = Iln2ax {)‘maX(YiTYz)}
=1,2,..., )
(3.1)
1 . TAT(Q) + 372AT(R) + (1 + i) AT(YTY)
a1 — N a9 = .
AT(P) A-(P) [A-(P)]?

Theorem 3.1. Given a > 0, system (2.1) is a-robustly stabilizable if there exist
symmetric positive definite matrices P;, Q;, R;, matrices Y;,i =1,2,...,p, and a
semi-positive definite matriz S such that the following LMIs hold:
. 2
i=1,...,p—1Lj=1i+1,...,p.
The feedback stabilizing control is given by
u(t) =Y P la(t), t>0.

Moreover, every solution x(t,p) satisfies

Q2 _ .,
|’$(t7¢)H S —€ tH¢H7 t Z 0.
V a1

Proof. Because P; > 0,§ > 0,i = 1,2,...,p and 7 & = 1 we have P =
P &P is symmetric positive definite. Denote X = P71,Q = XQX,R
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XRX,K = YX, and consider the following parameter-dependent Lyapunov-
Krasovskii functional for the closed-loop system of (2.1):

(3.2) V(zy) =Vi+ Vo + Va4 Vi + Vs,
where

Vi =27 () Xz(t)

0
Vo = / 25T (t + 5)Qx(t + s)ds,
0 0
V3 = / / > (t + Q) Ra(t + ¢)d(ds,

0
V4:/ ezl (t + ) KT Ka(t + s)ds,

0 0
Vs = / / e2Cxl (t + OKTKa(t + ¢)dCds.

It can be verified from (3.2) that
(3.3) allz()® < V(wr) < azlle®, >0,
where o, s are defined in (3.1).
Taking derivative of V; along solutions of the closed-loop system, we get
V=27 (t) [AOTX + XA+ X(BoY +YTBT )X} z(t)

(3.4) +2eT ()X Ayz(t — 7) 4 22T () X By K (t — 1)
t ¢
+ 22T () X Ay / z(s)ds + 227 (t) X By Kz(s)ds.
t—7 t—r
Applying Proposition 2.2 and 2.3 we have

(3.5)

20T ()X Ayz(t — 1) < 2Tl () XA QAT X w(t) + e 272 (t — 1) Qu(t — 7),

22T () X Biu(t — r) < 22T ()X By BT X x(t) + e~ 27| Kz (t — 7).

t
Q:BT(t)XAg/ z(s)ds < Te*TxT (1) X Ay R AT X (1)
t—1
L ([ atopas) R ([ ato
+ —e 7 x(s)ds R</ x(s s>
(36) T t—T t—1
<7l () X A RTVAL X a(t)

t
Jre_%”/ 2T (s)Ra(s)ds.
t—T1
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t
227 (t) X By Kx(s)ds < re®* 2T (t) X By BI X (1)

t—r

1, t T t
+ —e Kux(s ds) ( Kz s)ds)
(5.7 e (L peatenas) (e
< re? 2T (t) X BoBY Xx(t)

t
4 e-mr/t 1K 2(s)|2ds.

-r

Therefore, from (3.4) to (3.7) we have

Vi < 2T (t)[ATX + XAy + X(BoY + YTBT )X]x(t)

+ 27T (XA QAT X w(t) + e 272 (t — 7)Qu(t — 7)
58) + 2T ()X By BT X a(t) + 7297 | Kz (t — 7)||?
3.8 t

+ 72T () X AyR AT X (t) + e 207 / 2T (s)Rx(s)ds

t—1
t

+ ey T (1) X By BT X (1) + e207 / 1K 2(s)|2ds.

t—r

Next, taking derivative of V;,i = 2,3,4,5, along solutions of the closed-loop
system respectively, we obtain

Vo = 27 (1)Qux(t) — e 27T (t — 7)Qu(t — 7) — 2aVa,

. 0 —
Vs = ral (t)Ra(t) — / ezl (t + s)Ra(t 4 s)ds — 2aV3

(3.9) -
t
< 7T (t)Ra(t) — 6_20”—/ 2T (s)Rx(s)ds — 2a V3.
t—1
Vi = || Ka(t)|? — e | Ka(t —r)|* = 2aV;
=T (KT Kx(t) — e 29| Ka(t — r)|* — 2aV4,
0

B10) Vs = rKa(o)|? - [ ke +5)|? - 215

t
<ral () KTKz(t) — 6_20”/ | Kxz(s)||>ds — 2aVs.

t—r
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Combining (3.8) - (3.10) gives
(3.11)
V(xe) +2aV (z) < 27 () (AL X + X Ag + 2aX) 2(t)
+2" ()X [BoY +YTBY + (1+7)YTY + Q + 7R] Xx(t)
+ T ()X (A1Q AT + AR AT) Xa(t)
+ 22T ()X (B1Bf + rByBY) Xu(t)
=n"(t) (AP + PAJ +2aP + G+ Q + 7R+ HD 'H")n(t),
=n"(t) (T +2aP + HD'"H") (1),
where
n(t) = Xa(t),
G=DBy)Y +Y Bl +¢* (B1B] +rB:Bj ),
= AP+ PAT +G+Q+ 7R,
H= (4P AP YT),

1
D = diag {62QTQ, ;672QTR, ,ufm} .

On the other hand, since [Ag, B,k = 0,1,2, belong to Q, P =" &P, Q =
ZZ 1&iQi, R= Z _1&R;, and Z _1 & =1, we have

r H P 0\ _ ~=,of(Tu H; P 0
(ar o)+ (D o) = Ze{(r %)+ (0 o))
p—1 p
. F,-j+1“ji Hij—‘v-Hji
+Z; ,Z%&@ { <H§ + HJ; —(D;+ Dj)
i=1 j=1

P+P 0
+2a< 0 O>]

& { (P, Qi, Ry, Y5) + 204-/\/’(131‘)}

I
M“@

ﬁ
Il
—_

p

Jj=1+1

§(Pyy Qis Bi, Yi) + 20N (P + )]

_l’_
i ||FﬂHs

By the conditions (i) and (ii) of the theorem, we obtain

(i )+na(f 5) < ~asr 25 > ees

i=1 j=i+1
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- —r[ ~1) Zgz —zz Z &518.

i=1 j=1+1
Since
p—1 p
p—1) 252—22 Z &= > (E—-§)P =0,
=1 j=i+1 i=1 j=1i+1
we have
(3.12) (P J;I%O‘P _}é) <0.

By Proposition 2.1, inequality (3.12) implies that
I'+2aP+HD'HT <0.
Therefore, the condition (3.11) becomes
V(xg) +2aV (x) <0, Vt>0,

and hence
V(zy) < V(p)e 2™ < asl|@)®e 2, ¢ >0.
Taking (3.3) into account, we finally obtain

(%) o
le(t, o) < /e lel, ¢ =20,

where aq, ag are defined in (3.1). The proof of the theorem is complete.

Remark 3.1. It is worth noting that the condition (i) means the asymptotic
stability of each i*" —subsystem, the condition (ii) implies the asymptotic stability
of the ij"—subsystems and if p = 1 this condition is automatically removed.
Thus, Theorem 3.1 includes the result of [4, 10, 12] for the systems without
polytope type uncertainties (p = 1) and of [8, 16| for polytopic systems without
distributed delays (A2 = By = 0). Moreover, the memoryless feedback stabilizing
control for the system (2.1) can be designed even when neither the nominal control

system (Ao;, Bo;) nor (Ag; + A4, Boi) are controllable.

4. NUMERICAL EXAMPLE

Consider the control system (2.1), where p =3,7 =1, = 1 and
Ao = <_30 —110> Aoz = <_09 —215>’ Aoz = <_08 —112> ’
Ay = (‘02 }) . Ap= <(1) ji) L A= (3 _01) ,
Ao = G ?>, Agp = <(1) _14>, Aoz = (? (1)>,
By = (é) , B2 = (g) ; Boz= (8) , Bu= (2) ;
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pe (). - (0) 5= (). 2. -2

By Kalman rank condition, neither linear control system (Ag;, Bo;) nor (Ag; +
Ayi, Boi) are controllable. However, for @ = 0.5, the conditions (i) and (ii) in
Theorem 3.1 are satisfied. By using LMI toolbox of Matlab, we find that all
LMIs in Theorem 3.1 are feasible with

g_ (B0 po_ (134444 —0.1241
—\o o/’ "'7\-0.1241 84191 )’

p, _ (47545 1.3646 p._ 9-0987  —0.0313
27 \1.3646 14.0144)° 3~ \—0.0313 2.6604 )’

0, = 67.5881 —10.8587 Qs = 8.7531 6.0254
1=\ -10.8587 34.2100 /> 2~ \6.0254 81.4335)°

Qs 16.3252 —2.2418 R, — (63:8807  —5.0032
3=\ 22418 52477 ) 1T\ -5.0032 32.7827 )

R, _ (89332 5.7459 R (224391 0.0307
2= \5.7459 75.9097)° ¥~ \0.0307 3.3582)°

Y1 = (—0.3487 —0.1106), Y, = (—1.1660 0.1127), Y3 = (—0.4223 —0.1062).
The state feedback stabilizing control is given by
u(t) = Y P la(t)
= (6Y1 +&Ys + &Y3) X (P + &P+ EPs) " a(t)

= % (z1p3 — 22p2  z2p1 — 21p2) (1),
p1p3 — Py

where

21 = —0.3847€, — 1.1660€5 — 0.422363,

25 = —0.1106; + 0.1127€& — 0.1062&3,

p1 = 13,4444, + 475456 + 9.0987E3,

P2 = —0.1241€; + 1.3464¢5 — 0.0313&5,

D3 = 8.4191€; + 14.0144€5 + 2.6604¢5.
Moreover, we find N = Z—? = 15.8316, and every solution z(t, ¢) of the closed-

loop system satisfies

l2(t, )|l < 15.8316e~"||¢||, ¢ > 0.

5. CONCLUSION

This paper has proposed new sufficient conditions for the robust stabiliza-
tion of uncertain linear polytopic systems with discrete and distributed delays in
both state and control. Based on an improved Lyapunov-Krasovskii parameter-
dependent functional, delay-dependent exponential stabilization conditions of the
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system are derived in terms of Mondié-Kharitonov type’s LMI, which allows to
compute simultaneously the two bounds that characterize the exponential sta-
bility of the solution. A numerical example to illustrate the obtained result is
given.
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