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ON THE EXISTENCE OF SOLUTIONS TO GENERALIZED

QUASI-EQUILIBRIUM PROBLEMS OF TYPE II AND

RELATED PROBLEMS

TRUONG THI THUY DUONG AND NGUYEN XUAN TAN

Dedicated to Tran Duc Van on the occasion of his sixtieth birthday

Abstract. The generalized quasi-equilibrium problem of type II is formu-
lated and some sufficient conditions on the existence of its solutions are shown.
As special cases, we obtain several results on the existence of solutions of ideal
quasivariational inclusion problems, quasivariational relation problems of type
II, generalized quasi-KKM theorems etc. As corollaries, we show several re-
sults on the existence of solutions to other problems in the vector optimization
theory concerning multivalued mappings.

1. Introduction

Throughout this paper X,Y,Z and W are supposed to be real Hausdorff locally
convex linear topological spaces, D ⊂ X,K ⊂ Z and E ⊂ W are nonempty
subsets. Given multivalued mappings S : D × K → 2D, T : D × K → 2K ;P1 :
D → 2D, P2 : D → 2E , Q : K × D → 2Z and F : K × D × E → 2Y , we are
interested in the following problems:

A. Find (x̄, ȳ) ∈ D × K such that
1) x̄ ∈ S(x̄, ȳ);
2) ȳ ∈ T (x̄, ȳ);
3) 0 ∈ F (ȳ, x̄, x̄, z) for all z ∈ S(x̄, ȳ).
This problem is called a generalized quasi-equilibrium problem of type I, de-

noted by (GEP )I .
B. Find x̄ ∈ D such that

x̄ ∈ P1(x̄)

and
0 ∈ F (y, x̄, t) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

This problem is called a generalized quasi-equilibrium problem of type II, de-
noted by (GEP )II , in which the multivalued mappings S,P1, P2, T and Q are
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constraints and F is an utility multivalued mapping that are often determined
by equalities and inequalities, or by inclusions, not inclusions and intersections
of other multivalued mappings, or by some relations in product spaces. The gen-
eralized quasi-equilibrium problems of type I are studied in [3]. In this paper we
consider the existence of solutions of the second problems. The typical instances
of generalized quasi-equilibrium problems of type II are as follows:

i) Quasi-equilibrium problem. Let D,K,Pi, i = 1, 2, Q be as above and
W = X,E = D. Let R be the space of real numbers with the subset of nonnegative
numbers R+ and Φ : K × D × D → R be a function with Φ(y, x, x) = 0, for all
y ∈ K,x ∈ D. The generalized quasi-equilibrium problem (GEP )II is defined as
follows: Find x̄ ∈ D such that x̄ ∈ P1(x̄) and

0 ∈ Φ(y, x̄, t) − R+ for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

This problem is known as a quasi-equilibrium problem: Find x̄ ∈ D such that
x̄ ∈ P1(x̄) and

Φ(y, x̄, t) ≥ 0 for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

This problem is studied by many authors, for example, in [4], [6], [9], [13] and
in the references therein. These problems generalize the well-known equilibrium
problem introduced by Blum and Oettli in [2]. There is a difference between
(GEP )I and (GEP )II . If we consider a variable y in these problems as parameter,
we can see that in (GEP )I there exists a parameter ȳ ∈ K, ȳ ∈ T (x̄, ȳ) and 0 ∈
F (ȳ, x̄, x̄, z) for all z ∈ S(x̄, ȳ). But, in (GEP )II , 0 ∈ F (y, x̄, t) holds for all t ∈
P2(x̄) and y ∈ Q(x̄, t).

ii) Minty quasivariational problem. Let 〈·, ·〉 : X × Z → R be a continuous
bilinear function. We consider the following Minty quasivariational problem:
Find x̄ ∈ D such that x̄ ∈ P1(x̄) and

〈y, t − x̄〉 ≥ 0 for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

For F (y, x, t) = 〈y, t − x〉 − R+, (GEP )II reads as follows: Find x̄ ∈ D such that
x̄ ∈ P1(x̄) and

0 ∈ F (y, x̄, t) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

iii) Ideal upper quasivariational inclusion problem of type II. Let D,K, Y,
Pi, i = 1, 2, and Q be given as at the beginning of this section. Further, as-
sume that C : K × D → 2Y is a cone multivalued mapping (for any (y, x) ∈
K×D, C(y, x) is cone in Y ) and G and H are multivalued mappings on K×D×D
with values in the space Y . We define the multivalued mappings M : K × D →
2X ;F : K × D × D → 2Y by

M(y, x) = {t ∈ D | G(y, x, t) ⊆ H(y, x, x) + C(y, x)}, (y, x) ∈ K × D

and

F (y, x, t) = t − M(y, x), (y, x, t) ∈ K × D × D.
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Problem (GEP )II is formulated as follows: Find x̄ ∈ D such that x̄ ∈ P1(x̄) and

0 ∈ F (y, x̄, t) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

This shows

G(y, x̄, t) ⊆ H(y, x̄, x̄) + C(y, x̄) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

This is an ideal upper quasivariational inclusion problem studied in [9], [11], [12],
[14] and in the references therein.

iv) Abstract quasivariational relation problem of type II. Let D,K,P1, i =
1, 2, Q be as above and W = X,E = D. Let R(y, x, t) be a relation linking
y ∈ K,x ∈ D and t ∈ E. We define the multivalued mappings M : K × D →
2X ;F : K × D × D → 2Y by

M(y, x) = {t ∈ D | R(y, x, t) holds};

and

F (y, x, t) = t − M(y, x), (y, x, t) ∈ K × D × D.

Problem (GEP )II is formulated as follows: Find x̄ ∈ D such that x̄ ∈ P1(x̄) and

0 ∈ F (y, x̄, t) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

This becomes that of finding x̄ ∈ D such that

x̄ ∈ P1(x̄)

and

R(y, x̄, t) holds for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

This is (V R) studied in [10].

v) Differential inclusion. Let D ⊂ C1[a, b] be a nonempty set, where C[a, b]
and C1[a, b] are the spaces of continuous and continuously diffrentiable functions
respectively on the interval [a, b]. Let P1, P2 be given as above. Let Ω be a
nonempty set and U : D × D → 2Ω a multivalued mapping. Set K = Ω × R

and Q : D × D → 2Y by Q(x, t) = U(x, t) × [a, b]. Given a multivalued mapping

G : K × D × D → 2C[a,b]. Problem of finding x̄ ∈ D such that x̄ ∈ P1(x̄) and

x′ ∈ G(y, ξ, x̄, t) for all t ∈ P2(x̄) and (y, ξ) ∈ Q(x̄, t),

studied in [5] becomes that of finding x̄ ∈ D such that x̄ ∈ P1(x̄) and

0 ∈ F (y, ξ, x̄, t) for all t ∈ P2(x̄) and (y, ξ) ∈ Q(x̄, t),

where F (y, ξ, x, t) = x′ − G(y, ξ, x, t) and x′ denotes the derivative of x.
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2. Preliminaries and Definitions

Throughout this paper, as in the introduction, by X,Z,W and Y we denote
real Hausdorff locally convex linear topological spaces. Given a subset D ⊆ X,
we consider a multivalued mapping F : D → 2Y . The definition domain and the
graph of F are denoted by

domF = {x ∈ D| F (x) 6= ∅} ,

Gr(F ) = {(x, y) ∈ D × Y | y ∈ F (x)} ,

respectively. We recall that F is said to be a closed mapping if the graph Gr(F )
of F is a closed subset in the product space X ×Y and it is said to be a compact
mapping if the closure clF (D) of its range F (D) is a compact set in Y . A
multivalued mapping F : D → 2Y is said to be upper (lower semicontinuous)
semicontinuous (briefly, u.s.c. (respectively, l.s.c.)) at x̄ ∈ D if for each open set
V containing F (x̄) (respectively, F (x̄)∩U 6= ∅), there exists an open neighborhood
U of x̄ that F (x) ⊆ V (respectively, F (x) ∩ U 6= ∅) for each x ∈ U and F is said
to be u.s.c. (l.s.c.) on D if it is u.s.c. (respectively, l.s.c.) at all x ∈ D. These
notions and definitions can be found in [1]. Further, let Y be a topological vector
space with a cone C. We denote l(C) = C ∩ (−C). If l(C) = {0}, C is said to be
pointed. We recall the following definitions.

Now, let C : K × D → 2Y be a cone multivalued mapping (the image of
every point of C is a cone in Y ). We introduce the following definitions of the C-
continuities which are extensions of C-continuity notions of multivalued mappings
in [8].

Definition 2.1. Let F : K × D × D → 2Y be a multivalued mapping and
C : K × D → 2Y be a cone multivalued mapping.

(i) F is said to be upper (lower) C-continuous at (ȳ, x̄, t̄) ∈ dom F if for any
neighborhood V of the origin in Y there is a neighborhood U of (ȳ, x̄, t̄) such
that:

F (y, x, t) ⊆ F (ȳ, x̄, t̄)) + V + C(ȳ, x̄)

(respectively, F (ȳ, x̄, t̄) ⊆ F (y, x, t) + V − C(ȳ, x̄))

holds for all (y, x, t) ∈ U ∩ domF .
(ii) If F is upper C-continuous and lower C-continuous at (ȳ, x̄, t̄) simultane-

ously, we say that it is C-continuous at (ȳ, x̄, t̄).
(iii) If F is upper, lower,. . . , C-continuous at any point of domF , we say that

it is upper, lower,. . . , C-continuous on D.
(iv) In the case C = {0}, the trivial cone in Y , we shall only say F is upper,

lower continuous instead of upper, lower 0-continuous. And, F is continuous if it
is upper and lower continuous simultaneously.

Definition 2.2. Let G be a multivalued mapping from D to 2Y and C a cone in
Y . We say that:
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(i) G is upper C-quasiconvex on D if for any x1, x2 ∈ D, t ∈ [0, 1], either

G(x1) ⊆ G(tx1 + (1 − t)x2) + C,

or G(x2) ⊆ G(tx1 + (1 − t)x2) + C

holds.
(ii) G is lower C-quasiconvex on D if for any x1, x2 ∈ D, t ∈ [0, 1], either

G(tx1 + (1 − t)x2) ⊆ G(x1) − C,

or G(tx1 + (1 − t)x2) ⊆ G(x2) − C

holds.

Definition 2.3. Let F : K × D × D → 2Y , Q : D × D → 2K be multivalued
mappings. Let C : K × D → 2Y be a cone multivalued mapping. We say that

(i) F is diagonally upper (Q, C)-quasiconvex at the third variable if for any
finite set {x1, ..., xn} ⊆ D,x ∈ co{x1, ..., xn}, there is an index j ∈ {1, ..., n} such
that

F (y, x, xj) ⊆ F (y, x, x) + C(y, x) for all y ∈ Q(x, xj).

(ii) F is diagonally lower (Q, C)-quasiconvex at the third variable if for any
finite set {x1, ..., xn} ⊆ D,x ∈ co{x1, ..., xn}, there is an index j ∈ {1, ..., n} such
that

F (y, x, x) ⊆ F (y, x, xj) − C(y, x) for all y ∈ Q(x, xj).

Definition 2.4. Let F : K × D × D → 2X , Q : D × D → 2K be multivalued
mappings. We say that F is Q- KKM if for any finite set {t1, ..., tn} ⊂ D and
x ∈ co{t1, ..., tn}, there is tj ∈ {t1, ..., tn} such that 0 ∈ F (y, x, tj), for all y ∈
Q(x, tj).

Definition 2.5. Let F : K × D × E → 2X , Q : D × E → 2K be multivalued
mappings. We say that F is generalized Q- KKM if for any finite set {t1, ..., tn} ⊂
E there is a finite set {x1, ..., xn} ⊆ D such that for any x ∈ co{xi1 , ..., xik}, there
is tij ∈ {ti1 , ..., tin} such that 0 ∈ F (y, x, tij ), for all y ∈ Q(x, tij ).

Definition 2.6. Let R be a binary relation on K × D. We say that R is closed
if for any net (yα, xα) converging to (y, x) and R(yα, xα) holds for all α, so holds
R(y, x).

Definition 2.7. Let R be a relation on K×D×D. We say that R is Q- KKM if
for any finite set {t1, ..., tn} ⊂ D and x ∈ co{t1, ..., tn}, there is a tj ∈ {t1, ..., tn}
such that R(y, x, tj) holds, for all y ∈ Q(x, tj).

Now, we give some necessary and sufficient conditions on the upper and the
lower C- continuities which we shall need in the next section.

Proposition 2.8. Let F : K × D × D → 2Y be a multivalued mapping and
C : K ×D → 2Y be a cone upper continuous multivalued mapping with nonempty
convex closed values.

1) If F is upper C-continuous at (yo, xo, to) ∈ domF with F (yo, xo, to)) +
C(yo, xo) being closed, then for any net (yβ, xβ, tβ) → (yo, xo, to), vβ ∈ F (yβ, xβ, tβ)
+ C(yβ, xβ), vβ → vo imply vo ∈ F (yo, xo, to) + C(yo, xo).
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Conversely, if F is compact and for any net (yβ, xβ, tβ) → (yo, xo, to), vβ ∈
F (yβ, xβ, tβ) + C(yβ , xβ), vβ → vo imply vo ∈ F (yo, xo, to) + C(yo, xo), then F is
upper C-continuous at (yo, xo, to).

2) If F is compact and lower C-continuous at (yo, xo, to) ∈ domF, then for
any net (yβ, xβ , tβ) → (yo, xo, to), vo ∈ F (yo, xo, to) + C(yo, xo), there is a net
{vβ}, vβ ∈ F (yβ , xβ, tβ), which has a convergent subnet {vβγ

}, vβγ
− vo → c ∈

C(yo, xo)(i.e vβγ
→ vo + c ∈ vo + C(yo, xo).

Conversely, if F (yo, xo, to) is compact and for any net (yβ, xβ , tβ) → (yo, xo, to),
vo ∈ F (yo, xo, to) + C(yo, xo), there is a net {vβ}, vβ ∈ F (yβ, xβ, tβ), which has a
convergent subnet {vβγ

}, vβγ
− vo → c ∈ C(yo, xo), then F is lower C–continuous

at (yo, xo, to).

Proof. We proceed the proof of this proposition exactly as the one of Proposition
2.3 in [7]. �

In the sequel, if we say that the set A is open in D, this means that this set is
open in the relative topology of the topology on X restricted to D. The proofs
of the main results in our paper are based on the following theorems (in [15]).

Theorem 2.9. Let D be a nonempty convex compact subset of X and F : D → 2D

be a multivalued mapping satisfying the following conditions:
1. For all x ∈ D,x /∈ F (x) and F (x) is convex;
2. For all y ∈ D,F−1(y) is open in D.
Then there exists x̄ ∈ D such that F (x̄) = ∅.

Theorem 2.10. Let D be a nonempty convex compact subset of X and F : D →
2D be a multivalued mapping with F(x) being nonempty for any x ∈ D. Assume
that F−1(y) is open in D for any y ∈ D. Then there exists x̄ ∈ D such that
x̄ ∈ coF (x̄), where co(A) denotes the convex hull of A.

One can easily see that the conclusion of Theorem 2.10 follows immediately
from Theorem 2.9. Indeed, we assume that for any x ∈ D,x /∈ coF (x). Since for
all y ∈ D,F−1(y) is open in D, so is (coF )−1(y) (see the proof of Theorem 3.1
below). Applying Theorem 2.9, we conclude that there exists x̄ ∈ D such that
coF (x̄) = ∅ and we have a contradiction.

3. Main Results

Throughout this section, unless otherwise specified, by X, Z and Y we denote
real Hausdorff locally convex linear topological spaces. Let D ⊆ X,K ⊆ Z be
nonempty subsets and C ⊆ Y be a convex closed cone, C : K×D → 2Y be a cone
multivalued mapping. Given multivalued mappings Pi : D → 2D, i = 1, 2, Q :
D × D → 2K and F : K × D × D → 2Y , we first prove the following theorem

Theorem 3.1. The following conditions are sufficient for (GEP )II to have a
solution:

(i) D is a nonempty convex compact subset;
(ii) P1 : D → 2D is a multivalued mapping with a nonempty closed fixed point

set D0 = {x ∈ D| x ∈ P1(x)};
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(iii) P2 : D → 2D is a multivalued mapping with nonempty P2(x) and open
P−1

2 (x) and the convex hull coP2(x) of P2(x) is contained in P1(x) for each x ∈ D;
(iv) Q : D × D → 2K is a multivalued mapping such that for any fixed t ∈ D

the multivalued mapping Q(., t) : D → 2K is l.s.c.;
(v) For any fixed t ∈ D, the set

B = {x ∈ D| 0 /∈ F (y, x, t) for some y ∈ Q(x, t)}

is open in D;
(vi) F : K × D × D → 2Y is a Q − KKM multivalued mapping.

Proof. We define the multivalued mapping M : D → 2D by

M(x) = {t ∈ D| 0 /∈ F (y, x, t) for some y ∈ Q(x, t)}.

Observe that if for some x̄ ∈ D, x̄ ∈ P1(x̄), it gives M(x̄) ∩ P2(x̄) = ∅, then

0 ∈ F (y, x̄, t) for all t ∈ P2(x̄) and y ∈ Q(x̄, t)

and hence the proof of the theorem is completed. Thus, our aim is to show
the existence of such a point x̄. Indeed, we assume on the contrary that for any
x ∈ P1(x), M(x)∩P2(x) 6= ∅. We consider the multivalued mapping H : D → 2D

defined by

H(x) =

{

(coM)(x) ∩ (coP2)(x), if x ∈ P1(x)
P2(x), otherwise ,

where (coN)(x) = coN(x). Next, we claim that if for any y ∈ D,N−1(y) is open,

then so is (coN)−1(y). Indeed, assume that y ∈ D and x ∈ (coN)−1(y), then
y ∈ co(N(x)), y =

∑n
i=1 αiyi with 0 ≤ αi ≤ 1,

∑n
i=1 αi = 1, yi ∈ N(x). This gives

x ∈ N−1(yi), for all i = 1, .., n. Since N−1(yi), i = 1, ..., n are open, there is a
neighborhood U(x) of x such that U(x) ⊆ N−1(yi) for all i = 1, ..., n. This implies
yi ∈ N(z) for all z ∈ U(x) and i = 1, ..., n. Therefore, y =

∑n
i=1 αiyi ∈ (coN)(z)

for z ∈ U(x) and then U(x) ⊆ (coN)−1(y). So (coN)−1(y) is open.
Further, we show that H verifies the hypotheses of Theorem 2.9 in Section 2.

Indeed, since for any x ∈ D with x ∈ P1(x), M(x) ∩ P2(x) 6= ∅, we conclude
that H(x) 6= ∅ and then D =

⋃

x∈D H−1(x). From the assumption (v) for any

x ∈ D,M−1(x) is open, it follows that

H−1(x) = (coM)−1(x) ∩ (coP2)
−1(x) ∪ (P−1

2 (x) \ D0),

where D0 = {x ∈ D : x ∈ P1(x)} is a closed subset in D. Hence H−1(x) is an
open set in D, for every x ∈ D. Further, if there is a point x̄ ∈ D such that
x̄ ∈ H(x̄) = coM(x̄) ∩ coP2(x̄), then one can find t1, ..., tn ∈ M(x̄) such that

x̄ =
n
∑

1
αiti, αi ≥ 0,

n
∑

1
αi = 1. By the definition of M, we have

0 /∈ F (y, x, ti) for some y ∈ Q(x, ti)}, for all i = 1, ..., n.

Together with the fact that the multivalued mapping F is Q−KKM, one can find
an index j = 1, ..., n such that

0 ∈ F (y, x, tj) for all y ∈ Q(x, tj)
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and we get a contradiction. Theorefore, we conclude that for any x ∈ D,x /∈
H(x). An application of Theorem 2.9 in Section 2 implies that there exists a point
x̄ ∈ D with H(x̄) = ∅. If x̄ /∈ P1(x̄), then H(x̄) = P2(x̄) = ∅, which is impossible.
Therefore, we conclude that x̄ ∈ P1(x̄) and H(x̄) = coM(x̄)∩ coP2(x̄) = ∅. Thus,
we have a contradition and the proof of the theorem is complete. �

Several applications of the above theorem to the existence of solutions of quasi-
equilibrium, variational inclusion problems,..., can be shown in the following
corollaries.

Corollary 3.2. Let D,K,P1, P2 and Q be as in Theorem 3.1. Let Φ : K × D ×
D → R be a real diagonally (Q,R+)- quasiconvex function with Φ(y, x, x) = 0
for all y ∈ K,x ∈ D. In addition, assume that for any fixed t ∈ D the function
Φ(., ., t) : K × D → R is upper semicontinuous. Then, there exists x̄ ∈ D such
that x̄ ∈ P1(x̄) and

Φ(y, x̄, t) ≥ 0 for all t ∈ P(x̄) and y ∈ Q(x̄, t).

Proof. Setting F (y, x, t) = Φ(y, x, t)−R+, for any (y, x, t) ∈ K ×D ×D, we can
see that for any fixed t ∈ D the set

B ={x ∈ D| 0 /∈ F (y, x, t) for some y ∈ Q(x, t)}

={x ∈ D| Φ(y, x, t) < 0}

is open in D. Since Φ is diagonally upper (Q,R+)-quasiconvex in the third
variable, for any finite set {t1, ..., tn} ⊆ D,x ∈ co{t1, ..., tn}, there is an index
j ∈ {1, ..., n} such that

Φ(y, x, tj) ∈ Φ(y, x, x) + R+ for all y ∈ Q(x, tj).

This implies that Φ(y, x, tj) ≥ 0 and so 0 ∈ F (y, x, tj) for all y ∈ Q(x, tj).
This shows that F is a Q− KKM multivalued mapping from K × D × D to 2R.
Therefore, P1, P2, Q and F satisfy all conditions in Theorem 3.1. This implies
that there is a point x̄ ∈ D such that

x̄ ∈ P1(x̄)

and

0 ∈ F (y, x̄, t) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

This is equivalent to

Φ(y, x̄, t) ≥ 0 for all t ∈ P2(x̄) and y ∈ Q(x̄, t),

and the proof is complete. �

In the following corollary we assume that C : K × D → 2Y is a given cone
upper continuous multivalued mapping with convex closed values.

Corollary 3.3. Let D,K,P1, P2 and Q be as in Theorem 3.1. Let G,H : K ×
D × D → 2Y be multivalued mappings with compact values and G(y, x, x) ⊆
H(y, x, x) + C(y, x) for any (y, x) ∈ K × D. Let C : K × D → 2Y be a cone
multivalued mapping with nonempty convex closed values. In addition, assume:
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(i) For any fixed t ∈ D, the multivalued mapping G(·, ·, t) : K × D → 2Y is
lower (−C)−continuous and the multivalued mapping N : K × D → 2Y , defined
by N(y, x) = H(y, x, x), is upper C− continuous;

(ii) G is diagonally upper (Q, C)-quasiconvex in the third variable.
Then, there exists x̄ ∈ D such that x̄ ∈ P1(x̄) and

G(y, x̄, t) ⊆ H(y, x̄, x̄) + C(y, x̄) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

Proof. We define the multivalued mappings M : K ×D → 2X , F : K ×D×D →
2D by

M(y, x) = {t ∈ D| G(y, x, t) ⊆ H(y, x, x) + C(y, x)}, (y, x) ∈ K × D

and

F (y, x, t) = t − M(y, x), (y, x, t) ∈ K × D × D.

For any fixed t ∈ D, we set

A = {x ∈ D| 0 ∈ F (y, x, t) for all y ∈ Q(x, t)}

= {x ∈ D| t ∈ M(y, x) for all y ∈ Q(x, t)}

= {x ∈ D| G(y, x, t) ⊆ H(y, x, x) + C(y, x) for all y ∈ Q(x, t)}.

We claim that this subset is closed in D. Indeed, assume that a net {xα} ⊂ A
and xα → x. Take arbitrary y ∈ Q(x, t). Since Q(·, t) is a lower semicontinuous
mapping and xα → x, there exists a net {yα}, yα ∈ Q(xα, t) such that yα → y.
For any neighborhood V of the origin in Y there is an index α0 such that for all
α ≤ α0 the following inclusions hold:

G(y, x, t) ⊆ G(yα, xα, t) + V + C(yα, xα)

⊆ H(yα, xα, xα) + V + C(yα, xα) ⊆ H(y, x, x) + 2V + C(y, x).

This and the compact values of H imply that

G(y, x, t) ⊆ H(y, x, x) + C(y, x),

and therefore, x ∈ A. This follows that A is closed in D and the set

B = D \ A = {x ∈ D| 0 /∈ F (y, x, t) for some y ∈ Q(x, t)}

is open in D.
Further, since G(y, x, x) ⊆ H(y, x, x) + C(y, x) for any (y, x) ∈ K × D and G

is diagonally upper (Q, C)-quasiconvex in the third variable, we conclude that for
any finite set {t1, ..., tn} ⊆ D,x ∈ co{t1, ..., tn}, there is an index j ∈ {1, ..., n}
such that

G(y, x, tj) ⊆ G(y, x, x) + C(y, x) ⊆ H(y, x, x) + C(y, x) for all y ∈ Q(x, tj).

This follows that 0 ∈ F (y, x, tj) and then F is a Q−KKM multivalued mapping.
Thus, to complete the proof of the corollary, it remains to apply Theorem 3.1 to
deduce that there is x̄ ∈ D such that x̄ ∈ P1(x̄) and

0 ∈ F (y, x̄, t) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).



240 QUASI-EQUILIBRIUM PROBLEMS OF TYPE II AND RELATED PROBLEMS

This is equivalent to

G(y, x̄, t) ⊆ H(y, x̄, x̄) + C(y, x̄) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

�

Analogically, we obtain the following corollary.

Corollary 3.4. Let D,K,P1, P2 and Q be as in Theorem 3.1. Let G,H : K ×
D × D → 2Y be multivalued mappings with compact values and H(y, x, x) ⊆
G(y, x, x) − C(y, x) for any (y, x) ∈ K × D. Let C : K × D → 2Y be a cone
multivalued mapping with nonempty convex closed values. In addition, assume:

(i) For any fixed t ∈ D the multivalued mapping G(., ., t) : K × D → 2Y is
upper (−C)- continuous and the multivalued mapping N : K × D → 2Y defined
by N(y, x) = H(y, x, x) is lower C- continuous.

(ii) G is diagonally lower (Q, C)-quasiconvex in the third variable.
Then, there exists x̄ ∈ D such that x̄ ∈ P1(x̄) and

H(y, x̄, x̄) ⊆ G(y, x̄, t) − C(y, x̄) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

Proof. The proof is similar to the previous one of Corollary 3.3. �

Corollary 3.5. Let D,K,P1, P2 and Q be as in Theorem 3.1. Let G,H : K ×
D ×D → 2Y be multivalued mappings with compact values. Let C : K ×D → 2Y

be an upper continuous cone multivalued mapping with nonempty convex closed
values. In addition, assume:

(i) For any fixed t ∈ D, the multivalued mapping G(., ., t) : K × D → 2Y is
upper (−C)- continuous. The multivalued mapping N : K × D → 2Y defined by
N(y, x) = H(y, x, x), (y, x) ∈ K × D, is upper C- continuous.

(ii) For any finite set {t1, ..., tn} ⊂ D and x ∈ co{t1, ..., tn}, there is an index
j ∈ {1, ..., n} such that

G(y, x, tj) 6⊆ H(y, x, x) + intC(y, x) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

Then, there exists x̄ ∈ D such that x̄ ∈ P1(x̄) and

G(y, x̄, t) 6⊆ H(y, x̄, x̄) + intC(y, x̄) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

Proof. We define the multivalued mappings M : K ×D → 2X , F : K ×D×D →
2D by

M(y, x) = {t ∈ D| G(y, x, t) 6⊆ H(y, x, x) + intC(y, x)}, (y, x) ∈ K × D

and
F (y, x, t) = t − M(y, x), (y, x, t) ∈ K × D × D.

For any fixed t ∈ D, we set

A = {x ∈ D| 0 ∈ F (y, x, t) for all y ∈ Q(x, t)}

= {x ∈ D| t ∈ M(y, x) for all y ∈ Q(x, t)}

{x ∈ D| G(y, x, t) 6⊆ H(y, x, x) + intC(y, x) for all y ∈ Q(x, t)}.

We claim that this subset is closed in D. Indeed, assume that a net {xα} ⊂ D
and xα → x. Take arbitrary y ∈ Q(x, t). Since Q(·, t) is a lower semicontinuous
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mapping and xα → x, there exists a net {yα}, yα ∈ Q(xα, t) such that yα → y.
For any neighborhood V of the origin in Y there is an index α0 such that for all
α ≤ α0 the following inclusions hold:

G(yα, xα, t) ⊆ G(y, x, t) + V − C(y, x),

H(y, x, x) ⊆ H(yα, xα, xα) + V + C(yα, xα).

For xα ∈ A, we have

G(yα, xα, t) 6⊆ H(yα, xα, xα) + intC(yα, xα)

and then

G(y, x, t) + V − C(y, x) 6⊆ H(yα, xα, xα) + C(yα, xα) + intC(yα, xα).

Therefore, we conclude

G(y, x, t) + V − C(y, x) 6⊆ H(y, x, x) + V + intC(y, x)

and so

G(y, x, t) + V 6⊆ H(y, x, x) + intC(y, x)

for arbitrary neighborhood V of the origin in Y .
Now, suppose that

G(y, x, t) ⊆ H(y, x, x) + intC(y, x).

For arbitrary neighborhood Vα of the origin in Y there exist aα ∈ G(y, x, t), vα ∈
Vα and aα+vα /∈ H(y, x, t)+intC(y, x). Without loss of generality, we may assume
that aα → a and vα → 0 and then aα + vα → a ∈ G(y, x, t) ⊆ H(x, x, x) +
intC(y, x). But, H(x, x, x)+ intCy, x) is an open subset, there exists α0 such that
for all α ≤ α0. Hence aα+vα ∈ H(y, x, t)+intC(y, x) and we have a contradiction.
Thus, we conclude

G(y, x, t) 6⊆ H(y, x, x) + intC(y, x).

This shows that x ∈ A and A is a closed subset in D. Hence, for any fixed t ∈ D,
the set

B = D \ A = {x ∈ D| 0 /∈ F (y, x, t) for some y ∈ Q(x, t)}

is open.
Further, Condition (ii) implies that the multivalued mapping F is Q−KKM.

Therefore, to complete the proof of the corollary, it remains to apply Theorem
3.1 to deduce that there is x̄ ∈ D such that x̄ ∈ P1(x̄) and

0 ∈ F (y, x̄, t) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

This is equivalent to

G(y, x̄, t) 6⊆ H(y, x̄, x̄) + intC(y, x̄) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

�

Analogically, we obtain the following corollary.



242 QUASI-EQUILIBRIUM PROBLEMS OF TYPE II AND RELATED PROBLEMS

Corollary 3.6. Let D,K,P1, P2 and Q be as in Theorem 3.1. Let G,H : K ×
D × D → 2Y be multivalued mappings. Let C : K × D → 2Y be an upper
continuous cone multivalued mapping with nonempty convex closed values. In
addition, assume:

(i) For any fixed t ∈ D the multivalued mapping G(., ., t) : K × D → 2Y is
lower C- continuous and the multivalued mapping N : K × D → 2Y defined by
N(y, x) = H(y, x, x) is upper (−C)- continuous and has compact values.

(ii) For any finite set {t1, ..., tn} ⊂ D and x ∈ co{t1, ..., tn} there is an index
j ∈ {1, ..., n} such that

H(y, x, x) 6⊆ G(y, x, tj) − intC(y, x) holds for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

Then, there exists x̄ ∈ D such that x̄ ∈ P1(x̄), and

H(y, x̄, x̄) 6⊆ G(y, x̄, t) − intC(y, x̄) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

Proof. The proof is similar to the previous one of Corollary 3.6. �

Corollary 3.7. Let D,K,P1, P2 and Q be as in Theorem 3.1. Let R be a relation
linking y ∈ K,x ∈ D, t ∈ D. In addition, assume:

(i) For any fixed t ∈ D the relation R(., ., t) linking elements y ∈ K,x ∈ Dis
closed;

(ii) R is Q-KKM.
Then, there exists x̄ ∈ D such that x̄ ∈ P1(x̄) and

R(y, x̄, t) holds for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

Proof. We define the multivalued mappings M : K ×D → 2X , F : K ×D×D →
2D by

M(y, x) = {t ∈ D| R(y, x, t) holds}

and

F (y, x, t) = t − M(y, x), (y, x, t) ∈ K × D × D.

For any fixed t ∈ D, we set

A = {x ∈ D| R(y, x, t) holds for all y ∈ Q(x, t)}

= {x ∈ D| 0 ∈ F (y, x, t) for all y ∈ Q(x, t)}.

By arguments as in the proof of Corollary 3.3, we conclude that this subset is
closed in D, therefore, the set

B = D \ A = {x ∈ D| 0 /∈ F (y, x, t) for some y ∈ Q(x, t)}

is open in D.
Further, it is easy to check that R is Q-KKM, so is the multivalued mapping

F . Therefore, to complete the proof of the corollary, it remains to apply Theorem
3.1 to deduce that there is x̄ ∈ D such that x̄ ∈ P1(x̄) and

R(y, x̄, t) holds for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

�
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Corollary 3.8. Let D,K,P1, P2 and Q be as in Theorem 3.1. Let G : K ×D →
2Y be a multivalued mapping. In addition, assume:

(i) For any fixed t ∈ D the multivalued mapping G(., t) : K → 2Y is closed;
(ii) For any finite set {t1, ..., tn} ⊂ D and x ∈ co{t1, ..., tn} there is an index

j ∈ {1, ..., n} such that

x ∈ G(y, tj) holds for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

Then, there exists x̄ ∈ D such that

x̄ ∈ P1(x̄) ∩
{

⋂

t∈P2(x̄)

⋂

y∈Q(x̄,t)

G(y, t)
}

.

Proof. We define the multivalued mapping F : K × D × D → 2X by

F (y, x, t) = x − G(y, t), (y, x, t) ∈ K × D × D.

For any fixed t ∈ D, we claim that the set

A = {x ∈ D| 0 ∈ F (y, x, t) for all y ∈ Q(x, t)}

= {x ∈ D| x ∈ G(y, t) for all y ∈ Q(x, t)}

is closed in D. Indeed, assume that a net {xα} ⊂ A and xα → x. Take arbitrary
y ∈ Q(x, t). Since Q(., t) is a lower semicontinuous mapping and xα → x there
exists a net {yα}, yα ∈ Q(xα, t) such that yα → y. Therefore, xα ∈ G(yα, t), xα →
x; yα → y, the closedness of G(., t) implies that x ∈ G(y, t). This means that
x ∈ A and A is closed. Hence, the set

B = D \ A = {x ∈ D| 0 /∈ x − G(y, t) = F (y, x, t) for some y ∈ Q(x, t)}

is open in D.
Further, Condition (ii) implies that for any finite set {t1, ..., tn} ⊂ D and

x ∈ co{t1, ..., tn} there is an index j ∈ {1, ..., n} such that

0 ∈ F (y, x, tj) holds for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

This implies that F is Q− KKM.
Therefore, to complete the proof of the corollary, it remains to apply Theorem

3.1 to conclude that there is x̄ ∈ D such that x̄ ∈ P1(x̄) and

0 ∈ F (y, x̄, t) holds for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

This yields

x̄ ∈ P1(x̄) ∩
{

⋂

t∈P2(x̄)

⋂

y∈Q(x̄,t)

G(y, t)
}

.

�

As a special case of the above corollary, we obtain the following corollary which
is the KKM Theorem.

Corollary 3.9. Let D be a compact convex subset of X. Then, for any KKM
mapping G : D → 2D with nonempty closed values, one has

⋂

t∈D G(t) 6= ∅.

Proof. It is obvious. �
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Corollary 3.10. Let D,K,P1, P2 and Q be as in Theorem 3.1. Let F ⊆ K ×
D × D be a subset satisfying the following conditions:

(i) For any fixed t ∈ D the set

B = {x ∈ D| (y, x, t) /∈ F for some y ∈ Q(x, t) }

is open in D;
(ii) For any finite set {t1, ..., tn} ⊂ D and x ∈ co{t1, ..., tn} there is an index

j ∈ {1, ..., n} such that

(y, x, tj) ∈ F for all t ∈ P2(x) and y ∈ Q(x, t).

Then, there exists x̄ ∈ D such that x̄ ∈ P1(x̄) and

(y, x̄, t) ∈ F for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

(This implies that
⋃

t∈P2(x) Q(x̄, t) × {x̄} × {t} ⊆ F).

Proof. We define the multivalued mappings M : K ×D → 2X , F : K ×D×D →
2D by

M(y, x) = {t ∈ D| (y, x, t) ∈ F}, (y, x) ∈ K × D,

and

F (y, x, t) = t − M(y, x), (y, x, t) ∈ K × D × D.

By Condition (i), for any fixed t ∈ D, the set

B = {x ∈ D| 0 /∈ F (y, x, t) for some y ∈ Q(x, t) }

= {x ∈ D| (y, x, t) /∈ F for some y ∈ Q(x, t) }

is open in D. Further, Condition (ii) implies that the multivalued mapping F is
Q− KKM. Therefore, to complete the proof of the corollary, it remains to apply
Theorem 3.1. �

Further, let D,E,K be subsets as in the introduction and P : D → 2E , Q :
D × E → 2K and F : K × D × E → 2Y be multivalued mappings. We are
interested in the following generalized quasi-equilibrium problem: Find x̄ ∈ D
such that

0 ∈ F (y, x̄, t) for all t ∈ P (x̄) and y ∈ Q(x̄, t).

We define the multivalued mapping T : E → 2D by

T (t) = (D \ P−1(t)) ∪ {x ∈ D| 0 ∈ F (y, x, t) for all y ∈ Q(x, t)}.

Theorem 3.11. The following conditions are sufficient for the above problem to
have a solution:

(i) D is a nonempty compact subset;
(ii)

⋂

t∈E clT (t) 6= ∅ implies
⋂

t∈E T (t) 6= ∅;

(iii) F : K × D × E → 2Y is a generalized Q − KKM multivalued mapping.

Proof. Since F is a generalized Q − KKM multivalued mapping, it implies that
for any t ∈ E there is x ∈ D such that 0 ∈ F (y, x, t) for all y ∈ Q(x, t). This
shows that T (t) is nonempty for any t ∈ E. Now, we claim that for any finite set
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{t1, ..., tn} ⊂ E, one has
⋂n

i=1 clT (ti) 6= ∅. Indeed, assume on the contrary that
there exists a finite set A = {t1, ..., tn} ⊂ E such that

n
⋂

i=1

clT (ti) = ∅. (1)

Since the multivalued mapping F is generalized Q−KKM, there exists a finite
subset {x1, ..., xn} ⊂ D such that for any subset {xi1 , ..., xik} ⊂ {x1, ..., xn} and
for any x ∈ co{xi1 , ..., xik} there exists tij ∈ {t1, ..., tn} such that 0 ∈ F (y, x, tij )
for all y ∈ Q(x, tij ). We take B = co{x1, ..., xn} ⊂ D. It is clear that B is
a nonempty convex compact subset in D. We define the multivalued mapping
S : B → 2B by

S(x) = co{xi| x /∈ clT (ti) }. (2)

It implies from (1) that for any x ∈ B,S(x) is a nonempty convex compact subset
in D. Further, we prove that for each z ∈ B there is an open subset Oz in B
such that Oz ⊆ S−1(z). Indeed, if S−1(z) = ∅, we take Oz = ∅. Otherwise, let
x ∈ S−1(z). We define

∆x =
⋃

i∈Ix

clT (ti), where Ix = {i ∈ {1, ..., n}| x /∈ clT (ti) }.

It is easy to see that ∆x is closed in E and then Ox = E \ ∆x is open in E.
Now, we affirm that Ox ⊆ S−1(z). In fact, let v ∈ Ox = E \ ∆x. It implies

that v /∈ ∆x and hence v /∈ clT (ti) for every i ∈ Ix. Then, by the definition of
S, we have S(x) ⊆ S(v). Since z ∈ S(x), it follows that z ∈ S(v) and therefore
v ∈ S−1(z) for all v ∈ Ox. Lastly, we take Oz =

⋃

x∈S−1(z) Ox which is also open

in B and Oz ⊆ S−1(z) for every z ∈ B. Further, we show that B =
⋃

z∈B Oz.

Indeed, for z ∈ B, there is v ∈ B such that v ∈ S(z) and then z ∈ S−1(v). It has
been shown z ∈ Oz ⊆ S−1(v) and Ov =

⋃

z∈S−1(v) Oz . Therefore, we conclude

that B ⊆
⋃

z∈B Oz. Since the other inclusion is obviously valid, the result holds.
Thus, we apply Theorem 2.10 in Section 2 to conclude that there exists x̄ ∈ B

such that x̄ ∈ S(x̄). We have

x̄ ∈ S(x̄) = co{xi| i ∈ Ix̄ } ⊆
⋃

i∈Ix̄

clT (ti).

At time, by the definition of Ix̄ it results that x /∈
⋃

i∈Ix̄
clT (ti). So, we obtain

a contradiction. Thus, we deduce that the family {clT (t), t ∈ E} has the finite
intersection property. Applying Theorem 6 in [1], we conclude that

⋂

t∈E clT (t) 6=
∅ and using Condition (ii), we then have

⋂

t∈E T (t) 6= ∅.
Consequently, take x̄ ∈

⋂

t∈E T (t), it gives x̄ ∈ T (t) for all t ∈ E. For arbitrary

t ∈ P (x̄), it yields x̄ /∈ D \ P−1(t). By the definition of T , we affirm that
0 ∈ F (y, x̄, t) for all y ∈ Q(x, t) and the proof of the theorem is complete. �

Remark 3.12. (1) We recall that a multivalued mapping T : E → 2D is said to
be intersectionally closed on E if

⋂

t∈E clT (t) = cl(
⋂

t∈E T (t)). Therefore, every
intersectionally closed multivalued mapping satisfies Condition (ii).
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(2) Let Q and F be as above. If for any fixed t ∈ E the multivalued mapping
F (·, ·, t) : K × D → 2Y is closed and the multivalued mapping Q(·, t) : D → 2K

is lower semicontinuous, then the set

{x ∈ D| 0 ∈ F (y, x, t) for all y ∈ Q(x, t)}

is closed. Therefore, in this case, the multivalued mapping T defined as above
satisfies Condition (ii) if P−1(t) is open for each t ∈ E.

(3) Let both Λ and X be topological spaces. We recall that a multivalued
mapping G : Λ → 2X is said to be outer-continuous at λ0 ∈ Λ if

lim sup
λ→λ0

G(λ) ⊆ G(λ0),

where lim supλ→λ0
G(λ) denotes the Kuratowski-Painlevé outer limit of G at λ0,

that is x ∈ lim supλ→λ0
G(λ) if and only if there is a net λα converging to λ0, λα 6=

λ0 and xα ∈ G(λα) such that xα converges to x.. Further, we assume that
Q and F are given as above. Moreover, for any fixed t ∈ E the multivalued
mapping F (·, ·, t) : K×D → 2Y is outer-continuous and the multivalued mapping
Q(·, t) : D → 2K is lower semicontinuous, then the set

A = {x ∈ D| 0 ∈ F (y, x, t) for all y ∈ Q(x, t)}

is closed.
Indeed, assume that a net {xα} ⊂ A converges to x. We have

0 ∈ F (yα, xα, t) for all y ∈ Q(xα, t).

For each y ∈ Q(x, t) there exists yα ∈ Q(xα, t) and yα converges to y. There-
fore, we have 0 ∈ F (yα, xα, t) and (yα, xα) converges to (y, x). This gives
0 ∈ lim sup(yα,xα)→(y,x) F (yα, xα, t) ⊆ F (y, x, t) for all y ∈ Q(x, t) and so x ∈ A.
This shows that A is closed.

Further, let G : K×D → 2Y , P : D → 2E and Q : D×E → 2E be multivalued
mappings. We define the multivalued mapping S : E → 2D by

S(t) = (D \ P−1(t)) ∪ {x ∈ D| x ∈ G(y, t) for all y ∈ Q(x, t)}.

We have

Corollary 3.13. Let D,K,E,P and Q be as above. Let G : K × D → 2Y be a
multivalued mapping. In addition, assume:

(i) D is compact;
(ii)

⋂

t∈E clS(t) 6= ∅ implies
⋂

t∈E S(t) 6= ∅;
(iii) For any finite set {t1, ..., tn} ⊂ E there is a finite set {x1, ..., xn} ⊆ D such

that for any x ∈ co{xi1 , ..., xik} there is a tij ∈ {ti1 , ..., tin} such that x ∈ G(y, tij )
for all y ∈ Q(x, tij ).

Then, there exists x̄ ∈ D such that

x̄ ∈
⋂

t∈P (x̄)

⋂

y∈Q(x̄,t)

G(y, t).
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Proof. We define the multivalued mapping F : K × D × E → 2X by

F (y, x, t) = x − G(y, t), (y, x, t) ∈ K × D × E.

Condition (iii) implies that for any finite set {t1, ..., tn} ⊂ E there is a finite set
{x1, ..., xn} ⊆ D such that for each x ∈ co{xi1 , ..., xik} there is a tij ∈ {ti1 , ..., tin}
such that x ∈ G(y, tij ) for all y ∈ Q(x, tij ). This implies that F is Q− KKM.

Therefore, to complete the proof of the corollary, it remains to apply Theorem
3.11 to conclude that there is x̄ ∈ D such that

0 ∈ F (y, x̄, t) holds for all t ∈ P (x̄) and y ∈ Q(x̄, t).

This yields

x̄ ∈
⋂

t∈P2(x̄)

⋂

y∈Q(x̄,t)

G(y, t).

This completes the proof of the corollary. �

Corollary 3.14. Let D,K,E,P and Q be as above with P−1(t) being open for
any t ∈ E. Let F ⊆ K × D × E be a subset satisfying the following conditions:

(i) D is nonempty compact;
(ii) For any fixed t ∈ E the set

B = {x ∈ D| (y, x, t) /∈ F for some y ∈ Q(x, t) }

is open in D;
(iii) For any finite set {t1, ..., tn} ⊂ E there is a finite set {x1, ..., xn} ⊆ D such

that for any x ∈ co{xi1 , ..., xik} there is a tij ∈ {ti1 , ..., tin} such that (y, x, tij ) ∈
F for all y ∈ Q(x, tij ).

Then, there exists x̄ ∈ D such that

(y, x̄, t) ∈ F for all t ∈ P (x̄) and y ∈ Q(x̄, t).

(This implies that
⋃

t∈P (x̄) Q(x̄, t) × {x̄} × {t} ⊆ F).

Proof. We define the multivalued mappings M : K ×D → 2X , F : K ×D×D →
2D by

M(y, x) = {t ∈ D| (y, x, t) ∈ F , }, (y, x) ∈ K × D,

and

F (y, x, t) = t − M(y, x), (y, x, t) ∈ K × D × D.

By Condition (i), for any fixed t ∈ D, the set

B = {x ∈ D| 0 /∈ F (y, x, t) for some y ∈ Q(x, t) }

= {x ∈ D| (y, x, t) /∈ F for some y ∈ Q(x, t) }

is open in D. Therefore, for any t ∈ E, the set

T (t) = (D \ P−1(t)) ∪ {x ∈ D| 0 ∈ F (y, x, t) for all y ∈ Q(x, t)}

is closed in D. Thus, Condition (ii) of Theorem 3.11 is satisfied. Further, Con-
dition (ii) implies that the multivalued mapping F is Q− KKM. Therefore, to
complete the proof of the corollary, it remains to apply Theorem 3.11. �
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