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SOME MULTIPLIER DOUBLE SEQUENCE SPACES

KULDIP RAJ AND SUNIL K. SHARMA

Abstract. In the present paper we define multiplier double sequence spaces
χ2
M [ĉ,∆m, u, p, q] and Λ2

M [ĉ,∆m, u, p, q] by using a sequence of Orlicz functions
M = (Mmn) and a multiplier function u = (umn). We also make an effort
to study some topological properties and inclusion relations between these
spaces.

1. Introduction and preliminaries

The initial work on double sequences is found in Bromwich [4]. Later on it
was studied by Hardy [6], Moricz [12], Moricz and Rhoades [13], Tripathy ([28],
[29]), Basarir and Sonalcan [2] and many others. Hardy [7] introduced the notion
of regular convergence for double sequences. Quite recently, Zeltser [31] in her
Ph.D thesis has essentially studied both the theory of topological double sequence
spaces and the theory of summability of double sequences. Mursaleen and Edely
[17] have recently introduced the statistical convergence and Cauchy convergence
for double sequences and given the relation between statistical convergent and
strongly Cesaro summable double sequences. Subsequently, Mursaleen [15] and
Mursaleen and Edely [18] have defined the almost strong regularity of matrices
for double sequences and applied these matrices to establish a core theorem and
introduced the M -core for double sequences and determined those four dimen-
sional matrices transforming every bounded double sequences x = (xmn) into one
whose core is a subset of the M -core of x. More recently, Altay and Basar [1]
have defined the spaces BS, BS(t), CSp, CSbp, CSr and BV of double sequences
consisting of all double series whose sequence of partial sums are in the spaces
Mu, Mu(t), Cp, Cbp, Cr and Lu, respectively and also examined some properties
of these sequence spaces and determined the α-duals of the spaces BS, BV, CSbp
and the β(v)-duals of the spaces CSbp and CSr of double series. Now, recently
Basar and Sever [3] have introduced the Banach space Lq of double sequences
corresponding to the well known space `q of single sequences and examined some
properties of the space Lq. Quite recently Subramanian and Misra [27] have
studied the space χ2

M (p, q, u) of double sequences and gave some inclusion rela-
tions. By the convergence of a double sequence we mean the convergence of the
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Pringsheim sense i.e. a double sequence x = (xkl) has Pringsheim limit L (de-
noted by P − limx = L) provided that given ε > 0 there exists n ∈ N such that
|xkl−L| < ε for all k, l > n see [20]. We shall write more briefly as P -convergent.
The double sequence x = (xkl) is bounded if there exists a positive number M
such that |xkl| < M for all k and l. Let l′′∞ be the space of all bounded double
sequences such that ||xkl||∞,2 = sup

kl
|xkl| <∞.

The notion of difference sequence spaces was introduced by Kizmaz [9], who
studied the difference sequence spaces l∞(∆), c(∆) and co(∆). The notion was
further generalized by Et and Colak [5] by introducing the spaces l∞(∆n), c(∆n)
and c0(∆

n). Let w be the space of all complex or real sequences x = (xk) and let
m be non-negative integers, then for Z = l∞, c, c0 we have sequence spaces

Z(∆m) = {x = (xk) ∈ w : (∆mxk) ∈ Z},

where ∆mx = (∆mxk) = (∆m−1xk −∆m−1xk+1) and ∆0xk = xk for all k ∈ N,
which is equivalent to the following binomial representation

∆mxk =
m∑
v=0

(−1)v
(
m
v

)
xk+v.

Taking m = 1, we get the spaces which were introduced and studied by Kizmaz
[9].
An Orlicz function M : [0,∞) → [0,∞) is a continuous, non-decreasing and
convex function such that M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as
x −→∞.
Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to define the
following sequence space

`M =
{
x ∈ w :

∞∑
k=1

M
( |xk|
ρ

)
<∞

}
which is called an Orlicz sequence space. Also `M is a Banach space with the
norm

||x|| = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|
ρ

)
≤ 1
}
.

Also, it was shown in [10] that every Orlicz sequence space `M contains a subspace
isomorphic to `p(p ≥ 1). The ∆2- condition is equivalent to M(Lx) ≤ LM(x),
for all L with 0 < L < 1. An Orlicz function M can always be represented in the
following integral form

M(x) =

∫ x

0
η(t)dt

where η is known as the kernel of M , is right differentiable for t ≥ 0, η(0) =
0, η(t) > 0, η is non-decreasing and η(t) → ∞ as t → ∞. For M(t) = tp(1 ≤
p < ∞), the spaces `M coincide with the classical sequence space `p. If X is a
sequence space, we give the following definitions:

(1) X ′ = the continuous dual of X;
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(2) Xα =
{
a = (amn) :

∞∑
m,n=1

|amnxmn| <∞, for each x ∈ X
}

;

(3) Xβ =
{
a = (amn) :

∞∑
m,n=1

amnxmn, is convergent, for each x ∈ X
}

;

(4) Xγ =
{
a = (amn) : sup

MN≥1

∣∣∣ M,N∑
m,n=1

amnxmn

∣∣∣ <∞, for each x ∈ X
}

;

(5) let X be an FK-space⊃ ϕ; then Xf =
{
f(ζmn) : f ∈ X ′

}
;

(6) Xδ =
{
a = (amn) : sup

mn
|amnxmn|

1
mn <∞, for each x ∈ X

}
;

Xα, Xβ, Xγ andXδ are called α-(or Kothe-Toeplitz) dual ofX, β- (or generalized-
Kothe-Toeplitz) dual of X, γ- dual of X, δ-dual of X respectively. Xα is defined
by Kamthan and Gupta [8]. It is clear that Xα ⊂ Xβ and Xα ⊂ Xγ , but
Xβ 6⊂ Xγ since the sequence of partial sums of a double convergent series need
not be bounded.
Throughout w, χ and Λ denote the classes of all, gai and analytic scalar-valued
single sequences, respectively. We write w2 for the set of all complex sequences
(xmn), where m,n ∈ N, the set of positive integers. Then w2 is a linear space
under the coordinate wise addition and scalar multiplication.

The double series

∞∑
m,n=1

xmn is called convergent if and only if the double sequence

(smn) is convergent, where smn =

m,n∑
i,j=1

xij (m,n ∈ N) .

A sequence x = (xmn) is said to be double analytic if sup
mn
|xmn|

1
m+n < ∞. The

vector space of all double analytic sequences will be denoted by Λ2. A sequence

x = (xmn) is called double gai sequence if ((m+n)!|xmn|)
1

m+n → 0 as m,n→∞.
The vector space of double gai sequences will be denoted by χ2. By ϕ, we denote
the set of all finite sequences.

Consider a double sequence x = (xmn). The (m,n)th section x[m,n] of the se-

quence is defined by x[m,n] =

m,n∑
i,j=1

xijζij for all m,n ∈ N; where ζij denotes the

double sequence whose only non zero term is 1
(i+j)! in the (i, j)th place for each

i, j ∈ N.
A double sequence space E is said to be solid if αklxkl ∈ E whenever xkl ∈ E
and for all double sequences αkl of scalars with |αkl| ≤ 1, for all k, l ∈ N.
Let X be a linear metric space. A function p : X → R is called paranorm, if

(1) p(x) ≥ 0 for all x ∈ X,
(2) p(−x) = p(x) for all x ∈ X,
(3) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,
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(4) if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a
sequence of vectors with p(xn − x)→ 0 as n→∞, then p(λnxn − λx)→
0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called a total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric
of any linear metric space is given by some total paranorm (see [30], Theorem
10.4.2, p. 183). For more details about sequence spaces (see [11, 14, 16, 19, 21-
26]).
The following inequality will be used throughout the paper. Let p = (pmn)
be a sequence of positive real numbers with 0 ≤ pmn ≤ sup pmn = G, K =
max(1, 2G−1) then

(1.1) |amn + bmn|pmn ≤ K{|amn|pmn + |bmn|pmn}

for all m,n and amn, bmn ∈ C. Also |a|pmn ≤ max(1, |a|G) for all a ∈ C.
Let w2 denote the set of all complex double sequences, M be an Orlicz function
and p = (pmn) be a bounded sequence of positive real numbers. Then

χ2
M =

{
x ∈ w2 :

(
M
(((m+ n)!|xmn|)

1
m+n

ρ

))
→ 0 as m,n→∞ for some ρ > 0

}
and

Λ2
M =

{
x ∈ w2 : sup

m,n≥1

(
M
((|xmn|)

1
m+n

ρ

))
<∞ for some ρ > 0

}
.

A sequence x ∈ Λ2 is said to be almost convergent if all Banach limits of x
coincide. Then

ĉ =
{
x = (xmn) :

1

µγ

µγ∑
m,n=1

xm+s,n+s → 0, as µ, γ →∞, uniformly in s
}
.

Let M = (Mmn) be a sequence of Orlicz functions, p = (pmn) be a bounded
sequence of positive real numbers and u = (umn) be any sequence of strictly
positive real numbers. Also, let (X, q) be a seminormed space over the field C of
complex numbers with the seminorm q and by w2(X) we denote the space of all
X-valued double sequences. Now, we define the following sequence spaces in this
paper:

χ2
M [ĉ,∆m, u, p, q] =

{
x = (xmn) ∈ w2(X) :

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

= 0

uniformly in s, for some ρ > 0
}
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and

Λ2
M [ĉ,∆m, u, p, q] =

{
x = (xmn) ∈ w2(X) :

sup
s,µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

= 0

uniformly in s, for some ρ > 0
}
.

If Mmn(x) = x for all m,n, we get

χ2[ĉ,∆m, u, p, q] =
{
x = (xmn) ∈ w2(X) :

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

= 0

uniformly in s, for some ρ > 0
}

and

Λ2[ĉ,∆m, u, p, q] =
{
x = (xmn) ∈ w2(X) :

sup
s,µγ→∞

1

µγ

µγ∑
mn=1

umn

[(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

= 0

uniformly in s, for some ρ > 0
}
.

If pmn = 1 for all m,n, we get

χ2
M [ĉ,∆m, u, q] =

{
x = (xmn) ∈ w2(X) :

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]
= 0

uniformly in s, for some ρ > 0
}

and

Λ2
M [ĉ,∆m, u, q] =

{
x = (xmn) ∈ w2(X) :

sup
s,µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]
= 0

uniformly in s, for some ρ > 0
}
.

The main aim of the present paper is to study some topological properties and
inclusion relations between the above defined sequence spaces.
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2. Main results

Theorem 2.1. LetM = (Mmn) be a sequence of Orlicz functions, p = (pmn) be a
bounded sequence of positive real numbers and u = (umn) be a sequence of strictly
positive real numbers. Then the spaces χ2

M [ĉ,∆m, u, p, q] and Λ2
M [ĉ,∆m, u, p, q]

are linear over the set of complex numbers C.

Proof. Let x = (xmn) ∈ χ2
M [ĉ,∆m, u, p, q]. Let α, β ∈ C. Then there exist positive

real numbers ρ1, ρ2 such that

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ1

))]pmn

= 0

and

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ2

))]pmn

= 0.

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since M = (Mmn) is non-decreasing and convex
and therefore by using inequality (1.1), we have

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆m(αxm+s,n+s + βym+s,n+s|))

1
ms+ns

ρ3

))]pmn

≤ lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
((((m+ n)!|∆mαxm+s,n+s|)

1
ms+ns

ρ3

)
+
(((m+ n)!|∆mβym+s,n+s|)

1
ms+ns

ρ3

)))]pmn

≤ K lim
µγ→∞

1

µγ

µγ∑
mn=1

1

2mn
umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ1

))]pmn

+K lim
µγ→∞

1

µγ

µγ∑
mn=1

1

2mn
umn

[
Mmn

(
q
(((m+ n)!|∆mym+s,n+s|)

1
ms+ns

ρ2

))]pmn

≤ K lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ1

))]pmn

+K lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mym+s,n+s|)

1
ms+ns

ρ2

))]pmn

= 0.

Thus αx + βy ∈ χ2
M [ĉ,∆m, u, p, q]. This proves that χ2

M [ĉ,∆m, u, p, q] is a linear
space. Similarly, we can prove that Λ2

M [ĉ,∆m, u, p, q] is a linear space. This
completes the proof of the theorem. �

Theorem 2.2. Let M = (Mmn) be a sequence of Orlicz functions, p = (pmn)
be a bounded sequence of positive real numbers and u = (umn) be a sequence of
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strictly positive real numbers. Then χ2
M [ĉ,∆m, u, p, q] is a paranormed space with

g(x) = inf
{
ρpmn/H :

sup
µγ≥1

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

≤ 1,

ρ > 0
}
,

where H = max(1, sup
mn

pmn).

Proof. (i) Clearly g(x) ≥ 0 for x = (xmn) ∈ χ2
M [ĉ,∆m, u, p, q]. Since M(0) = 0,

we get g(0) = 0.
(ii) g(−x) = g(x).
(iii) Let x = (xmn), y = (ymn) ∈ χ2

M [ĉ,∆m, u, p, q], then there exist positive
numbers ρ1, ρ2 > 0 such that

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ1

))]pmn

= 0

and

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mym+s,n+s|)

1
ms+ns

ρ2

))]pmn

= 0.

Let ρ = ρ1 + ρ2. Then by using Minkowski’s inequality, we have

umn

[
Mmn

(
q
(((m+ n)!|∆m(xm+s,n+s + ym+s,n+s|))

1
ms+ns

ρ

))]pmn

= umn

[
Mmn

(
q

((m+ n)!|∆m(xm+s,n+s + ym+s,n+s|))
1

ms+ns

ρ1 + ρ2

)]pmn

≤ umn
[
Mmn

(
q
(((m+ n)!|∆m(xm+s,n+s|))

1
ms+ns

ρ1 + ρ2

))]pmn

+ umn

[
Mmn

(
q
(((m+ n)!|∆m(ym+s,n+s|))

1
ms+ns

ρ1 + ρ2

))]pmn

≤
( ρ1
ρ1 + ρ2

)
umn

[
Mmn

(
q
(((m+ n)!|∆m(xm+s,n+s|))

1
ms+ns

ρ1

))]pmn

+
( ρ1
ρ1 + ρ2

)
umn

[
Mmn

(
q
(((m+ n)!|∆m(ym+s,n+s|))

1
ms+ns

ρ2

))]pmn

and thus
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g(x+ y) = inf
{

(ρ1 + ρ2)
pmn/H :

sup
µγ≥1

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆m(xm+s,n+s + ym+s,n+s)|)

1
ms+ns

ρ1 + ρ2

))]pmn
}

≤ inf
{

(ρ1)
pmn/H :

sup
µγ≥1

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ1

))]pmn
}

+ inf
{

(ρ2)
pmn/H :

sup
µγ≥1

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mym+s,n+s|)

1
ms+ns

ρ2

))]pmn
}
.

Now, let λ ∈ C, then the continuity of the product follows from the following
equality

g(λx) = inf
{
ρpmn/H :

sup
µγ≥1

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mλxm+s,n+s|)

1
ms+ns

ρ

))]pmn
}

= inf
{

(|λ|r)pmn/H :

sup
µγ≥1

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

r

))]pmn
}
,

where r = ρ
|λ| . This completes the proof of the theorem. �

Theorem 2.3. Let M = (Mmn) and T = (Tmn) be two sequences of Orlicz
functions. Then

χ2
M [ĉ,∆m, u, p, q] ∩ χ2

T [ĉ,∆m, u, p, q] ⊆ χ2
M+T [ĉ,∆m, u, p, q].

Proof. It is easy to prove, so we omit the details. �

Proposition 2.4. Let M = (Mmn) and T = (Tmn) be two sequences of Orlicz
functions and let q1 and q2 be two seminorms on X, we have
(i) χ2

M [ĉ,∆m, u, p, q1] ∩ χ2
M [ĉ,∆m, u, p, q2] ⊆ χ2

M [ĉ,∆m, u, p, q1 + q2].
(ii) If q1 is stronger than q2 then χ2

M [ĉ,∆m, u, p, q1] ⊆ χ2
M [ĉ,∆m, u, p, q2].

(iii) If q1 is equivalent to q2 then χ2
M [ĉ,∆m, u, p, q1] = χ2

M [ĉ,∆m, u, p, q2].

Proof. It is trivial, so we omit it. �

Theorem 2.5. (i) Let 0 ≤ pmn ≤ rmn and
{
rmn
pmn

}
be bounded. Then

χ2
M [ĉ,∆m, u, r, q] ⊂ χ2

M [ĉ,∆m, u, p, q].

(ii) u1 ≤ u2 implies χ2
M [ĉ,∆m, u1, p, q] ⊂ χ2

M [ĉ,∆m, u2, p, q].
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Proof. (i) Let x = (xmn) ∈ χ2
M [ĉ,∆m, u, r, q]. Then

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]rmn

= 0.

Let

tmn = lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]rmn

and λmn = pmn

rmn
. Since pmn ≤ rmn, we have 0 ≤ λmn ≤ 1. Take 0 < λ < λmn.

Define umn = tmn(tmn ≥ 1); umn = 0 (tmn < 1); and vmn = 0 (tmn ≥ 1); vmn
= tmn (tmn < 1); tmn = umn + vmn; tλmn

mn ≤ vλmn
mn .

Now it follows that

(2.1) uλmn
mn ≤ tmn and vλmn

mn ≤ vλmn.
i.e. tλmn

mn = uλmn
mn + vλmn

mn ; tλmn
mn ≤ tmn + vλmn by (2.1). Thus

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))rmn
]λmn

≤ lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]rmn

.

This implies

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))rmn
] pmn

rmn

≤ lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]rmn

.

This implies

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

≤ lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]rmn

.

But lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]rmn

= 0,

we have

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

= 0.

Hence x = (xmn) ∈ χ2
M [ĉ,∆m, u, p, q]. This proves that χ2

M [ĉ,∆m, u, r, q] ⊂
χ2
M [ĉ,∆m, u, p, q].
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(ii) The proof is easy, so omitted. �

Theorem 2.6. Let M = (Mmn) be a sequence of Orlicz functions, p = (pmn)
be a bounded sequence of positive real numbers and u = (umn) be a sequence of
strictly positive real numbers. Then the following statements are equivalent:
(i) Λ2[ĉ,∆m, u, p, q] ⊆ Λ2

M [ĉ,∆m, u, p, q]
(ii) χ2[ĉ,∆m, u, p, q] ⊆ Λ2

M [ĉ,∆m, u, p, q]

(iii) sup
µγ

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

<∞.

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii) Let χ2[ĉ,∆m, u, p, q] ⊆ Λ2

M [ĉ,∆m, u, p, q]. Suppose that (iii) is not
satisfied. Then for some ρ > 0

sup
µγ

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

=∞

and therefore there is a sequence (µiγi) of positive integers such that

1

µiγi

µiγi∑
mn=1

umn

[
Mmn

(
q
( i−1
ρ

))]pmn

> i, i = 1, 2, . . . .

Define x = (xmn) by

(2.2)
(

(m+ n)!xmn

) 1
m+n

=

 i−1, if 1 ≤ m,n ≤ µiγi, i = 1, 2, . . .

0, if m > µi, n > γi.

Then x ∈ χ2[ĉ,∆m, u, p, q] but by (2.2),x /∈ Λ2
M [ĉ,∆m, u, p, q] which contradicts

(ii). Hence (iii) must hold.
(iii) ⇒ (i) Let (iii) be satisfied and x = (xmn) ∈ Λ2[ĉ,∆m, u, p, q]. Suppose that
x /∈ Λ2[ĉ,∆m, u, p, q]. Then

(2.3) sup
s,(µγ)

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

=∞.

Let t =
(
(m+ n)!|∆mxm+s,n+s|

) 1
ms+ns for each m,n and fixed s, then by (2.3)

sup
s,(µγ)

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
( t
ρ

))]pmn

=∞,

which contradicts (iii). Hence (i) must hold. This completes the proof. �

Theorem 2.7. Let 1 ≤ pmn ≤ sup
mn

pmn. Let M = (Mmn) be a sequence of

Orlicz functions, p = (pmn) be a bounded sequence of positive real numbers and
u = (umn) be a sequence of strictly positive real numbers. Then the following
statements are equivalent:
(i) χ2

M [ĉ,∆m, u, p, q] ⊆ χ2[ĉ,∆m, u, p, q];
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(ii) χ2
M [ĉ,∆m, u, p, q] ⊆ Λ2[ĉ,∆m, u, p, q];

(iii) inf
µγ

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
( t
ρ

))]pmn

> 0, (t, ρ > 0),

where t =
(
(m+ n)!|∆mxm+s,n+s|

) 1
ms+ns .

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii) Let χ2[ĉ,∆m, u, p, q] ⊆ Λ2[ĉ,∆m, u, p, q].
Suppose that (iii) is not satisfied. Then for some ρ > 0

(2.4) inf
µγ

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
( t
ρ

))]pmn

= 0 (t, ρ > 0).

We can choose an index sequence (µiγi) of positive integers such that

1

µiγi

µiγi∑
mn=1

umn

[
Mmn

(
q
( i
ρ

))]pmn

> i−1, i = 1, 2, . . . .

Define x = (xmn) by(
(m+ n)!xmn

) 1
m+n

=

{
i, if 1 ≤ m,n ≤ µiγi, i = 1, 2, . . .
0, if m,n > µi, γi.

Thus by (2.4) x ∈ χ2
M [ĉ,∆m, u, p, q] but x /∈ Λ2[ĉ,∆m, u, p, q] which contradicts

(ii). Hence (iii) must hold.
(iii) ⇒ (i) Let (iii) be satisfied and x = (xmn) ∈ χ2

M [ĉ,∆m, u, p, q], then

(2.5) lim
µγ

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

= 0

uniformly in s.
Suppose that x /∈ χ2[ĉ,∆m, u, p, q]. Then for some number ε0 > 0 and index µ0γ0,

we have (ms+ns)!|∆mxms+ns |
1

m+s,n+s ≥ ε0, for some s > s′ and 1 ≤ m,n ≤ µ0γ0.
Therefore,

umn

[
Mmn

(
q
(ε0
ρ

))]pmn

≤ umn
[
Mmn

(
q
(((ms + ns)|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

and consequently by (2.5). Hence

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(ε0
ρ

))]pmn

= 0

which contradicts (iii). Hence χ2
M [ĉ,∆m, u, p, q] ⊆ χ2[ĉ,∆m, u, p, q]. This com-

pletes the proof. �

Theorem 2.8. Let 1 ≤ pmn ≤ sup
mn

pmn <∞. The inclusion

Λ2
M [ĉ,∆m, u, p, q] ⊆ χ2[ĉ,∆m, u, p, q] holds if and only if
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(2.6)
1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
( t
ρ

))]pmn

=∞ (t, ρ > 0).

Proof. Let Λ2
M [ĉ,∆m, u, p, q] ⊆ χ2[ĉ,∆m, u, p, q]. Suppose that (2.6) does not

hold. Therefore there is a number t0 > 0 and an index sequence (µiγi) such that

(2.7)
1

µiγi

µiγi∑
mn=1

umn

[
Mmn

(
q
( t0
ρ

))]pmn

≤ N <∞ i = 1, 2, . . . .

Define the sequence x = (xmn) by

xmn =

{
t0, if 1 ≤ mn ≤ µiγi, i = 1, 2, . . .
0, if mn > µiγi.

Thus by (2.7), x ∈ Λ2
M [ĉ,∆m, u, p, q], but x /∈ χ2[ĉ,∆m, u, p, q]. Hence (2.6) must

hold.
Conversely, let (2.6) hold. If x ∈ Λ2

M [ĉ,∆m, u, p, q], then for each s and µγ

(2.8)
1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

≤ N <∞.

Suppose that x /∈ χ2[ĉ,∆m, u, p, q]. Then for some number ε0 > 0 there is a
number s0 and an index µ0γ0 such that(

(m+ n)!|∆mxm+s,n+s|
) 1

ms+ns ≥ ε0 for s ≥ s0.
Therefore

umn

[
Mmn

(
q
(ε0
ρ

))]pmn

≤ umn
[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

and hence for each m,n and s, we get

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(ε0
ρ

))]pmn

≤ N <∞,

for some N > 0, clearly (2.8) contradicts (2.6). Hence Λ2
M [ĉ,∆m, u, p, q] ⊆

χ2[ĉ,∆m, u, p, q]. This completes the proof. �

Theorem 2.9. Let 1 ≤ pmn ≤ sup
mn

pmn <∞. The inclusion

Λ2[ĉ,∆m, u, p, q] ⊆ χ2
M [ĉ,∆m, u, p, q] holds if and only if

(2.9) lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
( t
ρ

))]pmn

= 0 (t, ρ > 0).

Proof. Let Λ2[ĉ,∆m, u, p, q] ⊆ χ2
M [ĉ,∆m, u, p, q]. Suppose that (2.9) does not

hold. Therefore there is a number t0 > 0 such that

(2.10) lim
µγ→∞

1

µiγi

µiγi∑
mn=1

umn

[
Mmn

(
q
( t0
ρ

))]pmn

= L 6= 0.
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Define the sequence x = (xmn) by

(
(m+ n)!xmn

) 1
m+n = to

m,n−η∑
v=0

(−1)n
(
γ + (m,n)− v − 1

(m,n)− v

)
form,n = 1, 2, . . . . Thus by (2.10), x ∈ χ2

M [ĉ,∆m, u, p, q], but x /∈ Λ2[ĉ,∆m, u, p, q].
Hence (2.9) must hold.
Conversely, let (2.9) hold and x ∈ Λ2[ĉ,∆m, u, p, q], then for every m,n and s(

(m+ n)!|∆mxm+s,n+s|
) 1

ms+ns ≤ N <∞.

Therefore

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

≤ umn
[
Mmn

(N
ρ

)]pmn

and

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

≤ 1

µγ

µγ∑
mn=1

umn

[
Mmn

(N
ρ

)]pmn

= 0 by (2.9).

Hence x = (xmn) ∈ χ2
M [ĉ,∆m, u, p, q]. This completes the proof. �

Theorem 2.10. The space χ2
M [ĉ,∆m, u, p, q] is solid.

Proof. Let x = (xmn) ∈ χ2
M [ĉ,∆m, u, p, q] and (αmn) be a sequence of scalars

such that |αmn|
1

ms+ns ≤ 1 for all m,n ∈ N. Then

lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mαmnxm+s,n+s|)

1
ms+ns

ρ

))]pmn

≤ lim
µγ→∞

1

µγ

µγ∑
mn=1

umn

[
Mmn

(
q
(((m+ n)!|∆mxm+s,n+s|)

1
ms+ns

ρ

))]pmn

for all m,n ∈ N. Hence (αmnxmn) ∈ χ2
M [ĉ,∆m, u, p, q] for all sequences of scalars

αmn with |αmn| ≤ 1 for all m,n ∈ N whenever xmn ∈ χ2
M [ĉ,∆m, u, p, q]. �

Theorem 2.11. The space χ2
M [ĉ,∆m, u, p, q] is monotone.

Proof. It is obvious. �
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