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REMARKS ON EKELAND’S VARIATIONAL PRINCIPLE FOR

POLYNOMIAL FUNCTIONS

NGUYEN THI THAO

Abstract. In this paper, we provide a method to determine points v ∈ Rn

which satisfy Ekeland’s variational principle, and also to choose Palais-Smale
minimizing sequences that satisfy the second order condition for polynomial
functions bounded from below on Rn.

1. Introduction

Let V be a complete metric space, and f : V → R ∪ {+∞} be a lower semi-
continuous function, 6≡ +∞, bounded from below. In weak form, Ekeland’s
variational principle [3] says that for any ε > 0, there is some point v ∈ V such
that

f(v) ≤ inf
V

f + ε,

f(z) ≥ f(v) − εd(v, z), ∀z ∈ V.

Let f be a C2-function that is bounded from below on a Hilbert space H. It is
well-known that Ekeland’s variational principle yields minimizing sequences {vk}
(i.e., f(vk) → inf

H
f) that are also Palais-Smale sequences (i.e., f ′(vk) → 0) ([3]).

Less known is the smooth variational principle of Borwein and Preiss [1] which
yields the existence of Palais-Smale minimizing sequences for f that also verify
the following second order condition:

lim
k

inf〈f ′′(vk)ω, ω〉 ≥ 0 for all ω ∈ H.

Unfortunately, it is not shown how to choose points v (which satisfy Ekeland’s
variational principle) and Palais-Smale minimizing sequences {vk} (which satisfy
the second order condition). The object of this paper is to provide a method to
determine such points v and also to choose such sequences {vk} for polynomial
functions bounded from below on Rn. We will show that these points can be
chosen in the so called tangency curve, and in some cases, in the polar curve.
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2. The tangency curve

In this section, we briefly recall the notion of the tangency curve. For details,
the reader may consult [5] (see also [4]).

Let f : Rn → R be a polynomial function. Put

X := {(x, a) ∈ Rn × Rn : rank




∂f

∂x1
· · ·

∂f

∂xn
x1 − a1 · · · xn − an


 ≤ 1}.

We shall denote by Σ(f) the set of critical points of f . Put

Γ(a, f) := {x ∈ Rn : x 6∈ Σ(f) and (x, a) ∈ X}.

Lemma 2.1 ([5]). With the previous notations,

(i) Γ (a, f) is a nonempty, unbounded and semi-algebraic set;
(ii) There exists a proper algebraic set Ω ( Rn such that Γ (a, f) is a one-

dimensional submanifold of Rn for each a ∈ Rn\Ω.

Definition 2.2. If dim Γ(a, f) = 1, we call it the tangency curve of f with respect
to a ∈ Rn.

Let Γ(a, f) be a tangency curve of f . For large r > 0, the intersection of
Γ(a, f) with the complement of the closed ball Br of radius r centered at the
origin has a fixed number of connected components. The germ at infinity of such
a connected component will be called a half-branch at infinity of Γ(a, f). Let
Γ1, . . . ,Γs be the half branches at infinity of Γ(a, f). Then there exist σ > 0 and
Nash functions ρi : (0, σ) → Rn such that Γi is the germ of the curve x = ρi(τ) as
τ → 0. We may also assume (taking σ > 0 small enough if necessary) that
the function ‖ρi‖ : (0, σ) → R, τ 7→ ‖ρi(τ)‖, is strictly decreasing and the
function f ◦ ρi : (0, σ) → R, τ 7→ f [ρ(τ)], is strictly monotone or constant.
Set ti := lim

τ→0
f [ρi(τ)] ∈ R ∪ {−∞,+∞}.

Definition 2.3. Each value ti, i = 1, . . . , s, is called a tangency value of f with
respect to a ∈ Rn.

Definition 2.4 ([7]). We say that a polynomial f satisfies the Malgrange con-
dition at the value t0 if there are r � 1, δ > 0, c > 0 such that for every
x ∈ f−1(Dδ)\Br, we have

‖x‖‖f ′(x)‖ > c,

where Dδ = {t ∈ R : |t − t0| < δ} and Br = {x ∈ Rn : ‖x‖ ≤ r}.

Proposition 2.5 ([6]). Let Γi be a half-branch at infinity of Γ (a, f). Then

lim
x∈Γi,‖x‖→∞

‖x‖‖f ′(x)‖ = 0.

In particular, if ti is a tangency value of f and ti 6= ±∞, then f does not satisfy
the Malgrange condition at the value ti.
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3. Polynomial functions on Rn

Assume that Γ(f) := Γ(f, 0) is a tangency curve and t1 is the smallest
tangency value of f .

Proposition 3.1 ([5], [4]). A polynomial f : Rn → R is bounded from below if
and only if t1 > −∞.

From now on we assume that f is bounded from below and that f does not
attain the minimum value in Rn. Then it is easily seen that t1 = f∗ := inf

Rn
f.

Moreover, we may assume that the half-branch Γ1 is contained in the set

{x ∈ Rn : f(x) = min{f(y) : ‖y‖ = ‖x‖, y ∈ Rn}}.

Lemma 3.2. Let f : Rn → R be a polynomial function. Assume that f is
bounded from below and that f does not attain the minimum value in Rn. Let Γ1

be parameterized by a Nash function ρ : (0, σ) → Rn. Then there is λ : (0, σ) → R

such that f ′[ρ(τ)] = λ(τ)ρ(τ) for all τ ∈ (0, σ) and λ(τ) < 0 for τ sufficiently
small.

Proof. Set g(τ) := f ◦ ρ(τ). We have

d

dτ
g(τ) = 〈f ′[ρ(τ)], ρ′(τ)〉 = λ(τ)〈ρ(τ), ρ′(τ)〉.

Let

ρ(τ) = aτα + higher order terms in τ, with a 6= 0,

λ(τ) = bτγ + higher order terms in τ, with b 6= 0.

By assumption, we see that g is strictly increasing in (0, σ). Hence

d

dτ
g(τ) = bα‖a‖2τγ+2α−1 + · · · > 0.

It follows that bα > 0. Since ‖ρ(τ)‖ → +∞ as τ → 0, α < 0. Thus b < 0 and
λ(τ) < 0 for τ small enough. �

Theorem 3.3. Let f : Rn → R be a polynomial function. Assume that f is
bounded from below and that f does not attain the minimum value in Rn. Then
for any ε > 0, there is some v ∈ Γ1 such that

f(v) ≤ f∗ + ε,

f(z) ≥ f(v) − εd(v, z) for all z ∈ Rn.

Let Γ1 be parameterized by ρ : (0, σ) → Rn, where

ρ(τ) = aτα + higher order terms in τ, with a 6= 0.

We begin by proving the following.

Claim 3.4. For τ0 ∈ (0, σ) small enough, there is some A ≥ 1 such that

d(ρ(τ0), ρ(τ)) ≤ A(‖ρ(τ)‖ − ‖ρ(τ0)‖) for all τ ∈ (0, τ0).
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Proof. We have

(‖ρ(τ)‖)′ = α‖a‖τ (α−1) + higher order terms in τ.

By the proof of Lemma 3.2, α < 0. Hence (‖ρ(τ)‖)′ < 0 for all τ < τ0, with τ0

small enough. It implies that ‖ρ(τ)‖ is strictly decreasing in (0, τ0). Hence

‖ρ(τ)‖ − ‖ρ(τ0)‖ > 0 for all τ ∈ (0, τ0).

Moreover, we have ρ′(τ) = aατα−1 + higher order terms in τ. Hence

‖ρ′(τ)‖ = |α|‖a‖τα−1 + higher order terms in τ

= −α‖a‖τα−1 + higher order terms in τ (since α < 0).

It implies that lim
τ→0

‖ρ′(τ)‖

−(‖ρ(τ)‖)′
= 1. Thus there is some A ≥ 1 such that

‖ρ′(τ)‖ ≤ −A(‖ρ(τ)‖)′ for all τ ∈ (0, τ0),

with τ0 small enough. Therefore

d(ρ(τ0), ρ(τ)) ≤

∫ τ0

τ

‖ρ′(t)‖dt ≤ −A

∫ τ0

τ

(‖ρ(t)‖)′dt = A(‖ρ(τ)‖ − ‖ρ(τ0)‖).

This completes the proof of the claim. �

Proof of Theorem 3.3. We now choose τ0 ∈ (0, σ) which satisfies Claim 3.4 and
the following conditions:

(a) λ(τ) < 0 for all τ ∈ (0, τ0), where f ′[ρ(τ)] = λ(τ)ρ(τ) (This follows from
Lemma 3.2);

(b) ‖f ′[ρ(τ)]‖ ≤
ε

A
for all τ ∈ (0, τ0) (This follows from Proposition 2.5);

(c) 〈ρ(t), ρ′(t)〉 = ‖a‖2ατ2α−1 + · · · < 0 for all τ ∈ (0, τ0), since α < 0;
(d) f [ρ(τ0)] ≤ min

Br

f , where r = ‖ρ(σ)‖ and Br = {x ∈ Rn : ‖x‖ ≤ r}, since

min
Br

f > f∗ = t1 = lim
τ→0

f [ρ(τ)].

The proof of Theorem 3.3 will be divided into 3 steps.
Step 1. We prove that

f [ρ(τ)] ≥ f [ρ(τ0)] − εd(ρ(τ0), ρ(τ)) for all τ ∈ (0, σ).

In fact,

• If τ ∈ [τ0, σ), since f ◦ ρ is increasing in [τ0, σ), we have

f [ρ(τ0)] − f [ρ(τ)] ≤ 0 ≤ εd(ρ(τ0), ρ(τ)).
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• If τ ∈ (0, τ0), we have

f [ρ(τ0)] − f [ρ(τ)] =

∫ τ0

τ

〈f ′[ρ(t)], ρ′(t)〉dt

=

∫ τ0

τ

λ(t)〈ρ(t), ρ′(t)〉dt =

∫ τ0

τ

λ(t)‖ρ(t)‖
〈ρ(t), ρ′(t)〉

‖ρ(t)‖
dt

=

∫ τ0

τ

‖f ′[ρ(t)]‖
−〈ρ(t), ρ′(t)〉

‖ρ(t)‖
dt (by (a))

≤
ε

A

∫ τ0

τ

−〈ρ(t), ρ′(t)〉

‖ρ(t)‖
dt (by (b) and (c))

= −
ε

A

∫ τ0

τ

(‖ρ(t)‖)′dt =
ε

A
(‖ρ(τ)‖ − ‖ρ(τ0)‖) ≤

ε

A
d(ρ(τ0), ρ(τ))

≤ εd(ρ(τ0), ρ(τ)) (since A ≥ 1).

Step 2. We show that

f(z) ≥ f [ρ(τ0)] − εd(ρ(τ0), z) for all z ∈ Rn\Br.

In fact, assume that ‖z‖ = ‖ρ(τ)‖ for some τ ∈ (0, σ). Then f(z) ≥ f [ρ(τ)], and
hence

• If τ ∈ [τ0, σ), since f ◦ ρ is increasing in [τ0, σ), we have

f [ρ(τ0)] − f(z) ≤ f [ρ(τ0)] − f [ρ(τ)] ≤ 0 ≤ εd(ρ(τ0), ρ(τ)).

• If τ ∈ (0, τ0), we have

f [ρ(τ0)] − f(z) ≤ f [ρ(τ0)] − f [ρ(τ)]

≤
ε

A
d(ρ(τ0), ρ(τ)) (by Step 1)

≤
ε

A
A(‖ρ(τ)‖ − ‖ρ(τ0)‖) (by Claim 3.4)

= ε(‖z‖ − ‖ρ(τ0)‖) ≤ ε‖z − ρ(τ0)‖ = εd(ρ(τ0), z)).

Step 3. We claim that

f(z) ≥ f [ρ(τ0)] − εd(ρ(τ0), z) for all z ∈ Br.

In fact, by (d), for all z ∈ Br we have f(z) ≥ f [ρ(τ0)]. It follows that

f [ρ(τ0)] − f(z) ≤ 0 ≤ εd(ρ(τ0), z).

Take v := ρ(τ0), the proof of Theorem 3.3 is complete. �

Theorem 3.5. Let f : Rn → R be a polynomial function. Assume that f is
bounded from below and that f does not attain the minimum value in Rn. Then

(i) lim
x∈Γ1,‖x‖→∞

f(x) = f∗,

(ii) lim
x∈Γ1,‖x‖→∞

‖f ′(x)‖ = 0,

(iii) lim
x∈Γ1,‖x‖→∞

〈f ′′(x)ω, ω〉 ≥ 0 for all ω ∈ Rn.
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Proof. (i) The first assertion follows from the fact that t1 = f∗.

(ii) The second assertion follows immediately from Proposition 2.5.

(iii) Let Γ1 be parameterized by ρ : (0, σ) → Rn, where

ρ(τ) = aτα + higher order terms in τ, with a 6= 0.

Then there is λ : (0, σ) → Rn such that f ′[ρ(τ)] = λ(τ)ρ(τ). We first prove the
following claims.

Claim 3.6. For τ sufficiently small, ρ′(τ) does not belong to Tρ(τ)S
n−1
‖ρ(τ)‖.

Proof. We have

〈ρ(τ), ρ′(τ)〉 = α‖a‖2τ2α−1 + · · · .

Since a 6= 0 and α < 0, we have 〈ρ(τ), ρ′(τ)〉 6= 0. This implies that ρ′(τ) 6∈
Tρ(τ)S

n−1
‖ρ(τ)‖ for τ small enough. �

Claim 3.7. For τ small enough, we have

(a) 〈f ′′[ρ(τ)]ρ′(τ), ρ′(τ)〉 > 0,
(b) 〈f ′′[ρ(τ)]ρ′(τ), h〉 = λ(τ)〈ρ′(τ), h〉 for all h ∈ Tρ(τ)S

n−1
‖ρ(τ)‖,

(c) 〈f ′′[ρ(τ)]h, h〉 ≥ λ(τ)‖h‖2 for all h ∈ Tρ(τ)S
n−1
‖ρ(τ)‖.

Proof. Let τ0 ∈ (0, σ).
(a) Set g(τ) := 〈f ′[ρ(τ)], ρ′(τ0)〉. We have

g′(τ) = 〈f ′′[ρ(τ)]ρ′(τ), ρ′(τ0)〉.

Moreover, g(τ) = λ(τ)〈ρ(τ), ρ′(τ0)〉. Hence

g′(τ) = λ′(τ)〈ρ(τ), ρ′(τ0)〉 + λ(τ)〈ρ′(τ), ρ′(τ0)〉.

Therefore, 〈f ′′[ρ(τ0)]ρ
′(τ0), ρ

′(τ0)〉 = λ′(τ0)〈ρ(τ0), ρ
′(τ0)〉 + λ(τ0)‖ρ

′(τ0)‖
2. Let

λ(τ) = bτγ + higher order terms in τ, with b 6= 0.

Then

〈f ′′[ρ(τ0)]ρ
′(τ0), ρ

′(τ0)〉 = ‖a‖2bα(γ + α)τγ+2α−2
0 + · · · .

Since ‖f ′[ρ(τ)]‖ = |λ(τ)|‖ρ(τ)‖ = |b|‖a‖τγ+α + · · · and (ii), γ +α > 0. Moreover,
it follows from Lemma 3.2 that α < 0 and b < 0. Thus ‖a‖2bα(γ + α) > 0.
Therefore,

〈f ′′[ρ(τ0)]ρ
′(τ0), ρ

′(τ0)〉 > 0 for τ0 small enough.

(b) For every h ∈ Tρ(τ0)S
n−1
‖ρ(τ0)‖, set k(τ) := 〈f ′[ρ(τ)], h)〉. We have

k′(τ) = 〈f ′′[ρ(τ)]ρ′(τ), h〉.

Moreover, k(τ) = λ(τ)〈ρ(τ), h〉. Hence

k′(τ) = λ′(τ)〈ρ(τ), h〉 + λ(τ)〈ρ′(τ), h〉.

Therefore

〈f ′′[ρ(τ0)]ρ
′(τ0), h〉 = λ′(τ0)〈ρ(τ0), h〉 + λ(τ0)〈ρ

′(τ0), h〉 = λ(τ0)〈ρ
′(τ0), h〉.
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(c) Assume that r′(0) = h ∈ Tρ(τ0)S
n−1
‖ρ(τ0)‖, where s 7→ r(s) ∈ Sn−1

‖ρ(τ0)‖. We have

(f ◦ r)′(s) = 〈f ′[r(s)], r′(s)〉,

(f ◦ r)′′(s) = 〈f ′′[r(s)]r′(s), r′(s)〉 + 〈f ′[r(s)], r′′(s)〉.

Hence

(f ◦ r)′′(0) = 〈f ′′[r(0)]r′(0), r′(0)〉 + 〈f ′[r(0)], r′′(0)〉

= 〈f ′′[ρ(τ0)]h, h〉 + λ(τ0)〈ρ(τ0), r
′′(0)〉.

Moreover, since ‖r(s)‖2 = ‖ρ(τ0)‖
2, (‖r(s)‖2)′ = 2〈r(s), r′(s)〉 = 0. Hence

(‖r(s)‖2)′′ = 2‖r′(s)‖2 + 2〈r(s), r′′(s)〉 = 0.

Thus ‖r′(0)‖2 + 〈r(0), r′′(0)〉 = 0, and so 〈ρ(τ0), r
′′(0)〉 = −‖h‖2. Therefore

〈f ′′[ρ(τ0)]h, h〉 = (f ◦ r)′′(0) + λ(τ0)‖h‖
2.

Since the restriction of f to Sn−1
‖ρ(τ0)‖ attains its minimum value at ρ(τ0) = r(0),

we have (f ◦ r)′′(0) ≥ 0. Hence

〈f ′′[ρ(τ0)]h, h〉 ≥ λ(τ0)‖h‖
2.

The proof of Claim 3.7 is complete. �

Proof of (iii): Let ω ∈ Rn. It follows from Claim 3.6 that for τ small enough, we
can write

ω = u(τ)ρ′(τ) + v(τ)h(τ),

where h(τ) ∈ Tρ(τ)S
n−1
‖ρ(τ)‖ and ‖h(τ)‖ = 1. It is easily seen that

u(τ) =
〈ω, ρ(τ)〉

〈ρ′(τ), ρ(τ)〉
, v(τ) = ‖ω − u(τ)ρ′(τ)‖, and

h(τ) =
ω − u(τ)ρ′(τ)

‖ω − u(τ)ρ′(τ)‖
if v(τ) = ‖ω − u(τ)ρ′(τ)‖ 6= 0.

We see that

〈f ′′[ρ(τ)]ω, ω〉 = u(τ)2〈f ′′[ρ(τ)]ρ′(τ), ρ′(τ)〉 + 2u(τ)v(τ)〈f ′′[ρ(τ)]ρ′(τ), h(τ)〉

+ v(τ)2〈f ′′[ρ(τ)]h(τ), h(τ)〉

≥ λ(τ)
[
2u(τ)v(τ)〈ρ′(τ), h(τ)〉 + v(τ)2

]
(by Claim 3.7).

Set

k(τ) :=
ρ′(τ) − 〈ρ′(τ), h(τ)〉h(τ)

‖ρ′(τ) − 〈ρ′(τ), h(τ)〉h(τ)‖
=

ρ′(τ) − 〈ρ′(τ), h(τ)〉h(τ)
(
‖ρ′(τ)‖2 − 〈ρ′(τ), h(τ)〉2

) 1

2

.

It is clear that ‖k(τ)‖ = ‖h(τ)‖ = 1 and 〈k(τ), h(τ)〉 = 0. Hence

ω = ũ(τ)k(τ) + ṽ(τ)h(τ),
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where





u(τ) =
1

(
‖ρ′(τ)‖2 − 〈ρ′(τ), h(τ)〉2

) 1

2

ũ(τ),

v(τ) =
−〈ρ′(τ), h(τ)〉

(
‖ρ′(τ)‖2 − 〈ρ′(τ), h(τ)〉2

) 1

2

ũ(τ) + ṽ(τ).

Now we see that
〈f ′′[ρ(τ)]ω, ω〉 ≥

λ

[
2〈ρ′, h〉ũ

(
‖ρ′‖2 − 〈ρ′, h〉2

) 1

2

( −〈ρ′, h〉
(
‖ρ′‖2 − 〈ρ′, h〉2

) 1

2

ũ + ṽ
)

+
( −〈ρ′, h〉

(
‖ρ′‖2 − 〈ρ′, h〉2

) 1

2

ũ + ṽ
)2

]
.

Since ‖ω‖ = (ũ(τ)2 + ṽ(τ)2)
1

2 and, by Lemma 3.2, λ < 0, we can continue this
inequality and get 〈f ′′[ρ(τ)]ω, ω〉 ≥ λ‖ω‖2A, where

A =
2|〈ρ′, h〉|

(
‖ρ′‖2 − 〈ρ′, h〉2

) 1

2

( |〈ρ′, h〉|
(
‖ρ′‖2 − 〈ρ′, h〉2

) 1

2

+ 1
)

+
( |〈ρ′, h〉|

(
‖ρ′‖2 − 〈ρ′, h〉2

) 1

2

+ 1
)2

.

Since ‖h‖ = 1, h(τ) = e + higher order terms in τ , with some constant vector
e ∈ Rn\{0}. Hence

〈ρ′, h〉2

‖ρ′‖2 − 〈ρ′, h〉2
=

α2〈a, e〉2τ2(α−1) + · · ·

α2(‖a‖2 − 〈a, e〉2)τ2(α−1) + · · ·
.

We see that 〈a, e〉 = 0, since 〈ρ, h〉 = 〈a, e〉τα + · · · ≡ 0. It follows that

lim
τ→0

〈ρ′, h〉2

‖ρ′‖2 − 〈ρ′, h〉2
= 0. Moreover, since f ′[ρ(τ)] = λ(τ)ρ(τ) and lim

τ→0
‖ρ(τ)‖ =

+∞, (ii) shows that lim
τ→0

λ(τ) = 0. Therefore

lim
τ→0

〈f ′′[ρ(τ)]ω, ω〉 ≥ 0.

�

Remark 3.8. If f is a C2-function that is bounded from below on a Hilbert space
H, in [1], Borwein and Preiss obtained a little weaker result. Namely, instead
of (iii) of Theorem 3.5, they proved that lim

k
inf〈f ′′(vk)ω, ω〉 ≥ 0 for all ω ∈ H.

Moreover, it is not shown how to choose the sequence {vk}.

Corollary 3.9. Let f : Rn → R be a polynomial function. Assume that f

is bounded from below and that f does not attain the minimum value in Rn.
Let µ1(x), . . . , µn(x) be eigenvalues of f ′′(x). Then lim

x∈Γ1,‖x‖→∞
µi(x) ≥ 0 for

all i = 1, . . . , n, where, as before, Γ1 is the half-branch of the tangency curve,
corresponding to the smallest tangency value t1.

4. Polynomial functions on R2

We will receive in this section a result sharper than Theorem 3.5 for poly-
nomials of two variables. We first recall some notions from [2].
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Definition 4.1. A value t0 ∈ R is called a typical value at infinity of a given
polynomial f if there are r � 1, δ > 0 such that the restriction function

f : f−1(Dδ)\Br → Dδ := {t ∈ R : |t − t0| < δ}

is a C∞-trivial fibration, where Br = {x ∈ Rn : ‖x‖ ≤ r}. Otherwise, it is called
an atypical value at infinity of f .

Let f : R2 → R be a polynomial function. Assume that f is monic of positive
degree m in y. Then, no half-branch of f−1

y (0) is asymptotic to a vertical line. Let

C be a half-branch of f−1
y (0). Then there exists a Nash function g : (M,+∞) → R

such that C is the germ at infinity of the curve (x = t, y = g(t)) (resp., (x =
−t, y = g(t))) and we say that C is a right half-branch (resp., a left half-branch).
We also say that f changes sign along C if fy(t, g(t)+ ε)fy(t, g(t)− ε) < 0 (resp.,
fy(−t, g(t) + ε)fy(−t, g(t) − ε) < 0) with ε > 0 small enough.

If M > 0 is large enough, there are Nash functions g1 < . . . < gp : (M,+∞) →
R and h1 < . . . < hq : (M,+∞) → R such that the right half-branches C1, . . . , Cp

(resp., the left half-branches D1, . . . ,Dq) of f−1
y (0) along which fy changes sign

are the germs at infinity of the curves (x = t, y = gi(t)) for i = 1, . . . , p (resp.,
(x = −t, y = hj(t)) for j = 1, . . . , q). In this way, we put an order C1 < · · · < Cp

(resp., D1 < · · · < Dp).

Definition 4.2 ([2]). Let C1 < · · · < Cp be the right half-branches at infinity
of f−1

y (0) along which fy changes sign. A sequence of consecutive half-branches
Ck < · · · < Cl is said to be a right critical cluster belonging to λ ∈ R if there is
a symbol � in {↗,↘,=} such that:

(i) for every i = k, . . . , l, one has f �Ci
λ,

(ii) f �Ck−1
λ does not hold (or k = 1),

(iii) f �Cl+1
λ does not hold (or l = p).

The left critical clusters are defined in the same way.

Theorem 4.3 ([2]). The real number λ is an atypical value at infinity of f if and
only if there exists a critical cluster belonging to λ consisting of an odd number
of half-branches of f−1

y (0) along which fy changes sign.

Assume that the polynomial function f is bounded from below and that f does
not attain the minimum value in R2. Then f∗ := inf

R2
f is an atypical value at

infinity of f . By Theorem 4.3, there is a critical cluster Ck < · · · < Cl belonging
to f∗ consisting of an odd number of half-branches of f−1

y (0) along which fy

changes sign. Notice that every connected component of f−1(f∗ + ε) is vanishing
at infinity as ε tends to 0 with ε > 0. Hence, every point of the half-branch Ck

is a local minimum point of the restriction of f to some vertical line.

Theorem 4.4. Let f : R2 → R be a polynomial function. Assume that f is
bounded from below and that f does not attain the minimum value in R2. Let
Ck < · · · < Cl be a critical cluster belonging to f∗ consisting of an odd number of
half-branches of f−1

y (0) along which fy changes sign. Then for any ε > 0, there
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is some v ∈ Ck such that
f(v) ≤ f∗ + ε,

f(z) ≥ f(v) − εd(v, z) for all z ∈ R2.

Proof. The proof goes essentially in the same lines as in the proof of Theorem
3.3. �

Theorem 4.5. Let f : R2 → R be a polynomial function. Assume that f is
bounded from below and that f does not attain the minimum value in R2. Let
Ck < · · · < Cl be a critical cluster belonging to f∗ consisting of an odd number of
half-branches of f−1

y (0) along which fy changes sign. Then

(i) lim
x∈Ck ,‖x‖→∞

f(x) = f∗,

(ii) lim
x∈Ck ,‖x‖→∞

‖f ′(x)‖ = 0,

(iii) For x ∈ Ck, ‖x‖ large enough, we have 〈f ′′(x)ω, ω〉 ≥ 0 for all ω ∈ R2.

Proof. (i) This assertion is clear.

(ii) Let Ck be parameterized by ρ : (M,+∞) → R2, t 7→ ρ(t), where

ρ(t) = (x = t, y = atα + lower order terms in t).

We first observe that α ≤ 1. Indeed, by contradiction, assume that a 6= 0 and
α > 1. Since

f(x, y) = ym + fm−1(x)ym−1 + · · · + f0,

f ′
y ◦ ρ(t) = mam−1t(m−1)α + lower order terms in t.

Since m > 0 and a 6= 0, we have f ′ ◦ ρ(t) 6≡ 0, which is a contradiction.
We now prove (ii): Since f ′

y[ρ(t)] ≡ 0,f ′[ρ(t)] = (f ′
x[ρ(t)], 0). Hence

d

dt
(f ◦ ρ)(t) = 〈f ′[ρ(t)], ρ′(t)〉 = f ′

x[ρ(t)].

By assumption, we can write

(f ◦ ρ)(t) = f∗ + btβ + lower order terms in t,with b 6= 0 and β < 0.

Therefore

‖f ′[ρ(t)]‖ = |f ′
x[ρ(t)]| = |

d

dt
(f ◦ ρ)(t)| = |bβtβ−1 + · · · |.

Since β − 1 < 0, we have lim
t→0

‖f ′[ρ(t)]‖ = 0.

(iii) Let {e1 = (1, 0), e2 = (0, 1)} ⊂ R2. We first prove the following two claims.

Claim 4.6. For every t ∈ (M,+∞), two vectors ρ′(t) and e2 are linearly inde-
pendent.

Proof. This claim follows immediately from the fact that 〈ρ′(t), e1〉 = 1 and
〈e1, e2〉 = 0. �

Claim 4.7. For t sufficiently large, we have

(a) 〈f ′′[ρ(t)]ρ′(t), ρ′(t)〉 > 0,
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(b) 〈f ′′[ρ(t)]ρ′(τ), e2〉 = 0,
(c) 〈f ′′[ρ(τ)]e2, e2〉 ≥ 0.

Proof. Let t0 ∈ (M,+∞).
(a) Set h(t) := 〈f ′[ρ(t)], ρ′(t0)〉. We have

h′(t) = 〈f ′′[ρ(t)]ρ′(t), ρ′(t0)〉.

Moreover, h(t) = f ′
x[ρ(t)] =

d

dt
(f ◦ ρ)(t) = bβtβ−1 + · · · . Hence

h′(t) = bβ(β − 1)tβ−2 + · · · .

Therefore

〈f ′′[ρ(t0)]ρ
′(t0), ρ

′(t0)〉 = bβ(β − 1)tβ−2
0 + · · · .

By assumption, we see that f ◦ρ is strictly decreasing in (M,+∞). Hence
d

dt
(f ◦

ρ)(t) = bβtβ−1+· · · < 0, and so bβ < 0. Since β < 0, we have b > 0 and β−1 < 0.
Thus

〈f ′′[ρ(t0)]ρ
′(t0), ρ

′(t0)〉 > 0 for t0 large enough.

(b) Set k(t) := 〈f ′[ρ(t)], e2〉. We have

k′(t) = 〈f ′′[ρ(t)]ρ′(t), e2〉.

Moreover, since grad f [ρ(t)] = (f ′
x[ρ(t)], 0), k(t) = 0. Therefore

〈f ′′[ρ(τ)]ρ′(t), e2〉 = k′(t) = 0.

(c) Let s 7→ r(s) = ρ(t0) + se2. We have r′(s) = e2. Hence

(f ◦ r)′(s) = 〈f ′[r(s)], r′(s)〉 = 〈f ′[r(s)], e2〉,

(f ◦ r)′′(s) = 〈f ′′[r(s)]r′(s), e2〉 = 〈f ′′[r(s)]e2, e2〉.

Thus

(f ◦ r)′′(0) = 〈f ′′[ρ(t0)]e2, e2〉.

Since f ◦ r attains some local minimum value at s = 0, (f ◦ r)′′(0) ≥ 0. Therefore
〈f ′′[ρ(t0)]e2, e2〉 ≥ 0. �

Proof of (iii): Let ω ∈ R2. By Claim 4.6, we can write ω = u(t)ρ′(t) + v(t)e2.

Then 〈f ′′[ρ(t)]ω, ω〉 =

u(t)2〈f ′′[ρ(t)]ρ′(t), ρ′(t)〉 + 2u(t)v(t)〈f ′′[ρ(t)]ρ′(t), e2〉 + v(t)2〈f ′′[ρ(t)]e2, e2〉.

By Claim 4.7, we have 〈f ′′[ρ(t)]ω, ω〉 ≥ 0 for t sufficiently large. �

Corollary 4.8. Let f : R2 → R be a polynomial function. Assume that f is
bounded from below and that f does not attain the minimum value in R2. Let
Ck < · · · < Cl be a critical cluster belonging to f∗ consisting of an odd number
of half-branches of f−1

y (0) along which fy changes sign, and let µ1(x), µ2(x) be

eigenvalues of f ′′(x). Then for x ∈ Ck and ‖x‖ sufficiently large, we have µ1(x) >

0 and µ2(x) ≥ 0.

Proof. The corollary follows immediately from Claim 4.7. �
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5. Remarks

We recall here some notions from [4].

Definition 5.1 ([4]). Let f : Rn → R be a polynomial function. A value y0 ∈ R

is called a local infimum value of f if the following two conditions hold

• there exist some δ > 0, r > 0 such that

‖x‖ ≥ r and |f(x) − y0| < δ ⇒ f(x) ≥ y0.

• there exists a sequence xk → ∞ such that f(xk) → y0.

Additionally, if δ > 0 and r > 0 can be chosen such that

‖x‖ ≥ r and |f(x) − y0| < δ ⇒ f(x) > y0,

then y0 is called an isolated infimum value of f .

Remark 5.2. There is at most only one local infimum value of f . The problem
of characterization of the local (or, isolated) infimum value of f is solved in [4].

Remark 5.3. 1. It is easily seen that if f is bounded from below and f does not
attain the minimum value then f has the isolated infimum value.
2. The results obtained still hold if we replace “f is bounded from below and f

does not attain the minimum value” with “f has the isolated infimum value” and
“f∗ := inf

Rn
f” with “the isolated infimum value”.
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