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ORDER STRUCTURE AND ENERGY OF CONFLICTING CHIP

FIRING GAME

LE MANH HA AND PHAN THI HA DUONG

Abstract. In this paper, we introduce a variation of the chip-firing game on
a directed acyclic graph G = (V, E). Starting from a given chip configuration,
we can fire a vertex v by sending one chip along one of its outgoing edges to
the corresponding neighbors if v has at least one chip.

Our main result is to give the collection of energies to show the partial order
structure of the configuration space of the game. After that, we consider the
case when support graph has only one source, we give the characterization of
its reachable configurations and of its fixed points.

1. Introduction

The Chip Firing Game (CFG) is a mathematical model which describes the
distribution resources used as physics, economics and computer science. A chip
firing game [1] is defined over a (directed) multigraph G = (V,E), called the
support or the base of the game. A weight w(v) is associated with each vertex
v ∈ V , which can be regarded as the number of chips stored at the site v. The
CFG is then considered as a discrete dynamical system with the following rule,
called the firing rule: a vertex containing at least as many chips as its outgoing
degree (its number of going out edges) transfers one chip along each of its outgoing
edges. A configuration of CFG is a composition of n into V where n is the total
number of chips which is constant over transfers process of CFG.

We call configuration space, and denote by CFG(G,n,O), the set of all reach-
able configuration from O. If at a configuration µ there is no firing that is possible
then µ is said to be a fixed point. We call the CFG a strongly convergent game
if it has a unique fixed point. Notice that there exist CFGs with no fixed point.
It is known from [7] that the configuration space of CFGs which defined on a
support graph G which has no close component is a graded lattice.

From the first definition of CFG, many variants of this system were introduced
in different domains: the game of cards [4, 5] in the context of distributed system,
the rotor-router model [8, 6, 9] in the random walks, the color chip firing game

Received January 6, 2009.
2000 Mathematics Subject Classification. Primary 68R05. Secondary 91A46.
Key words and phrases. Discrete dynamical system, Chip Firing Game, poset, fixed point,

energies collection.
This work is supported in part by the Vietnamese National Foundation for Science and

Technology Development (NAFOSTED).



290 LE MANH HA AND PHAN THI HA DUONG

in lattice theory [10, 11] and there are many in reality CFGs model in which the
firing rule is reduced. The vertex v is firable if it contains at least one chip and
its firing is carried out by sending one chip along one edge from v to one of its
neighbors. Each transition of such a general CFGs performs only one transfers
chip along one edge. However, the firing of a chip along one edge may cause a
conflict with the one along another edge. Hence we call our model Conflicting
Chip Firing Game (CCFG).

The paper is structured as follows. We first recall in Section 2 some basic
definitions of directed acyclic graph theory and of partial order set theory. Fur-
ther, in this new model, by relaxing the condition about the number of chips in
a vertex, the evolution rule is much more flexible. In other side, the obtained
configuration space has not the lattice structure, and the convergence properties.
This situation is illustrated at the end of Section 3. Especially, in this section,
we give an important characterization to show the partial order structure of the
configuration of this game. This is also our main result. Moreover, we note that
finding a support graph which has good properties in CCFG model is more dif-
ficult than in CFG model. In Section 4, we examine the configuration space of
CCFGs in the relation with the support graph. We also consider a particular but
important case of CCFGs, where the support graph is a directed acyclic graph
which has one source. In this case, we characterize the reachable configurations
and fixed points of the model and the induced games on subgraphs induced of G

are also considered.

2. Definitions and notations

We recall here some definitions and basic results.
A directed acyclic graph (DAG) is a directed graph without cycles. A sink is

a vertex with out-degree zero, while a source is a vertex with in-degree zero. It
is clear to see that a DAG has at least one sink and one source. Throughout
this paper, G = (V,E) is a DAG. A topological sort of a DAG is an ordering
v1, v2, . . . , vn of its vertices such that for all edge (vi, vj) of the graph we have
i < j. We can see at once that a directed graph G has a topological sort if and
only if it is acyclic.

Definition 2.1. [13] A walk in a directed graph is a sequence of vertices and
edges v0, e1, v1, . . . , ek, vk such that for each 1 ≤ i ≤ k, ei goes from vi−1 to vi. A
(directed) trail is a walk without repeated edges, and a (directed) path is a trail
without repeated vertices.

Let x, y be in V . We define a binary relation ≤ on V as follows: for all
x, y ∈ V, y ≤ x if and only if either x = y or there is a path from x to y.

Next, we recall the notation of partially ordered set and some properties of
order ideal and order filter. For more details about order theory, see e.g [3].
Besides, we used these notations in the set of vertices of a DAG.

An order relation or partial order relation is a binary relation ≤ over a set,
such that for all x, y and z in this set, x ≤ x (reflexivity), x ≤ y and y ≤ z
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implies x ≤ z (transitivity), and x ≤ y and y ≤ x implies x = y (antisymmetry).
The set is then called a partially ordered set or, for short, a poset.

Let P be a poset and let Q be a subset of V . Then Q inherits an order relation
from V ; given x, y ∈ Q,x ≤ y in Q if and only if x ≤ y in P . We say in these
circumstances that Q has the order induced from P and call it a subposet of P .

The following result is straightforward from the definition of relation ≤ on the
set of vertices of a DAG.

Lemma 2.2. If G = (V,E) is a DAG, then (V,≤) is a poset.

A chain is a poset in which two elements are comparable. A subset C of a
poset P is call a chain if C is a chain when regarded as a subposet of P . The
chain C of P is called saturated if there does not exist z ∈ P \ C such that
x < z < y for some x, y ∈ C and such that C ∪ {z} is a chain. The length l(C) of
a finite chain is defined by l(C) = |C|−1. The length or rank of a finite poset P is
l(P ) := max{l(C) : C is a chain of P}. A longest chain from a to b is a chain of
greatest length and a shortest chain from a to b is a saturated chain of smallest
length.

Definition 2.3. Let P and Q be two posets. A map φ : P → Q is said to be
(i) order preserving (or, alternatively, monotone) if x ≤ y in P implies φ(x) ≤ φ(y)
in Q;
(ii) an order-embedding if x ≤ y in P if and only if φ(x) ≤ φ(y) in Q.

When φ : P → Q is an order-embedding we write φ : P ↪→ Q.

Definition 2.4. Let V be a poset, and let Q ⊆ V .
(i) Q is an order ideal or, for short, ideal (alternative terms include decreasing set

or down-set) if, whether x ∈ Q, y ∈ V and y ≤ x, we have y ∈ Q.
(ii) Dually, Q is an order filter or, for short, filter (alternative terms are increasing

set or up-set) if, whenever x ∈ Q, y ∈ V and y ≥ x, we have y ∈ Q. Given an

arbitrary element x ∈ V , we define Pred(x)
def
:= {y ∈ V | y ≥ x} and Succ(x)

def
:=

{y ∈ V | y ≤ x}.
We denote by I(V ) the set of all ideals of V and by F(V ) the set of all filters

of V .

The following properties are straightforward from definition

Property 2.5. Let V be a finite poset. Then

• For all x ∈ V , we have Pred(x) ∈ F(V ) and Succ(x) ∈ I(V ).
• For all subset U ⊆ V , we have U ∈ F(V ) if and only if V \ U ∈ I(V ).

Property 2.6. F(V ),I(V ) contain ∅, V and closed under union and intersection.

Lemma 2.7. Let G = (V,E) be a DAG and let B ∈ F(V ). Let V ′ = V − B.

Then for all A ∈ F(V ′), we have A ∪B ∈ F(V ).

Proof. Let x ∈ A∪B be an arbitrary element, y an element of V such that y ≥ x.
We prove that x ∈ A ∪ B. If x ∈ B then y ∈ B due to B ∈ F(V ) and y ≥ x. If
x ∈ A and y 6∈ B, that means y ∈ V ′, y ≥ x then y ∈ A due to A ∈ F(V ′). Thus
x ∈ A ∪B. �



292 LE MANH HA AND PHAN THI HA DUONG

The following corollary is immediate from Lemma 2.7 and closure properties
of F(V ).

Corollary 2.8. If B ∈ F(V ) then F(B) ⊆ F(V ).

Next, to represent configuration of CCFG, we use integer composition, whose
explicit notion is given as follows:

Definition 2.9. Let n be a positive integer and let S be a set of k elements. A
composition of n into S is an ordered sequence (a1, a2, . . . , ak) of non negative
integers such that a1 + a2 + . . . + ak = n. The integer number ai is called the
weight of i.

It is easy to check that the number of compositions of n into S is
(

n+k−1
n

)

.

Definition 2.10. [12] The conflicting chip firing game (CCFG) on a DAG G =
(V,E) with n chips, denoted by CCFG(G,n), is a dynamical model defined as
follows: each configuration is a composition of n into V ; an edge (u, v) of E is
firable if u has at least one chip; the evolution rule (firing rule) of this game is
the firing of one firable edge (u, v), that means the vertex u gives one chip to the
vertex v.

We also denote by CCFG(G,n) the set of all configurations of CCFG(G,n)
and call it the configuration space of this game. This set is exactly the set of
compositions of n into V .

Definition 2.11. Given two configurations a and b of a CCFG(G,n), we say
that b is reachable from a, denoted by b ≤ a, if b can be obtained from a by a
firing sequence (in the case the firing sequence is empty, a = b). In particular,
we write a→ b if b is obtained from a by applying once firing rule.

Definition 2.12. Given CCFG(G,n) and letO be a composition of n into V . We
denote by CCFG(G,n,O) the configuration space of all reachable configurations

from O and we write O  a if a ∈ CCFG(G,n,O).

We recall that a Garden of Eden configuration in a dynamical system is a
configuration which is unreachable from any other configuration. And a fixed

point is a configuration in which no edge is firable. A CCFG is said to be a
strongly convergent game if it has a unique fixed point.

3. Order Structure and energies of CCFG

The goal of this section is to give an explicit definition of energy of configura-
tions which is an important characterization to show the partial order structure
of the configuration space of the game.

First of all, we present here some preliminary definitions.

Definition 3.1. Let G = (V,E) be a DAG and let a = (a1, a2, . . . , a|V |) be a
composition of n on V . The energy e(A, a) of a on a subset A ⊆ V is the quality
e(A, a) =

∑

i∈A ai, the set (e(A, a)A∈F(V )) is called the energies collection of a

and the energy E(a) of a is the quality E(a) =
∑

A∈F(V ) e(A, a).
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Figure 1. The configuration space of a CCFG with 4 chips.

Firstly, the basic relation between the configurations of the game CCFG(G,n)
and its energies collection is as follows:

Lemma 3.2. A configuration a of CCFG(G,n) is totally determined by its en-

ergies collection (e(A, a)A∈F(V )). That is, if a and b are two configurations of

CCFG(G,n) which have the same energies collection then a = b.

Proof. Let v ∈ V . We prove that a(v) = b(v) by induction on the cardinality of
Pred(v).

Basic step: If |Pred(v)| = 1 then v is a source and Pred(v) = {v} and that
e(Pred(v), a) = e(Pred(v), b) is equivalent to a(v) = b(v).

Inductive step: Assume that |Pred(v)| = k + 1 and that a(u) = b(u) for all
u ∈ V with |Pred(u)| ≤ k. Then we have a(u) = b(u),∀u 	 v. On the other
hand Pred(v) = {u 	 v}∪ {v} and by hypothesis, e(Pred(v), a) = e(Pred(v), b),
so we have a(v) = b(v). This completes the induction. �
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Now, we show that the configuration space of CCFG has an order structure
as the configuration space of many other dynamical systems.

Lemma 3.3. (CCFG(G,n),≤) is a poset.

Proof. Let us first prove that if b ≤ a then e(A, b) ≤ e(A, b) for all filters A ∈
F(V ). It is sufficient to prove the statement for the case a → b. Assume that b

is obtained from a by transferring one chip from vertex u to v. Then a(u)− 1 =
b(u), a(v) + 1 = b(v) and a(w) = b(w) for all w 6= u, v, where a(u) is the number
of chips of the vertex u at the configuration a. Let A ∈ F(V ). If v ∈ A then
u ∈ A due to the fact that u ≥ v in (V,≤) and A is a filter. So e(A, a) = e(A, b).
If v 6∈ A then

e(A, a) =

{

e(A, b) if u 6∈ A

e(A, b) + 1 if u ∈ A.

Therefore e(A, a) ≥ e(A, b) for all filter A ∈ F(V ).
From this, we have that b ≤ a implies E(b) ≤ E(a). Moreover, if b < a then

E(b) < E(a) so (CCFG(G,n),≤) is a poset. �

Actually, the problem to characterize the order relation of a dynamical system
is always difficult. Recall that in the classical CFG there are different chains from
a to b if b ≤ a. Nevertheless, all these chains have the same length and involve
the same applications of the rule which is represented by shot vector. However,
this is not true in the case of CCFG. So we can not use a similar notation to shot
vector. We must use a more complicated technique to give a characterization of
the order of CCFG(G,n) which is the use of energies collection and this is our
main result.

We state now the main result of this paper.

Theorem 3.4. Let a and b be two configurations of CCFG(G,n). Then a ≥ b

in CCFG(G,n) if and only if e(A, a) ≥ e(A, b), for all filters A ∈ F(V ).

Proof. The necessary condition is obtained by Lemma 3.3.
We prove the sufficient condition for showing that there exists a firing sequence

from a to b. We prove by induction on E(a)− E(b).
Basic case: If E(a) − E(b) = 0 then e(A, a) = e(A, b) for all filters A. It follows
that a = b by Lemma 3.2.

Inductive case: Assume that E(a)− E(b) > 0. We will prove that there exists
a configuration c 6= b such that e(A, a) ≥ e(A, c) ≥ e(A, b),∀A ∈ F(V ) and that
c ≥ b. The existence of such a configuration c is sufficient for our proof because
in this case by induction hypothesis we have a ≥ c, which implies that a ≥ b.

By assumption E(a) − E(b) > 0, so there exist filters A such that e(A, a) >

e(A, b). Let A0 be a maximal element among these filters. Then for all C ∈ F(V )
satisfying A0  C we have e(C, a) = e(C, b). Because of e(V, a) = e(V, b) = n,
so there exists v 6∈ A0 such that a(v) < b(v). Let us first prove that such an
element v is unique. Suppose that there are v1, v2 6∈ A0 such that a(v1) <

b(v1), a(v2) < b(v2) and v1 6= v2, without loss of generality we can assume v2 6∈
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Pred(v1). Set Q2 = Pred(v2) \ {v2}, we have Q2 ∈ F(V ). Also, we have
A0 ∪ Pred(v1) ∪ Pred(v2) ∈ F(V ) so by assumption,

e(A0 ∪ Pred(v1) ∪ Pred(v2), a) ≥ e(A0 ∪ Pred(v1) ∪ Pred(v2), b)

or equivalently

e(A0 ∪ Pred(v1) ∪Q2, a) + a(v2) ≥ e(A0 ∪ Pred(v1) ∪Q2, b) + b(v2).

From this and a(v2) < b(v2), we obtain e(A0 ∪ Pred(v1) ∪ Q2, a) > e(A0 ∪
Pred(v1) ∪ Q2, b). But A0 ∪ Pred(v1) ∪ Q2 ∈ F(V ) actually contains A0 since
v1 6∈ A0. This contradicts our assumption that A0 is a maximal element. We
conclude that there is a unique v 6∈ A0 such that a(v) < b(v).

Define B = B(b) := {U ∈ F(V ), ∅ 6= U ⊆ A0 | e(U, a) = e(U, b)}. The proof
will be divided into two cases:

• Case 1: B = ∅
In this case we will point out a configuration c satisfying c → b and
e(A, a) ≥ e(A, c) ≥ e(A, b), for all filters A ∈ F(V ). Let us first show that
if A ∈ F(V ) and v 6∈ A, then e(A, a) > e(A, b). By assumption A0 ∈ F(V )
a maximal element satisfying e(A0, a) > e(A0, b) and B = {U ∈ F(V ), ∅ 6=
U ⊆ A | e(U, a) = e(U, b)} = ∅, that is, for all U ∈ F(V ), ∅ 6= U ⊆ A then
e(U, a) > e(U, b).

Now given B ∈ F(V ), v 6∈ B in which e(B, a) = e(B, b). Then B is
not contained in A0 and A0  A0 ∪B. By the maximality of A0 we have
e(A0 ∪B, a) = e(A0 ∪B, b). On the other hand: B ∪A0 = (B ∩A0)∪A0.
So

e(B ∪A0, a) = e(B ∩A0, a) + e(A0, a)

e(B ∪A0, b) = e(B ∩A0, b) + e(A0, b).

Since e(A0, a) > e(A0, b), there is an element u ∈ B ∩ A0 such that
a(u) < b(u) (otherwise e(B ∪A0, a) > e(B ∪A0, b), which is impossible).
By the unique existence of v we have u = v. But this contradicts the fact
that B does not contain v. So, e(A, a) > e(A, b) for all filters A ∈ F(V )
which does not contain v.

Let u be a neighbor of v such that (u, v) ∈ E. Let c be a configuration
defined by c(u) = b(u) + 1, c(v) = b(v)− 1 and c(w) = b(w),∀w 6= u, v. It
is easy to see that c→ b.

It remains to prove that e(A, a) ≥ e(A, c),∀A ∈ F(V ). Let A ∈ F(V ) be
an arbitrary filter, we need only consider two cases:
+ If v ∈ A then u ∈ A, due to u ≥ v in (V,≤) and A ∈ F(V ). Hence,
e(A, a) ≥ e(A, b) = e(A, c).
+ If v 6∈ A then

e(A, c) =

{

e(A, b), if u 6∈ A

e(A, b) + 1, otherwise.

Therefore, e(A, c) ≤ e(A, b) + 1 ≤ e(A, a) (due to e(A, a) > e(A, b)).
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Figure 2. The configuration space of a CCFG with 2 chips.

• Case 2: B 6= ∅

In this case we will indicate a configuration c 6= b such that e(A, a) ≥
e(A, c) ≥ e(A, b),∀A ∈ F(V ) and then the proof is completed by showing
c ≥ b. Let B ∈ B and let c be a configuration defined as follows:

c(u) =

{

b(u), if u ∈ B

a(u), otherwise.

Clearly c(v) = a(v) < b(v) so c 6= b. Let G1 = G − B = (V1, B1) be the
induced subgraph by its set V1 = V \B of vertices.

For all A ∈ F(V ), we have:

e(A, c) = e(A ∩B, c) + e(A ∩ V1, c) = e(A ∩B, b) + e(A ∩ V1, a).

As A,B ∈ F(V ), it follows that A ∩ B ∈ F(V ) and hence, e(A ∩B, b) ≤
e(A ∩B, a).
Therefore, e(A, c) ≤ e(A ∩B, a) + e(A ∩ V1, a) = e(A, a).
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Also, we have e(A, b) = e(A∩B, b)+e(A∩V1, b). As A,B ∈ F(V ), this
implies that (A∩V1)∪B = A∪B ∈ F(V ) and consequently e(A∪B, a) ≥
e(A ∪ B, b), equivalently e(A ∪ V1, a) + e(B, a) ≥ e(A ∪ V1, b) + e(B, b).
It follows that e(A ∪ V1, a) ≥ e(A ∪ V1, b) (note that e(B, a) = e(B, b)).
Thus,

e(A, c) = e(A ∩B, b) + e(A ∩ V1, a) ≥ e(A ∩B, b) + e(A ∪ V1, b) = e(A, b).

We conclude that for all filters A ∈ F(V ), e(A, a) ≥ e(A, c) ≥ e(A, b).
We now complete the proof by showing c ≥ b by induction on |V |.

We observe that c ≥ b in (CCFG(G,n),≤) is equivalent to a ≥ b in
(CCFG(G1, n1),≤) where n1 = n −

∑

u∈B b(u). Since B 6= ∅, we have
V1 = V \ B  V . By induction on the cardinality of V , we only need to
show that e(A′, a) ≥ e(A′, b) for all filters A′ ∈ F(V1). Indeed, by Lemma
2.7 we have A′ ∪B ∈ F(V ) and e(A′ ∪B, a) ≥ e(A′ ∪B, b) by hypothesis.
But A′∩B = ∅ and e(B, a) = e(B, b), we conclude that e(A′, a) ≥ e(A′, b).

�

4. Configuration space of CCFG

Our aim is now to study the configuration space of the conflicting chip firing
game on a DAG. Moreover, in the case the support graph has only one source,
we show a characterization for reachable configurations and for fixed points of
this game. This allows us to describe the complexity of the game by giving the
cardinality of its configuration space. We first give the following lemma which is
straightforward from definition.

Lemma 4.1. A Garden of Eden configuration in CCFG(G,n) is a composition

of n into the set of sources of G. A fixed point of CCFG(G,n) is a composition

of n into the set of sinks of G.

It is evident that a Garden of Eden configuration is a maximal element of
CCFG(G,n) and a fixed point is a minimal element of CCFG(G,n).

Denote by GE(G,n) the set of all Garden of Eden configurations of CCFG(G,n).
It is easy to see that

CCFG(G,n) =
⋃

O∈GE(G,n)

CCFG(G,n,O).

Now, let (P,≤) be a poset. We define the dual poset (P ∂ ,≤) of P as follows:
for all x, y ∈ P , x ≤ y in P ∂ if and only if y ≤ x in P . For a DAG G = (V,E), we
obtain the dual poset (V ∂ ,≤) of (V,≤) by reversing direction of arcs. On the other

hand, for a given graph G, we define the reverse of G, and write G∂ = (V ∂ ,
←−
E ),

the graph obtained from G by reversing direction of arcs. That is, (u, v) ∈ E if

and only if (v, u) ∈
←−
E .

We give now the duality of configuration space of CCFG.

Proposition 4.2. Let G be a DAG and let n be an integer. Then

CCFG(G∂ , n) = (CCFG(G,n))∂ .
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Proof. Let a and b be two configurations satisfying a ≤ b in (CCFG(G,n))∂ . This
is equivalent to b ≤ a in CCFG(G,n). There is no loss of generality in assuming b

is obtained from a by firing edge (u, v) ∈ E. Then a(u) = b(u)+1, a(v) = b(v)−1
and a(w) = b(w) for all w 6= u, v. This is also nothing but b→ a in CCFG(G∂ , n)

by firing edge (v, u) ∈
←−
E .

�

The relations among induced posets by the game CCFG(G,n) are described
by the Figure 3.

reverse

dual
( , )G n

)G V E ( , )E

CCFG

( , G V

( , )CCFG G n

Figure 3. The diagram describing the relations among posets.

Let us next consider the maximum and minimum convergence time of CCFG.
That is nothing but the length of longest and shortest chains in the configuration
space of the game.

Denote by lmax the length of a longest directed paths in G and by lmin the
length of a shortest from a source to a sink of G. Let P be the longest path in
the graph, and suppose that it goes from s0 to si. Then s0 is a source while si is
a sink of G. Denote by av the configuration of CCFG(G,n) in which all n chips
are centered at v. That is,

av(w) =

{

n, if w = v

0, otherwise.

We can check at once that as0
is a Garden of Eden configuration while asi

is
a fixed point of CCFG(G,n) and the longest chain from as0

to asi
is exactly a

longest chain in CCFG(G,n). The following proposition is immediate.

Proposition 4.3. (i) The lenght of longest chains in CCFG(G,n) is n.lmax.

(ii) Dually, the length of shortest chains from a Garden of Eden configuration to

a fixed point in CCFG(G,n) is n.lmin.

Let O be a configuration of CCFG(G,n). We already know in the previous
section that CCFG(G,n) is a poset and it is easily seen that CCFG(G,n,O)
is an ideal of CCFG(G,n). The following proposition gives the behavior of
CCFG(G,n,O) in the CCFG(G,n) which is related to the set I(V ) of all ideals
of V .
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Theorem 4.4. Let G = (V,E) be a DAG and let n be an integer. Let O
be a configuration of CCFG(G,n). Then the set I(O) = {i ∈ V | ∃a ∈
CCFG(G,n,O), a(i) 6= 0} is an ideal of V and the map ϕ : CCFG(G,n) →
I(V ), defined by ϕ(O) = I(O) for all O ∈ CCFG(G,n) is order-preserving.

Proof. We first prove that I(O) ∈ I(V ). Let u ∈ I(O) be an arbitrary element
and let v be an element of V such that v ≤ u. We prove that v ∈ I(O). Since
u ∈ I(O), by definition of O, there exists a ∈ CCFG(G,n,O) such that a(u) 6= 0.
Let b be a configuration defined as follows:

b(w) =







0, if w = u

a(u) + a(v), if w = v

a(w), otherwise.

We claim that b ≤ a (and hence b ∈ CCFG(G,n,O)). Indeed, let A ∈ F(V )
be an arbitrary filter, we need only consider two cases:
+ If v ∈ A then u ∈ A due to u ≥ v in (V,≤) and A ∈ F(V ). Hence, e(A, b) =
e(A, a).
+ If v 6∈ A then

e(A, b) =

{

e(A, a), if u 6∈ A

e(A, a) − a(u), if u ∈ A.

Therefore, e(A, b) ≤ e(A, b) and this implies that b ≤ a by Theorem 3.4.
Moreover, b(v) 6= 0, so v ∈ I(O) by definition of I(O).

Notice that for all O,O′ ∈ CCFG(G,n) we have O ≤ O′ if and only if
CCFG(G,n,O) ⊆ CCFG(G,n,O′). This implies the monotony of ϕ and we
complete the proof. �

Now, we consider a special case which appears in many dynamical systems in
reality, that is when the support graph has only one source.

We first notice that for two arbitrary elements a and b of a CCFG(G,n), it
is easy to check that CCFG(G,n, b) ⊆ CCFG(G,n, a) if and only if b ≤ a in
CCFG(G,n).

From now on, we consider the CCFG(G,n) on the DAG G = (V,E) which
has a unique source v1. The unique Garden of Eden configuration of this game
is O in which all n chips are centered at the source v1. Hence, CCFG(G,n) =
CCFG(G,n,O). Denote by F(CCFG(G,n,O)) the set of all filters of
CCFG(G,n,O). In this case, F(CCFG(G,n,O)) is exactly F(CCFG(G,n)).

Recall that the vertex set V of G is a poset and F(V ) the set of all filters of
V . We know that < F(V ),⊆> is a complete lattice in which A∨B = A∪B and
A ∧B = A ∩B.

Given A ∈ F(V ). Denote by G[A] the subgraph of G induced by the vertex
set A. Since A always contains the source v1, the game CCFG(G[A], n,O) is
well-defined and is exactly the game CCFG(G[A], n).

The following proposition gives the relation between two lattices F(V ) and
F(CCFG(G,n)).
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Theorem 4.5. Given CCFG(G,n) on a DAG G which has one source. Then

CCFG(G[A], n) is a filter of the poset CCFG(G,n) and the map f : F(V ) →
F(CCFG(G,n)), A 7→ f(A) = CCFG(G[A], n) is order-preserving.

Proof. Fix A ∈ F(V ). We begin by proving that CCFG(G[A], n) is a filter of
CCFG(G,n). Let b ∈ CCFG(G[A], n) and let a ∈ CCFG(G,n) such that a ≥ b.
We prove that a ∈ CCFG(G[A], n). It is sufficient to prove the statement for
the case a→ b. Assume that b is obtained from a by transferring one chip along
the edge (u, v). Then a(u) = b(u) + 1, a(v) = b(v) − 1 and a(w) = b(w) for all
w 6= u, v. We have O  a → b. We now prove that a ∈ CCFG(G[A], n) by
induction on the length of the transition O  a.

Basic step: Assume that a is obtained from O by transferring one chip along
the edge (x, y). Then O(x) = a(x) + 1,O(y) = a(y) − 1 and O(z) = a(z) for all
z 6= x, y. Since b ∈ CCFG(G[A], n), we have O(w) = b(w),∀w 6∈ A. We only
need to show that y ∈ A. If y 6∈ A then b(y) = O(y) = a(y)− 1 and hence y ≡ u.
Because u ≡ y is not in A, then v 6∈ A. Therefore, O(v) = b(v) = a(v) + 1. It
follows that x ≡ v which is impossible (due to G is a DAG). Thus y ∈ A.

Inductive step: Assume that O  c→ a→ b and c ∈ CCFG(G[A], n). Using
the above similar argument, we have a ∈ CCFG(G[A], n). This finishes the
induction.

Considering the map

f : F(V )→ F(CCFG(G,n)), A 7→ f(A) = CCFG(G[A], n),

we will prove that if f(A) ⊆ f(B) then A ⊆ B. Given any v ∈ A, then Pred(v) ⊆
A. Let av ∈ CCFG(G[A], n) be the configuration defined as follows:

av(u) =

{

n, if u = v

0, otherwise.

Clearly, av ∈ CCFG(G[A], n), so av also belongs to CCFG(G[B], n). This
implies that v ∈ B.

It is easy to check that f is order-preserving and therefore f is an order-
embedding.

�

As a particular case of CCFGs on a general DAG, we also compute the con-
vergence time of CCFGs which has one source.

Definition 4.6. Let G = (V,E) be a DAG which has a unique source v1 and let
v ∈ V . We denote by d(v) the length of shortest directed paths from v1 to v and
by l(v) the length of longest directed paths from v1 to v.

Then the following results are straightforward:

Corollary 4.7. The fixed points of CCFG(G,n) are compositions of n into the

set of sinks of G. Consequently, the number of fixed points of CCFG(G,n) is
(

n+s−1
n

)

, where s is the number of sinks of G. In particular, if V has a unique

sink then the CCFG(G,n) is a strongly convergent game.
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Corollary 4.8. Let G = (V,E) be a DAG which has one source and let S =
{vn−s+1, . . . , vn} be the set of sinks of V . Then, in the CCFG(G,n) we have:

(i) The length of longest chains from the initial configuration to one fixed point

is n.max {l(vi)|i ≥ n− s + 1}
(ii) The length of shortest chains from the initial configuration to one fixed point

is n.min {l(vi)|i ≥ n− s + 1}
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