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CONVERGENCE TO COMMON FIXED POINT OF

MULTI-STEP ITERATION WITH ERRORS FOR

ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS

GURUCHARAN SINGH SALUJA

Abstract. In this paper, strong convergence theorems for modified multi-
step iteration scheme with errors for a finite family of uniformly φ - continuous
and asymptotically quasi-nonexpansive mappings are established in the frame-
work of real uniformly convex Banach spaces. The results presented in this
paper extend and improve the corresponding results of Khan and Fukhar-ud-
din [7], Khan and Takahashi [8], Shahzad and Udomene [18], Xu and Noor [21],
Cho et al. [3], Rhoades [14], Schu [15] and some others.

1. Introduction and preliminaries

Let E be a real Banach space, K be a nonempty subset of E. Throughout the
paper, N denotes the set of positive integers and F (T ) = {x : Tx = x} the set of
fixed points of a mapping T . A mapping T : K → K is said to be asymptotically
nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such
that

‖T nx − T ny‖ ≤ kn ‖x − y‖ ,

for all x, y ∈ K and n ∈ N.

This class of asymptotically nonexpansive mappings was introduced by Goebel
and Kirk [5] in 1972. They proved that, if K is a nonempty bounded closed
convex subset of a uniformly convex Banach space E, then every asymptotically
nonexpansive self-mapping of K has a fixed point. Moreover, the set F (T ) of
fixed points of T is closed and convex. Since 1972, many authors have studied
weak and strong convergence problem of the iterative sequences (with errors)
for asymptotically nonexpansive mappings in Hilbert spaces and Banach spaces
(see [5, 8, 14, 15, 21] and references therein).
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The mapping T is said to be asymptotically quasi-nonexpansive if F (T ) 6= ∅
and there exists a sequence {rn} in [0,∞) with limn→∞ rn = 0 such that

‖T nx − p‖ ≤ (1 + rn) ‖x − p‖

for all x ∈ K, p ∈ F (T ) and n ≥ 1.

The mapping T is said to be uniformly L-Lipschitzian if there exists a positive
constant L such that

‖T nx − T ny‖ ≤ L ‖x − y‖

for all x, y ∈ K and n ≥ 1.

The mapping T is said to be uniformly Holder continuous [13] if there exist
positive constants L and α such that

‖T nx − T ny‖ ≤ L ‖x − y‖α

for all x, y ∈ K and n ≥ 1.

The mapping T is said to be uniformly φ - continuous [3] if, there exists a real
function φ : [0,∞) → [0,∞) with φ(t) → 0 as t → 0+ such that

‖T nx − T ny‖ ≤ φ(‖x − y‖)

for all for all x, y ∈ K and n ≥ 1.

Remark 1.1. (1) It is easy to see that, if T is asymptotically nonexpansive, then
it is uniformly L-Lipschitzian.

(2) If T is uniformly L-Lipschitzian, then it is uniformly Holder continuous
with constants L > 0 and α = 1.

(3) If T is uniformly Holder continuous, then it is uniformly φ-continuous, but
the converse is not true.

In recent years, Mann iterative scheme [11], Ishikawa iterative scheme [6] and
Noor iterative scheme [21] have been studied extensively by many authors. In
1995, Liu [9] introduced iterative schemes with errors as follows:

x1 = x ∈ K,

xn+1 = (1 − αn)xn + αnTxn + un,(1.1)

where {αn} is a sequence in [0, 1] and {un} is a sequence in E satisfying
∑∞

n=1 ‖un‖
< ∞ is known as Mann iterative scheme with errors.

The sequence {xn} defined by

x1 = x ∈ K,

xn+1 = (1 − αn)xn + αnTyn + un,

yn = (1 − βn)xn + βnTxn + vn,(1.2)

where {αn} and {βn} are sequences in [0, 1], {un} and {vn} are sequences in E

satisfying
∑∞

n=1 ‖un‖ < ∞ and
∑∞

n=1 ‖vn‖ < ∞ is known as Ishikawa iterative
scheme with errors.

While it is clear that consideration of error terms in iterative scheme is an
important part of the theory, it is also clear that the iterative scheme with errors
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introduced by Liu [9], as in (1.1), (1.2) above, are not satisfactory. The errors
can occur in a random way. The conditions imposed on the error terms in (1.1),
(1.2) which say that they tend to zero as n tends to infinity are, therefore, un-
reasonable. Xu [23] introduced a more satisfactory error term in the following
iterative schemes.

The sequence {xn} defined by

x1 = x ∈ K,

xn+1 = αnTxn + βnxn + γnun,(1.3)

where {αn}, {βn} and {γn} are sequences in [0, 1] such that αn + βn + γn = 1
and {un} is a bounded sequence in K, is known as Mann iterative scheme with
errors. This scheme reduces to Mann iterative scheme if γn = 0.

The sequence {xn} defined by

x1 = x ∈ K,

xn+1 = αnTyn + βnxn + γnun,

yn = α′
nTxn + β′

nxn + γ′
nvn,(1.4)

where {αn}, {βn}, {γn}, {α
′
n}, {β

′
n} and {γ′

n} are sequences in [0, 1] such that
αn + βn + γn = α′

n + β′
n + γ′

n = 1, {un} and {vn} are bounded sequences in K, is
known as Ishikawa iterative scheme with errors. This scheme becomes Ishikawa
iterative scheme if γn = γ′

n = 0. Chidume and Moore [1] and Takahashi and
Tamura [20] studied the above schemes, respectively.

The sequence {xn} defined by

zn = α′′
nTxn + β′′

nxn + γ′′
nwn,

yn = α′
nTzn + β′

nxn + γ′
nvn,

xn+1 = αnTyn + βnxn + γnun,(1.5)

where {αn}, {βn}, {γn}, {α
′
n}, {β

′
n}, {γ

′
n}, {α

′′
n}, {β

′′
n} and {γ′′

n} are sequences
in [0, 1] such that αn + βn + γn = α′

n + β′
n + γ′

n = α′′
n + β′′

n + γ′′
n = 1, {un}, {vn}

and {wn} are bounded sequences in K, is known as Noor iterative scheme with
errors. This scheme reduces to Noor iterative schemes if γn = γ′

n = γ′′
n = 0.

Many authors starting from Das and Debata [4] and including Takahashi and
Tamura [20], Khan and Takahashi [8] and Shahzad and Udomene [18] have studied
the two mappings case of iterative schemes for different types of mappings.

Motivated by above all and many others, we study in this paper a modified
multi-step iteration with errors for a finite family of uniformly φ- continuous and
asymptotically quasi-nonexpansive mappings in real uniformly convex Banach
spaces. The scheme is as follows:

xn+1 = x(N)
n = α(N)

n T n
Nx(N−1)

n + β(N)
n xn + γ(N)

n u(N)
n ,

x(N−1)
n = α(N−1)

n T n
N−1x

(N−2)
n + β(N−1)

n xn + γ(N−1)
n u(N−1)

n ,

. . . = . . .

. . . = . . .(1.6)
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x(3)
n = α(3)

n T n
3 x(2)

n + β(3)
n xn + γ(3)

n u(3)
n ,

x(2)
n = α(2)

n T n
2 x(1)

n + β(2)
n xn + γ(2)

n u(2)
n ,

x(1)
n = α(1)

n T n
1 xn + β(1)

n xn + γ(1)
n u(1)

n ,

where {u
(1)
n }, {u

(2)
n }, . . . , {u

(N)
n } are bounded sequences in K and {α

(i)
n }, {β

(i)
n },

{γ
(i)
n } are appropriate sequences in [0, 1] such that α

(i)
n + β

(i)
n + γ

(i)
n = 1 for each

i ∈ {1, 2, . . . , N}. It is worth mentioning that our scheme can be viewed as an
extension of all above schemes.

The purpose of this paper is to establish strong convergence theorems of the
above iterative scheme for common fixed point of a finite family of uniformly
φ-continuous and asymptotically quasi-nonexpansive mappings in real uniformly
convex Banach spaces. Our results improve and extend the corresponding results
of Khan and Fukhar-ud-din [7], Khan and Takahashi [8], Rhoades [14], Schu [15],
Shahzad and Udomene [18], Xu and Noor [21], Cho et al. [3] and some others.

In the sequel we need the following lemmas and definitions to prove our main
results:

Lemma 1.1. (Tan and Xu [19]). Let {αn}
∞
n=1, {βn}

∞
n=1 and {rn}

∞
n=1 be sequences

of nonnegative numbers satisfying the inequality

αn+1 ≤ (1 + βn)αn + rn, ∀n ≥ 1.

If
∑∞

n=1 βn < ∞ and
∑∞

n=1 rn < ∞, then limn→∞ αn exists.

Lemma 1.2. (Xu [22]) Let p > 1 and R > 1 be two fixed numbers and E a

Banach space. Then E is uniformly convex if and only if there exists a continuous,

strictly increasing and convex function g : [0,∞) −→ [0,∞) with g(0) = 0 such

that ‖λx + (1 − λ)y‖p ≤ λ ‖x‖p + (1 − λ) ‖y‖p − Wp(λ)g(‖x − y‖) for all x, y ∈
BR(0) = {x ∈ E : ‖x‖ ≤ R}, and λ ∈ [0, 1], where Wp(λ) = λ(1−λ)p +λp(1−λ).

Recall that a mapping T : K → K where K is a subset of E, is said to satisfy
condition (A) [17] if there exists a nondecreasing function f : [0,∞) → [0,∞)
with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that ‖x − Tx‖ ≥ f(d(x, F (T )))
for all x ∈ K where d(x, F (T )) = inf{‖x − p‖ : p ∈ F (T )}.

Senter and Dotson [17] approximated fixed points of a nonexpansive mapping T

by Mann iterates. Later on, Maiti and Ghosh [10] and Tan and Xu [19] studied the
approximation of fixed points of a nonexpansive mapping T by Ishikawa iterates
under the same Condition (A) which is weaker than the requirement that T is
demicompact. We modify this condition for N mappings T1, T2, . . . , TN : K → K

as follows.

A finite family {T1, T2, . . . , TN} of N self mappings of K where K is a sub-
set of E, is said to satisfy condition (B) if there exists a nondecreasing func-
tion f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that
a1 ‖x − T1x‖ + a2 ‖x − T2x‖ + · · · + aN ‖x − TNx‖ ≥ f(d(x, F )) for all x ∈ K,
where d(x, F ) = inf{‖x − p‖ : p ∈ F = ∩N

i=1F (Ti)} and a1, a2, . . . , aN are N

nonnegative real numbers such that a1 + a2 + · · · + aN = 1.
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Remark 1.2. Condition (B) reduces to Condition (A) when T1 = T2 = · · · =
TN = T .

2. Main results

In this section, we shall prove the strong convergence theorems of the iterative
scheme (1.6) for common fixed point of a finite family of φ - continuous and
asymptotically quasi-nonexpansive mappings in real uniformly convex Banach
spaces. We first prove the following lemmas:

Lemma 2.1. Let E be a normed space and K be a nonempty closed convex

subset of E. Let T1, T2, . . . , TN : K → K be N asymptotically quasi-nonexpansive

mappings with sequences {r
(i)
n } such that

∞
∑

n=1
rn < ∞ where rn = max{r

(i)
n : i =

1, 2, . . . , N}. Let {xn} be the sequence as defined in (1.6) with the restriction
∞
∑

n=1
γ

(i)
n < ∞, 1 ≤ i ≤ N . If F = ∩N

i=1F (Ti) 6= ∅, then lim
n→∞

‖xn − p‖ exists for

all p ∈ F .

Proof. Let p ∈ F . Since {u
(1)
n }, {u

(2)
n }, . . . , {u

(N)
n } are bounded sequences in K.

So we can set

M = max
{

sup
n≥1

∥

∥

∥
u(i)

n − p
∥

∥

∥
: i = 1, 2, . . . , N

}

.

It follows from (1.6) that
∥

∥

∥
x(1)

n − p
∥

∥

∥
=

∥

∥

∥
α(1)

n T n
1 xn + β(1)

n xn + γ(1)
n u(1)

n − p
∥

∥

∥

≤ α(1)
n ‖T n

1 xn − p‖ + β(1)
n ‖xn − p‖ + γ(1)

n

∥

∥

∥
u(1)

n − p
∥

∥

∥

≤ α(1)
n (1 + rn) ‖xn − p‖ + β(1)

n ‖xn − p‖ + γ(1)
n

∥

∥

∥
u(1)

n − p
∥

∥

∥

≤
(

α(1)
n + β(1)

n

)

(1 + rn) ‖xn − p‖ + γ(1)
n

∥

∥

∥
u(1)

n − p
∥

∥

∥

=
(

1 − γ(1)
n

)

(1 + rn) ‖xn − p‖ + γ(1)
n

∥

∥

∥
u(1)

n − p
∥

∥

∥

≤ (1 + rn) ‖xn − p‖ + γ(1)
n M

≤ (1 + rn) ‖xn − p‖ + t(1)n(2.1)

where t
(1)
n = γ

(1)
n M . Since

∞
∑

n=1
γ

(1)
n < ∞, it follows that

∞
∑

n=1
t
(1)
n < ∞. Now using

(1.6) and (2.1), we note that
∥

∥

∥
x(2)

n − p
∥

∥

∥
≤ α(2)

n

∥

∥

∥
T n

2 x(1)
n − p

∥

∥

∥
+ β(2)

n ‖xn − p‖ + γ(2)
n

∥

∥

∥
u(2)

n − p
∥

∥

∥

≤ α(2)
n (1 + rn)

∥

∥

∥
x(1)

n − p
∥

∥

∥
+ β(2)

n ‖xn − p‖ + γ(2)
n

∥

∥

∥
u(2)

n − p
∥

∥

∥

≤ α(2)
n (1 + rn)

[

(1 + rn) ‖xn − p‖ + t(1)n

]

+ β(2)
n ‖xn − p‖
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+γ(2)
n

∥

∥

∥
u(2)

n − p
∥

∥

∥

≤
(

α(2)
n + β(2)

n

)

(1 + rn)2 ‖xn − p‖ + α(2)
n (1 + rn)t(1)n

+γ(2)
n

∥

∥

∥
u(2)

n − p
∥

∥

∥

=
(

1 − γ(2)
n

)

(1 + rn)2 ‖xn − p‖ + α(2)
n (1 + rn)t(1)n

+γ(2)
n M

≤ (1 + rn)2 ‖xn − p‖ + (1 + rn)t(1)n + γ(2)
n M

≤ (1 + rn)2 ‖xn − p‖ + t(2)n(2.2)

where t
(2)
n = (1+ rn)t

(1)
n + γ

(2)
n M . Since

∞
∑

n=1
γ

(2)
n < ∞ and

∞
∑

n=1
t
(1)
n < ∞, it follows

that
∞
∑

n=1
t
(2)
n < ∞. Again using (1.6) and (2.2), we note that

∥

∥

∥
x(3)

n − p
∥

∥

∥
≤ α(3)

n

∥

∥

∥
T n

3 x(2)
n − p

∥

∥

∥
+ β(3)

n ‖xn − p‖ + γ(3)
n

∥

∥

∥
u(3)

n − p
∥

∥

∥

≤ α(3)
n (1 + rn)

∥

∥

∥
x(2)

n − p
∥

∥

∥
+ β(3)

n ‖xn − p‖ + γ(3)
n

∥

∥

∥
u(3)

n − p
∥

∥

∥

≤ α(3)
n kn

[

(1 + rn)2 ‖xn − p‖ + t(2)n

]

+ β(3)
n ‖xn − p‖

+γ(3)
n

∥

∥

∥
u(3)

n − p
∥

∥

∥

≤
(

α(3)
n + β(3)

n

)

(1 + rn)3 ‖xn − p‖ + α(3)
n (1 + rn)t(2)n

+γ(3)
n

∥

∥

∥
u(3)

n − p
∥

∥

∥

=
(

1 − γ(3)
n

)

(1 + rn)3 ‖xn − p‖ + α(3)
n (1 + rn)t(2)n + γ(3)

n M

≤ (1 + rn)3 ‖xn − p‖ + (1 + rn)t(2)n + γ(3)
n M

≤ (1 + rn)3 ‖xn − p‖ + t(3)n(2.3)

where t
(3)
n = (1+ rn)t

(2)
n + γ

(3)
n M . Since

∞
∑

n=1
γ

(3)
n < ∞ and

∞
∑

n=1
t
(2)
n < ∞, it follows

that
∞
∑

n=1
t
(3)
n < ∞. Continuing the above process, we get

‖xn+1 − p‖ =
∥

∥

∥
x(N)

n − p
∥

∥

∥

≤ (1 + rn)N ‖xn − p‖ + t(N)
n(2.4)

where {t(N)} is a nonnegative real sequence such that
∞
∑

n=1
t
(N)
n < ∞. Since

∞
∑

n=1
rn < ∞ and

∞
∑

n=1
t
(N)
n < ∞, therefore from Lemma 1.1, we know that

lim
n→∞

‖xn − p‖ exists. This completes the proof. �
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Lemma 2.2. Let E be a real uniformly convex Banach space and K be a nonempty

closed convex subset of E. Let T1, T2, . . . , TN : K → K be N asymptotically

quasi-nonexpansive mappings with sequences {r
(i)
n } such that

∑∞
n=1 rn < ∞ where

rn = max{r
(i)
n : i = 1, 2, . . . , N}. Let T1, T2, . . . , TN also be uniformly φ - con-

tinuous. Let {xn} be the sequence as defined in (1.6) with
∞
∑

n=1
γ

(i)
n < ∞ for all

1 ≤ i ≤ N and {α
(i)
n } ⊆ [ε, 1− ε] for all i = 1, 2, . . . , Nand for some ε ∈ (0, 1). If

F = ∩N
i=1F (Ti) 6= ∅. Then lim

n→∞
‖xn − Tixn‖ = 0 for all 1 ≤ i ≤ N .

Proof. Let p ∈ F = ∩N
i=1F (Ti), it follows from Lemma 2.1 that lim

n→∞
‖xn − p‖

exists. Let lim
n→∞

‖xn − p‖ = a for some a ≥ 0. If a = 0, there is nothing to prove.

Assume that a > 0. Firstly, we are going to show that lim
n→∞

‖T n
Nxn − xn‖ = 0.

Since {xn} and {u
(i)
n } are bounded for all i = 1, 2, . . . , N , there exists R > 0 such

that xn − p + γ
(i)
n (u

(i)
n − xn), T n

i x
(i−1)
n − p + γ

(i)
n (u

(i)
n − xn) ∈ BR(0) for all n ≥ 1

and for all i = 1, 2, . . . , N . Using Lemma 1.2, we have

∥

∥

∥
x(N)

n − p
∥

∥

∥

2
=‖α(N)

n T n
Nx(N−1)

n + β(N)
n xn + γ(N)

n u(N)
n − p‖2

=‖α(N)
n (T n

Nx(N−1)
n − p + γ(N)

n (u(N)
n − xn))

+ (1 − α(N)
n )(xn − p + γ(N)

n (u(N)
n − xn))‖2

≤α(N)
n ‖T n

Nx(N−1)
n − p + γ(N)

n (u(N)
n − xn)‖2

+ (1 − α(N)
n )‖xn − p + γ(N)

n (u(N)
n − xn)‖2

− W2(α
(N)
n )g

(

‖T n
Nx(N−1)

n − xn‖
)

≤α(N)
n

[

‖T n
Nx(N−1)

n − p‖ + γ(N)
n ‖u(N)

n − xn‖
]2

+ (1 − α(N)
n )

[

‖xn − p‖ + γ(N)
n ‖u(N)

n − xn‖
]2

− W2(α
(N)
n )g

(

‖T n
Nx(N−1)

n − xn‖
)

≤α(N)
n

[

(1 + rn)‖x(N−1)
n − p‖ + γ(N)

n ‖u(N)
n − xn‖

]2

+ (1 − α(N)
n )

[

‖xn − p‖ + γ(N)
n ‖u(N)

n − xn‖
]2

− W2(α
(N)
n )g

(

‖T n
Nx(N−1)

n − xn‖
)

≤α(N)
n

[

(1 + rn)((1 + rn)N−1‖xn − p‖ + t(N−1)
n )

+ γ(N)
n ‖u(N)

n − xn‖
]2

+ (1 − α(N)
n )

[

‖xn − p‖ + γ(N)
n ‖u(N)

n − xn‖
]2

− W2(α
(N)
n )g

(

‖T n
Nx(N−1)

n − xn‖
)
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≤α(N)
n

[

(1 + rn)N‖xn − p‖ + (1 + rn)t(N−1)
n + γ(N)

n ‖u(N)
n − xn‖

]2

+ (1 − α(N)
n )

[

(1 + rn)N‖xn − p‖ + (1 + rn)t(N−1)
n

+ γ(N)
n ‖u(N)

n − xn‖
]2

− W2(α
(N)
n )g

(

‖T n
Nx(N−1)

n − xn‖
)

≤
[

(1 + rn)N‖xn − p‖ + (1 + rn)t(N−1)
n + γ(N)

n ‖u(N)
n − xn‖

]2

− W2(α
(N)
n )g

(

‖T n
Nx(N−1)

n − xn‖
)

≤
[

‖xn − p‖ + θ(N−1)
n

]2
− W2(α

(N)
n )g

(

‖T n
Nx(N−1)

n − xn‖
)

(2.5)

where θ
(N−1)
n = (1 + rn)t

(N−1)
n + γ

(N)
n ‖u

(N)
n − xn‖. Observe that ε3 ≤ W2(α

(N)
n )

now (2.5) implies that

ε3g
(

∥

∥

∥
T n

Nx(N−1)
n − xn

∥

∥

∥

)

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + δ(N−1)
n ,

where δ
(N−1)
n := 2θ

(N−1)
n ‖xn − p‖+(θ

(N−1)
n )2. Since

∞
∑

n=1
t
(N−1)
n < ∞ and

∞
∑

n=1
θ
(N−1)
n

< ∞, we get
∞
∑

n=1
δ
(N−1)
n < ∞. This implies that

lim
n→∞

g
( ∥

∥

∥
T n

Nx(N−1)
n − xn

∥

∥

∥

)

= 0.

Since g is strictly increasing and continuous at 0, it follows that

lim
n→∞

∥

∥

∥
T n

Nx(N−1)
n − xn

∥

∥

∥
= 0.

Again note that

‖xn − p‖ ≤
∥

∥

∥
xn − T n

Nx(N−1)
n

∥

∥

∥
+

∥

∥

∥
T n

Nx(N−1)
n − p

∥

∥

∥

≤
∥

∥

∥
xn − T n

Nx(N−1)
n

∥

∥

∥
+ (1 + rn)

∥

∥

∥
x(N−1)

n − p
∥

∥

∥
,(2.6)

for all n ≥ 1. Thus

a = lim
n→∞

‖xn − p‖ ≤ lim inf
n→∞

∥

∥

∥
x(N−1)

n − p
∥

∥

∥
≤ lim sup

n→∞

∥

∥

∥
x(N−1)

n − p
∥

∥

∥
≤ a,

and therefore lim
n→∞

∥

∥

∥
x

(N−1)
n − p

∥

∥

∥
= a. Using the same argument as in the proof

above, we have
∥

∥

∥
x(N−1)

n − p
∥

∥

∥

2
≤α(N−1)

n ‖T n
N−1x

(N−2)
n − p + γ(N−1)

n (u(N−1)
n − xn)‖2

+ (1 − α(N−1)
n )‖xn − p + γ(N−1)

n (u(N−1)
n − xn)‖2

− W2(α
(N−1)
n )g

(

‖T n
N−1x

(N−2)
n − xn‖

)

≤α(N−1)
n

[

‖T n
N−1x

(N−2)
n − p‖ + γ(N−1)

n ‖u(N−1)
n − xn‖

]2



CONVERGENCE TO COMMON FIXED POINT OF... 97

+ (1 − α(N−1)
n )

[

‖xn − p‖ + γ(N−1)
n ‖u(N−1)

n − xn‖
]2

− W2(α
(N−1)
n )g

(

‖T n
N−1x

(N−2)
n − xn‖

)

≤α(N−1)
n

[

(1 + rn)‖x(N−2)
n − p‖ + γ(N−1)

n ‖u(N−1)
n − xn‖

]2

+ (1 − α(N−1)
n )

[

‖xn − p‖ + γ(N−1)
n ‖u(N−1)

n − xn‖
]2

− W2(α
(N−1)
n )g

(

‖T n
N−1x

(N−2)
n − xn‖

)

≤α(N−1)
n

[

(1 + rn)((1 + rn)N−2‖xn − p‖

+ t(N−2)
n ) + γ(N−1)

n ‖u(N−1)
n − xn‖

]2

+ (1 − α(N−1)
n )

[

‖xn − p‖ + γ(N−1)
n ‖u(N−1)

n − xn‖
]2

− W2(α
(N−1)
n )g

(

‖T n
N−1x

(N−2)
n − xn‖

)

≤α(N−1)
n

[

(1 + rn)N−1‖xn − p‖ + (1 + rn)t(N−2)
n

+ γ(N−1)
n ‖u(N−1)

n − xn‖
]2

+ (1 − α(N−1)
n )

[

(1 + rn)N−1‖xn − p‖

+ (1 + rn)t(N−2)
n + γ(N−1)

n ‖u(N−1)
n − xn‖

]2

− W2(α
(N−1)
n )g

(

‖T n
N−1x

(N−2)
n − xn‖

)

≤
[

(1 + rn)N−1‖xn − p‖ + (1 + rn)t(N−2)
n + γ(N−1)

n ‖u(N−1)
n − xn‖

]2

− W2(α
(N−1)
n )g

(

‖T n
N−1x

(N−2)
n − xn‖

)

≤
[

‖xn − p‖ + θ(N−2)
n

]2
− W2(α

(N−1)
n )g

(

‖T n
N−1x

(N−2)
n − xn‖

)

(2.7)

where θ
(N−2)
n = (1 + rn)t

(N−2)
n + γ

(N−1)
n ‖u

(N−1)
n − xn‖. This implies that

ε3g
(

∥

∥

∥
T n

N−1x
(N−2)
n − xn

∥

∥

∥

)

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + δ(N−2)
n ,

where δ
(N−2)
n := 2θ

(N−2)
n ‖xn − p‖ + (θ

(N−2)
n )2.

Since
∞
∑

n=1
t
(N−2)
n < ∞ and

∞
∑

n=1
θ
(N−2)
n < ∞, we get

∞
∑

n=1
δ
(N−2)
n < ∞. This im-

plies that lim
n→∞

g
(

∥

∥

∥
T n

N−1x
(N−2)
n − xn

∥

∥

∥

)

= 0. Since g is strictly increasing and

continuous at 0, it follows that lim
n→∞

∥

∥

∥
T n

N−1x
(N−2)
n − xn

∥

∥

∥
= 0.

Now, observe that
∥

∥

∥
x(N−1)

n − xn

∥

∥

∥
=

∥

∥

∥
α(N−1)

n TN−1x
(N−2)
n + β(N−1)

n xn + γ(N−1)
n u(N−1)

n − xn

∥

∥

∥
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≤ α(N−1)
n

∥

∥

∥
TN−1x

(N−2)
n − xn

∥

∥

∥
+ γ(N−1)

n

∥

∥

∥
u(N−1)

n − xn

∥

∥

∥

→ 0 as n → ∞,(2.8)

and hence, φ
( ∥

∥

∥
x

(N−1)
n − xn

∥

∥

∥

)

→ 0 as n → ∞. Again observe that

‖xn − T n
Nxn‖ ≤

∥

∥

∥
xn − T n

Nx(N−1)
n

∥

∥

∥
+

∥

∥

∥
T n

Nx(N−1)
n − T n

Nxn

∥

∥

∥

≤
∥

∥

∥
xn − T n

Nx(N−1)
n

∥

∥

∥
+ φ

( ∥

∥

∥
x(N−1)

n − xn

∥

∥

∥

)

→ 0 as n → ∞,(2.9)

and

‖xn+1 − xn‖ =
∥

∥

∥
α(N)

n TNx(N−1)
n + β(N)

n xn + γ(N)
n u(N)

n − xn

∥

∥

∥

≤ α(N)
n

∥

∥

∥
TNx(N−1)

n − xn

∥

∥

∥
+ γ(N)

n

∥

∥

∥
u(N)

n − xn

∥

∥

∥

→ 0 as n → ∞,(2.10)

and hence, φ
(

‖xn+1 − xn‖
)

→ 0 as n → ∞. Now, we see that

‖T n
Nxn+1 − xn+1‖ ≤ ‖T n

Nxn+1 − T n
Nxn‖ + ‖T n

Nxn − xn‖ + ‖xn − xn+1‖

≤ φ
(

‖xn+1 − xn‖
)

+ ‖T n
Nxn − xn‖ + ‖xn − xn+1‖

→ 0 as n → ∞,(2.11)

and hence, φ
(

‖T n
Nxn+1 − xn+1‖

)

→ 0 as n → ∞. Therefore, it follows from (2.9)
and (2.11) that

‖xn+1 − TNxn+1‖ ≤
∥

∥xn+1 − T n+1
N xn+1

∥

∥ +
∥

∥T n+1
N xn+1 − TNxn+1

∥

∥

≤
∥

∥xn+1 − T n+1
N xn+1

∥

∥ + φ
(

‖T n
Nxn+1 − xn+1‖

)

→ 0 as n → ∞,(2.12)

which implies lim
n→∞

‖xn − TNxn‖ = 0. Similarly, by using the same argument as

in the proof above, we have

lim
n→∞

∥

∥

∥
xn − T n

N−2x
(N−3)
n

∥

∥

∥
= lim

n→∞

∥

∥

∥
xn − T n

N−3x
(N−4)
n

∥

∥

∥

= · · · = lim
n→∞

∥

∥

∥
xn − T n

2 x(1)
n

∥

∥

∥
= 0

and

lim
n→∞

∥

∥xn − T n
N−1xn

∥

∥ = lim
n→∞

∥

∥xn − T n
N−2xn

∥

∥ = · · · = lim
n→∞

‖xn − T n
3 xn‖ = 0.

This implies that

lim
n→∞

‖xn − TN−1xn‖ = lim
n→∞

‖xn − TN−2xn‖ = · · · = lim
n→∞

‖xn − T3xn‖ = 0.

It remains to show that lim
n→∞

‖xn − T1xn‖ = 0 and lim
n→∞

‖xn − T2xn‖ = 0.

Note that

‖x(1)
n − p‖2 ≤α(1)

n

[

‖T n
1 xn − p‖ + γ(1)

n

∥

∥

∥
u(1)

n − p
∥

∥

∥

]2
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+ (1 − α(1)
n )

[

‖xn − p‖ + γ(1)
n

∥

∥

∥
u(1)

n − p
∥

∥

∥

]2

− W2(α
(1)
n )g(‖T n

1 xn − xn‖)

≤α(1)
n

[

(1 + rn) ‖xn − p‖ + γ(1)
n

∥

∥

∥
u(1)

n − p
∥

∥

∥

]2

+ (1 − α(1)
n )

[

‖xn − p‖ + γ(1)
n

∥

∥

∥
u(1)

n − p
∥

∥

∥

]2

− W2(α
(1)
n )g(‖T n

1 xn − xn‖)

≤α(1)
n

[

(1 + rn) ‖xn − p‖ + γ(1)
n

∥

∥

∥
u(1)

n − p
∥

∥

∥

]2

+ (1 − α(1)
n )

[

(1 + rn) ‖xn − p‖ + γ(1)
n

∥

∥

∥
u(1)

n − p
∥

∥

∥

]2

− W2(α
(1)
n )g(‖T n

1 xn − xn‖)

≤
[

(1 + rn) ‖xn − p‖ + γ(1)
n

∥

∥

∥
u(1)

n − p
∥

∥

∥

]2

− W2(α
(1)
n )g(‖T n

1 xn − xn‖)

≤
[

‖xn − p‖ + γ(1)
n

∥

∥

∥
u(1)

n − p
∥

∥

∥

]2

− W2(α
(1)
n )g(‖T n

1 xn − xn‖).(2.13)

Thus, we have ε3g(‖T n
1 xn − xn‖) ≤

[

‖xn − p‖ + γ
(1)
n

∥

∥

∥
u

(1)
n − p

∥

∥

∥

]2
−

∥

∥

∥
x

(1)
n − p

∥

∥

∥

2

and therefore, lim
n→∞

‖T n
1 xn − xn‖ = 0.

Since

‖xn − T n
2 xn‖ ≤

∥

∥

∥
xn − T n

2 x(1)
n

∥

∥

∥
+

∥

∥

∥
T n

2 x(1)
n − T n

2 xn

∥

∥

∥

≤
∥

∥

∥
xn − T n

2 x(1)
n

∥

∥

∥
+ (1 + rn)

∥

∥

∥
x(1)

n − xn

∥

∥

∥

≤
∥

∥

∥
xn − T n

2 x(1)
n

∥

∥

∥
+ (1 + rn)

[

α(1)
n ‖T n

1 xn − xn‖

+γ(1)
n

∥

∥

∥
u(1)

n − xn

∥

∥

∥

]

→ 0 as n → ∞,(2.14)

this implies that lim
n→∞

‖T n
2 xn − xn‖ = 0. Thus, we have

‖xn − T2xn‖ ≤ ‖xn − xn+1‖ +
∥

∥xn+1 − T n+1
2 xn+1

∥

∥

+
∥

∥T n+1
2 xn+1 − T n+1

2 xn

∥

∥ +
∥

∥T n+1
2 xn − T2xn

∥

∥

≤ ‖xn − xn+1‖ +
∥

∥xn+1 − T n+1
2 xn+1

∥

∥

+φ(‖xn+1 − xn‖) + φ(‖T n
2 xn − xn‖)

→ 0 as n → ∞.(2.15)
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This implies that lim
n→∞

‖T2xn − xn‖ = 0. Similarly, we can show that

lim
n→∞

‖T1xn − xn‖ = 0.

Hence, lim
n→∞

‖Tixn − xn‖ = 0 for all i = 1, 2, . . . , N . This completes the proof. �

Theorem 2.1. Let E be a real uniformly convex Banach space and K be a

nonempty closed convex subset of E. Let T1, T2, . . . , TN : K → K be N asymptot-

ically quasi-nonexpansive mappings with sequences {r
(i)
n } such that

∑∞
n=1 rn < ∞

where rn = max{r
(i)
n : i = 1, 2, . . . , N}. Let T1, T2, . . . , TN also be uniformly φ -

continuous. Let {xn} be the sequence as defined in (1.6) with
∞
∑

n=1
γ

(i)
n < ∞ for all

1 ≤ i ≤ N and {α
(i)
n } ⊆ [ε, 1−ε] for all i = 1, 2, . . . , N and for some ε ∈ (0, 1). If

F = ∩N
i=1F (Ti) 6= ∅. Suppose {T1, T2, . . . , TN} satisfies condition (B). Then {xn}

converges strongly to a common fixed point of the mappings {T1, T2, . . . , TN}.

Proof. By Lemma 2.1, we see that lim
n→∞

‖xn − p‖ exists for all p ∈ F . Let

lim
n→∞

‖xn − p‖ = a for some a ≥ 0. If a = 0, there is nothing to prove. As-

sume that a > 0, as proved in Lemma 2.1, we have

‖xn+1 − p‖ =
∥

∥

∥
x(N)

n − p
∥

∥

∥
≤ (1 + rn)N ‖xn − p‖ + t(N)

n , ∀n ≥ 1,

where t
(N)
n = (1 + rn)t

(N−1)
n + γ

(N)
n M such that

∞
∑

n=1
t
(N)
n < ∞. This gives that

d(xn+1, F ) ≤ (1 + rn)Nd(xn, F ) + t(N)
n , ∀n ≥ 1,

since
∞
∑

n=1
rn < ∞ and

∞
∑

n=1
t
(N)
n < ∞, it follows from Lemma 1.1 that lim

n→∞
d(xn, F )

exists. Also by Lemma 2.2, lim
n→∞

‖xn − Tixn‖ = 0 for all i = 1, 2, . . . , N . Since

{T1, T2, . . . , TN} satisfies condition (B), we conclude that lim
n→∞

d(xn, F ) = 0.

Next, we show that {xn} is a Cauchy sequence. Since lim
n→∞

d(xn, F ) = 0, given

any ε > 0, there exists a natural number n0 such that d(xn, F ) < ε
3 for all n ≥ n0.

So, we can find p∗ ∈ F such that ‖xn0
− p∗‖ < ε

2 . For all n ≥ n0 and m ≥ 1, we
have

‖xn+m − xn‖ ≤ ‖xn+m − p∗‖ + ‖xn − p∗‖

≤ ‖xn0
− p∗‖ + ‖xn0

− p∗‖

<
ε

2
+

ε

2
= ε.

This shows that {xn} is a Cauchy sequence and so is convergent since E is
complete. Let lim

n→∞
xn = q∗. Then q∗ ∈ K. It remains to show that q∗ ∈ F . Let

ε1 > 0 be given. Then there exists a natural number n1 such that ‖xn − q∗‖ < ε1

4
for all n ≥ n1. Since lim

n→∞
d(xn, F ) = 0, there exists a natural number n2 ≥

n1 such that for all n ≥ n2 we have d(xn, F ) < ε1

5 and in particular we have
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d(xn2
, F ) ≤ ε1

5 . Therefore, there exists w∗ ∈ F such that ‖xn2
− w∗‖ < ε1

4 . For
any i ∈ I and n ≥ n2, we have

‖Tiq
∗ − q∗‖ ≤ ‖Tiq

∗ − w∗‖ + ‖w∗ − q∗‖

≤ 2 ‖q∗ − w∗‖

≤ 2
[

‖q∗ − xn2
‖ + ‖xn2

− w∗‖
]

< 2
[ε1

4
+

ε1

4

]

< ε1.

This implies that Tiq
∗ = q∗. Hence, q∗ ∈ F (Ti) for all i ∈ I and so q∗ ∈

F = ∩N
i=1F (Ti). Thus, {xn} converges strongly to a common fixed point of the

mappings {T1, T2, . . . , TN}. This completes the proof. �

For our next result, we shall need the following definition:

Definition 2.2. Let K be a nonempty closed subset of a Banach space E. A
mapping T : K → K is said to be semi-compact, if for any bounded sequence {xn}
in K such that limn→∞ ‖xn − Txn‖ = 0, there exists a subsequence {xnj

} ⊂ {xn}
such that limn→∞ xnj

= x ∈ K.

Theorem 2.3. Let E be a real uniformly convex Banach space and K be a

nonempty closed convex subset of E. Let T1, T2, . . . , TN : K → K be N asymptot-

ically quasi-nonexpansive mappings with sequences {r
(i)
n } such that

∑∞
n=1 rn < ∞

where rn = max{r
(i)
n : i = 1, 2, . . . , N}. Let T1, T2, . . . , TN also be uniformly φ -

continuous. Let {xn} be the sequence as defined in (1.6) with
∞
∑

n=1
γ

(i)
n < ∞ for all

1 ≤ i ≤ N and {α
(i)
n } ⊆ [ε, 1 − ε] for all i = 1, 2, . . . , N and for some ε ∈ (0, 1).

If F = ∩N
i=1F (Ti) 6= ∅. Suppose one of the mappings in {T1, T2, . . . , TN} is semi-

compact. Then {xn} converges strongly to a common fixed point of the mappings

{T1, T2, . . . , TN}.

Proof. Suppose Ti0 is semi-compact for some i0 ∈ {1, 2, . . . , N}. By Lemma 2.2,
we have

lim
n→∞

‖xn − Ti0xn‖ = 0.(2.16)

So there exists a subsequence {xnj
} of {xn} such that lim

j→∞
xnj

= x∗ ∈ K. Now

Lemma 2.2 guarantees that lim
nj→∞

∥

∥xnj
− Tixnj

∥

∥ = 0 for all i = 1, 2, . . . , N and

so ‖x∗ − Tix
∗‖ = 0 for all i = 1, 2, . . . , N . This implies that x∗ ∈ F = ∩N

i=1F (Ti).
Since lim

n→∞
d(xn, F ) = 0, it follows, as in the proof of Theorem 2.1, that {xn}

converges strongly to a common fixed point of the mappings {T1, T2, . . . , TN}.
This completes the proof. �

Remark 2.1. Theorem 2.1 extends Theorems 2 and 3 of Rhoades [14], Theorem
1.5 of Schu [15], corresponding result of Khan and Fukhar-ud-din [7] and Khan
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and Takahashi [8] to the case of finite family of more general class of nonexpansive
and asymptotically nonexpansive mappings and multi-step iteration scheme with
errors considered here and no boundedness condition imposed on K.

Remark 2.2. Theorem 2.1 also extends the corresponding results of Xu and
Noor [21] to the case of finite family of more general class of asymptotically
nonexpansive mappings and multi-step iteration scheme with errors considered
here and no boundedness condition imposed on K.

Remark 2.3. Theorem 2.1 also extends the corresponding result of Shahzad and
Udomene [18] to the case of finite family of uniformly φ - continuous asymptot-
ically quasi-nonexpansive mappings and multi-step iteration scheme with errors
considered here.

Remark 2.4. Theorem 2.1 also extends the corresponding result of Cho et al. [3]
to the case of finite family of mappings and multi-step iteration scheme with errors
considered here.

Remark 2.5. Theorem 2.3 extends Theorem 2 of Osilike and Aniagbosor [12]
and Theorem 2.2 of Schu [16] to the case of finite family of more general class
of asymptotically nonexpansive mappings and multi-step iteration scheme with
errors considered here and no boundedness condition imposed on K.

Remark 2.6. Theorem 2.1 also extends the corresponding result of Cho et al. [2]
to the case of finite family of more general class of asymptotically nonexpansive
mappings and multi-step iteration scheme with errors considered here.
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