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PARAMETRIZED SADDLE POINTS

DOREL I. DUCA AND EUGENIA DUCA

Abstract. In this paper, one considers the vector saddle point problem with
respect to a cone which depends on two parameters. Necessary and sufficient
conditions for a point to be a solution of the parameterized cone saddle point
problem are given. Then the parameterized cone saddle point problem is
related to the parameterized cone vector variational inequality problem. One
shows that, under some hypotheses, the problems of parameterized cone vector
saddle point and of parameterized cone vector variational inequality have the
same solution set. Also, an existence result for a parameterized cone vector
saddle point problem to have a solution is given.

1. Introduction

Let A and B be nonempty sets and F : A × B → R be a function. We
remember that a point (a, b) ∈ A× B is said to be a saddle point of F on A× B
if

(1.1) F (a, y) ≤ F (a, b) ≤ F (x, b), for all (x, y) ∈ A × B.

The condition (1.1) is equivalent to

(1.2) max
y∈B

min
x∈A

F (x, y) = min
x∈A

max
y∈B

F (x, y).

Let us consider a two-person zero-sum game GF generated by the function F.
This means that the first player selects a point x from A and the second player
selects a point y from B. As a result of this choice, the first player pays the second
one the amount F (x, y) . Then a point (a, b) ∈ A × B is a solution of the game
GF if and only if it is a saddle point of F on A × B.

The first saddle point theorem was proved by von Neumann [20]. Von Neu-
mann’s theorem can be stated as follows: if A and B are finite dimensional
simplices and F is a bilinear function on A × B, then F has a saddle point; i.e.
(1.2) holds. M. Shiffman [25] seems to have been the first to have considered
convex-concave functions in a saddle point theorem. H. Kneser [19], K. Fan [10],
and C. Berge [2] (using induction and the method of separating two disjoint con-
vex sets in an Euclidean space by a hyperplane) got saddle point theorems for
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convex-concave functions that are appropriately semicontinuous in one of the two
variables. H. Nikaido [22], on the other hand, using Brouwer’s fixed point theo-
rem, proved the existence of a saddle point for a function satisfying the weaker
algebraic condition of being quasi-convex-concave, but the stronger topological
condition of being continuous in each variable. M. Sion [24] proved a very general
saddle point theorem for a function which is quasi-convex and lower semicontinu-
ous in its first variabile and quasi-concave and upper semicontinuous in its second
variable in a topological vector space.

Most of the efforts have been spent on relaxing the assumptions on the convex-
concavity of F and also on the compactness condition for one of the sets A and
B. As examples we can give the papers of K. Fan [11], H. Tuy [29], [30], [31], J.
Hartung [16], U. Passy and E. Z. Prisman [23], G. H. Greco and C. D. Horvath
[15], S. Simons [26], J. Yu and X.Z. Yuan [33], D.I. Duca and L. Lupşa [7], [9],
etc. A little less study was dedicated to the case when the function F is defined
on a proper subset M of A × B (see, for example [8]).

Studies on saddle points of scalar functions have been extended to studies of
saddle points, with respect to a cone, of vector valued functions; see, for example:
[1], [12], [18], [21], [27], [28]. Necessary and sufficient conditions for cone saddle
points have been given in more papers; see, for example, [12], [21], [27]. Existence
results for cone saddle points are based on some fixed point theorems or scalar
minimax theorems; see, for example [28].

Recently, these problems are solved by a different approach; they are reduced
to vector variational inequality problems. The concept of vector variational in-
equality (VVI ) was introduced by F. Giannessi in 1980 [13].

Recently, VVIs have been studied intensively because they can be efficient tools
for investigating vector optimization problems and also because they provide a
mathematical model for the problem of equilibrium in a mechanical structure
when there are several conflicting criteria under consideration, such as weight,
cost, resistance, etc.

In [14], some relationships have been spelled out between a solution of a Minty
VVI and an efficient solution or a weakly efficient solution of a VOP. Convexity
and monotonicity assumptions are used in these results.

In [17], the reduction of the vector saddle point problem to a vector variational
inequality problem is treated in a finite dimensional vector space. In [18], one
considers its generalization to a vector problem involving the concept of moving
cone in the general setting of a normed space; the moving cone depends on one
parameter.

In this paper, one considers the vector saddle point problem with respect to
a cone which depends on two parameters. Necessary and sufficient conditions
for a point to be a solution of the parameterized cone saddle point problem
are given. Then the parameterized cone saddle point problem is related to the
parameterized cone vector variational inequality problem. One shows that, under
some hypotheses, the problems of parameterized cone vector saddle point and of
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parameterized cone vector variational inequality have the same solution set. Also,
an existence result for a parameterized cone vector saddle point problem to have
a solution is given.

The paper is outlined as follows. In Section 2, one formulates the parameter-
ized vector saddle point problem and parameterized vector variational inequality
problem for vector valued functions. In Section 3, some definitions and pre-
liminary results are given. Section 4 contains the main results: Necessary and
sufficient conditions for a point to be a solution of the parameterized cone sad-
dle point problem are given. Then, one shows that, under some hypotheses, the
problems of parameterized cone vector saddle point and of parameterized cone
vector variational inequality have the same solution set. The paper ends with an
existence result for a parameterized cone vector saddle point problem.

2. Problem formulation

Definition 2.1. Let X and Z be two normed spaces, Y be a topological linear
space, and C ⊆ Z be a pointed (i.e. C ∩ (−C) = {0}) convex cone in Z, with
nonempty interior (i.e. C is solid).

Let A and B be two nonempty subsets of X and Y respectively, and F :
A × B → Z be a function. We say that the point

(
x0, y0

)
∈ A × B is a weak

C−saddle point of F on A × B if there is no (x, y) ∈ A × B such that

F
(
x0, y0

)
− F

(
x, y0

)
∈ intC,

and

F
(
x0, y

)
− F

(
x0, y0

)
∈ intC.

Obviously, the point
(
x0, y0

)
∈ A×B is a weak C−saddle point of F on A×B

if and only if

F
(
x0, y0

)
− F

(
x, y0

)
/∈ intC, for all x ∈ A,

and

F
(
x0, y

)
− F

(
x0, y0

)
/∈ intC, for all y ∈ B.

Given two nonempty subsets A and B of X and Y, respectively, and a vector-
valued function F : A × B → Z, the Vector Saddle Point Problem, (V SPP ) for
short, is to find x0 ∈ A and y0 ∈ B such that

(
x0, y0

)
is a weak C−saddle point

of F on A × B.

On the other hand, given two nonempty subsets A and B of X and Y, re-
spectively, and a vector valued function F : A × B → Z, the Vector Variational
Inequality Problem, (V V IP ) for short, is to find x0 ∈ A and y0 ∈ T

(
x0

)
such

that 〈
5xF

(
x0, y0

)
, x− x0

〉
/∈ −intC, for all x ∈ A,

where T : A → 2Y is the multifunction defined by

T (x) = {y ∈ B : F (x, v)− F (x, y) /∈ intC, for all v ∈ B}, for all x ∈ A,
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and 5xF
(
x0, y0

)
denotes the Fréchet derivative of F with respect to the first

argument x at
(
x0, y0

)
.

We extend problems (V SPP ) and (V V IP ) by considering a moving cone which
depends on two parameters. To begin with, we introduce some parameterized
concepts for extension.

Definition 2.2. Let X and Y be two nonempty sets, Z be a topological space,
A and B be two nonempty subsets of X and Y respectively,

(
x0y0

)
∈ A × B,

F : A × B → Z be a function, and C : A × B → 2Z be a multifunction. We say
that the point

(
x0, y0

)
∈ A×B is a parameterized weak C−saddle point of F on

A × B if there is no (x, y) ∈ A × B such that

(2.1) F
(
x0, y0

)
− F

(
x, y0

)
∈ intC

(
x, y0

)
,

and

(2.2) F
(
x0, y

)
− F

(
x0, y0

)
∈ intC

(
x0, y

)
.

Obviously, the point
(
x0, y0

)
∈ A×B is a parameterized weak C−saddle point

of F on A × B if and only if

(2.3) F
(
x0, y0

)
− F

(
x, y0

)
/∈ intC

(
x, y0

)
, for all x ∈ A,

and

(2.4) F
(
x0, y

)
− F

(
x0, y0

)
/∈ intC

(
x0, y

)
, for all y ∈ B.

Given two nonempty subsets A and B of X and Y, respectively, C : A×B → 2Z

a multifunction, and a vector-valued function F : A×B → Z, the Parameterized
Vector Saddle Point Problem, (PVSPP) for short, is to find x0 ∈ A and y0 ∈ B
such that

(
x0, y0

)
is a parameterized weak C−saddle point of F on A × B.

On the other hand, given a nonempty subset A of the normed space X, a
nonempty subset B of Y, Z a normed space, C : A × B → 2Z a multifunction,
and a vector valued function F : A×B → Z, Fréchet differentiable with respect to
the first argument x at

(
x0, y0

)
, the Parameterized Vector Variational Inequality

Problem, (PVVIP) for short, is to find x0 ∈ A and y0 ∈ T
(
x0

)
such that

(2.5)
〈
5xF

(
x0, y0

)
, x− x0

〉
/∈ −intC

(
x, y0

)
, for all x ∈ A,

where T : A → 2Y is the multifunction defined by

T (x) = {y ∈ B : F (x, v)− F (x, y) /∈ intC (x, v) , for all v ∈ B}, for all x ∈ A,

and 5xF
(
x0, y0

)
denotes the Fréchet derivative of F with respect to the first

argument x at
(
x0, y0

)
.

3. Definitions and preliminary results

Definition 3.1. Let X be a linear space, A be a nonempty subset of X and
x0 ∈ A.
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We say that A is convex at x0 if

(1 − t)x0 + tx ∈ A, for all x ∈ A and all t ∈ [0, 1].

We say that A is convex if A is convex at each x0 ∈ A, that is

(1 − t)x0 + tx ∈ A, for all x, x0 ∈ A and all t ∈ [0, 1].

Definition 3.2. Let X and Z be two linear spaces, A be a nonemty subset of
X, x0 ∈ A, f : A → Z be a function and C : A → 2Z be a multifunction.

We say that f is convex at x0 with respect to C if A is convex at x0 and

(1 − t) f
(
x0

)
+ tf (x)− f

(
(1 − t) x0 + tx

)
∈ C

(
(1 − t) x0 + tx

)
,

for all x ∈ A and all t ∈ [0, 1].

We say that f is concave at x0 with respect to C if (−f) is convex at x0 with
respect to C.

We say that f is convex (respectively concave) on A with respect to C if A is
convex and f is convex (respectively concave) at each x ∈ A with respect to C,
that is

(1 − t) f
(
x0

)
+ tf (x)− f

(
(1 − t) x0 + tx

)
∈ C

(
(1 − t) x0 + tx

)
,

for all x, x0 ∈ A and all t ∈ [0, 1].

Definition 3.3. Let X, Y, and Z be three linear spaces, A be a nonempty subset
of X, B be a nonempty subset of Y,

(
x0, y0

)
∈ A × B, C : A × B → 2Z be a

multifunction and F : A × B → Z be a function. We say that the function F
is convex-concave at

(
x0, y0

)
with respect to C if A is convex at x0, B is convex

at y0 and if F :
(
·, y0

)
: A → Z is convex at x0 with respect to C

(
·, y0

)
and

F
(
x0, ·

)
: B → Z is concave at y0 with respect to C

(
x0, ·

)
.

Definition 3.4. Let X and Z be two topological spaces, and A be a nonempty
subset of X. A multifunction T : A → 2Z is said to be closed if for each sequence
(xn)n∈N

of elements from A, convergent to an element x from A, and for each
sequence (zn)n∈N

of elements zn ∈ T (xn) , (n ∈ N) , convergent to an element z
from Z, we have z ∈ T (x) .

4. Main results

Theorem 4.1. Let X, Y and Z be three normed spaces, A be a nonempty subset

of X, B be a nonempty subset of Y,
(
x0, y0

)
∈ A × B, F : A × B → Z be a

function, and C : A × B → 2Z be a multifunction such that:

i) the set A is convex at x0, and the set B is convex at y0;

ii) the multifunctions C
(
., y0

)
: A → 2Z , and C

(
x0, .

)
: B → 2Z are closed;

iii) for each (x, y) ∈ A × B and t ∈ [0, 1], the sets C
(
x0, (1 − t) y0 + ty

)
and

C
(
(1− t) x0 + ty, y0

)
are solid pointed closed convex cones;

iv) the function F is Fréchet differentiable in each of the arguments x and y
at

(
x0, y0

)
.
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If the point
(
x0, y0

)
∈ A × B is a parameterized weak C-saddle point of the

function F on A × B, then

(4.1)
〈
5xF

(
x0, y0

)
, x− x0

〉
/∈ −intC

(
x0, y0

)
, for all x ∈ A

and

(4.2)
〈
5yF

(
x0, y0

)
, y − y0

〉
/∈ intC

(
x0, y0

)
, for all y ∈ B.

Proof. Assume that
(
x0, y0

)
∈ A × B is a parameterized weak C-saddle point of

F on A × B. Then

(4.3) F
(
x0, y0

)
− F

(
x, y0

)
/∈ intC

(
x, y0

)
,

for all x ∈ A, and

(4.4) F
(
x0, y

)
− F

(
x0, y0

)
/∈ intC

(
x0, y

)
,

for all y ∈ B.

In order to prove that (4.1) and (4.2) hold, let x ∈ A and y ∈ B. Since A is
convex at x0 and B is convex at y0, we have

(1 − t)x0 + tx ∈ A, for all t ∈ [0, 1],

and
(1 − t) y0 + ty ∈ B, for all t ∈ [0, 1].

Conditions (4.3) and (4.4) imply

(4.5) F
(
x0, y0

)
− F

(
(1 − t)x0 + tx, y0

)
/∈ intC

(
(1 − t)x0 + tx, y0

)
,

for all t ∈ [0, 1], and

(4.6) F
(
x0, (1 − t) y0 + ty

)
− F

(
x0, y0

)
/∈ intC

(
x0, (1 − t) y0 + ty

)
,

for all t ∈ [0, 1].

Since for each t ∈ [0, 1], the sets

C
(
(1 − t) x0 + tx, y0

)
and C

(
x0, (1− t) y0 + ty

)

are cones, from (4.5) and (4.6) it follows that

1

t

[
F

(
x0 + t(x − x0), y0

)
− F

(
x0, y0

)]
/∈ −intC

(
(1 − t) x0 + tx, y0

)
,

for all t ∈]0, 1], and

1

t

[
F

(
x0, y0 + t

(
y − y0

))
− F

(
x0, y0

)]
/∈ intC

(
x0, (1 − t) y0 + ty

)
,

for all t ∈]0, 1].

Since for each t ∈ [0, 1], the sets

Z \ (−intC
(
(1− t) x0 + tx, y0

)
) and Z \ intC

(
x0, (1− t) y0 + ty

)

are closed, and F is Fréchet differentiable in each of the arguments x and y at(
x0, y0

)
, it follows that

〈
5xF

(
x0, y0

)
, x− x0

〉
/∈ −intC

(
x0, y0

)
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and 〈
5yF

(
x0, y0

)
, y − y0

〉
/∈ intC

(
x0, y0

)
.

The theorem is proved. �

Theorem 4.2. Let X, Y and Z be three normed spaces, A be a nonempty subset

of X, B be a nonempty subset of Y,
(
x0, y0

)
∈ A × B, C : A × B → 2Z be a

multifunction, and F : A × B → Z be a function such that:

i) the set A is convex at x0, and the set B is convex at y0;

ii) the multifunctions C
(
x0, ·

)
: B → 2Z and C

(
·, y0

)
: A → 2Z are closed;

iii) for each (x, y) ∈ A × B and t ∈ [0, 1], the sets C
(
(1 − t) x0 + tx, y0

)
and

C
(
x0, (1− t) y0 + ty

)
are solid pointed closed convex cones;

iv) the function F is convex-concave at
(
x0, y0

)
with respect to C, and Fréchet

differentiable in each of the arguments x and y at
(
x0, y0

)
.

If

(4.7)
〈
5xF

(
x0, y0

)
, x− x0

〉
/∈ −intC

(
x0, y0

)
, for all x ∈ A

and

(4.8)
〈
5yF

(
x0, y0

)
, y − y0

〉
/∈ intC

(
x0, y0

)
, for all y ∈ B,

then
(
x0, y0

)
is a weak C

(
x0, y0

)
-saddle point of the function F on A × B.

If, in addition,

(4.9) C
(
x, y0

)
⊆ C

(
x0, y0

)
, for all x ∈ A,

and

(4.10) C
(
x0, y

)
⊆ C

(
x0, y0

)
, for all y ∈ B,

then
(
x0, y0

)
is a solution of (PVSPP) .

Proof. Assume that
(
x0, y0

)
∈ A × B satisfies the conditions (4.7) and (4.8). In

order to prove that
(
x0, y0

)
is a weak C

(
x0, y0

)
-saddle point of F on A × B, let

x ∈ A and y ∈ B.

Since F is convex-concave at
(
x0, y0

)
with respect to C, we have

(1 − t) F
(
x0, y0

)
+ tF

(
x, y0

)
− F

(
(1 − t) x0 + tx, y0

)
∈ C

(
(1 − t)x0 + tx, y0

)
,

for all t ∈ [0, 1], and

F
(
x0, (1 − t) y0 + ty

)
− (1 − t)F

(
x0, y0

)
− tF

(
x0, y

)
∈ C

(
x0, (1 − t) y0 + ty

)
,

for all t ∈ [0, 1].

Since, for each t ∈ [0, 1], the sets

C
(
(1 − t) x0 + tx, y0

)
and C

(
x0, (1− t) y0 + ty

)

are cones, we deduce that

−
1

t

[
F

(
x0 + t

(
x − x0

)
, y0

)
− F

(
x0, y0

)]
− F

(
x0, y0

)
+ F

(
x, y0

)
∈
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∈ C
(
x0 + t

(
x − x0

)
, y0

)
,

for all t ∈]0, 1], and

−F
(
x0, y

)
+ F

(
x0, y0

)
+

1

t

[
F

(
x0, y0 + t

(
y − y0

))
− F

(
x0, y0

)]
∈

∈ C
(
x0, y0 + t

(
y − y0

))
,

for t ∈]0, 1].

Since the multifunctions C
(
·, y0

)
and C

(
x0, ·

)
are closed, the function F is

Fréchet differentiable in each of the arguments at
(
x0, y0

)
, and for each t ∈ [0, 1],

the sets C
(
x0, (1 − t) y0 + ty

)
and C

(
(1− t) x0 + tx, y0

)
are solid convex cones,

from the last two relations, by passing to limit, we obtain that

−
〈
5xF

(
x0, y0

)
, x− x0

〉
− F

(
x0, y0

)
+ F

(
x, y0

)
∈ C

(
x0, y0

)

and

−F
(
x0, y

)
+ F

(
x0, y0

)
+

〈
5yF

(
x0, y0

)
, y − y0

〉
∈ C

(
x0, y0

)
.

From conditions (4.7) and (4.8), it follows that

(4.11) F
(
x0, y0

)
− F

(
x, y0

)
/∈ intC

(
x0, y0

)
,

and

(4.12) F
(
x0, y

)
− F

(
x0, y0

)
/∈ intC

(
x0, y0

)
,

because

C
(
x0, y0

)
+ intC

(
x0, y0

)
⊆ intC

(
x0, y0

)
.

Consequently,
(
x0, y0

)
is a weak C

(
x0, y0

)
-saddle point of F on A × B.

Moreover, if (4.9) and (4.10) hold, then, from (4.11) and (4.12), it follows that

F
(
x0, y0

)
− F

(
x, y0

)
/∈ intC

(
x, y0

)
, for all x ∈ A,

and

F
(
x0, y

)
− F

(
x0, y0

)
/∈ intC

(
x0, y

)
, for all y ∈ B,

hence
(
x0, y0

)
is a solution of Problem (PVSPP) .

The theorem is proved. �

Theorem 4.3. Let X and Z be two normed spaces, Y be a topological linear

space, A be a nonempty subset of X, B be a nonempty subset of Y,
(
x0, y0

)
∈

A × B, F : A × B → Z be a function and C : A × B → 2Z be a multifunction

such that

i) the set A is convex at x0;

ii) the multifunction C
(
·, y0

)
: A → 2Z is closed and has solid pointed closed

convex cone values;

iii) the function F
(
·, y0

)
: A → Z is Fréchet differentiable at x0;

iv) C
(
x, y0

)
⊆ C

(
x0, y0

)
, for all x ∈ A.

If
(
x0, y0

)
is a solution of (PVSPP), then

(
x0, y0

)
is a solution of (PVVIP) .
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Proof. Assume that
(
x0, y0

)
∈ A × B is a parameterized weak C-saddle point of

the function F on A × B. Then

(4.13) F
(
x0, y0

)
− F

(
x, y0

)
/∈ intC

(
x, y0

)
,

for all x ∈ A, and

(4.14) F
(
x0, y

)
− F

(
x0, y0

)
/∈ intC

(
x0, y

)
,

for all y ∈ B.

From (4.14) it follows that

y0 ∈ T
(
x0

)
=(4.15)

= {y ∈ B : F
(
x0, v

)
− F

(
x0, y

)
/∈ intC

(
x0, y

)
, for all v ∈ B}

We will show that
(
x0, y0

)
is a solution of (PVVIP) , i.e. x0 ∈ A and y0 ∈

T
(
x0

)
satisfy

(4.16)
〈
5xF

(
x0, y0

)
, x− x0

〉
/∈ −intC

(
x, y0

)
, for all x ∈ A.

For this, let x ∈ A. Since A is convex at x0, we have

(1 − t)x0 + tx ∈ A, for all t ∈ [0, 1].

Then (4.13) implies

(4.17) F
(
x0, y0

)
− F

(
(1 − t) x0 + tx, y0

)
/∈ intC

(
(1− t) x0 + tx, y0

)
,

for all t ∈ [0, 1].

Since C
(
·, y0

)
has convex cone values, from (4.17) it follows that

(4.18)
1

t

[
F

(
x0 + t

(
x − x0

)
, y0

)
− F

(
x0, y0

)]
/∈ −intC

(
x0 + t

(
x − x0

)
, y0

)
,

for all t ∈]0, 1].

Since for each t ∈ [0, 1] the set Z \ (−intC
(
x0 + t

(
x − x0

)
, y0

)
) is closed, the

multifunction C
(
·, y0

)
: A → 2Z is closed, and the function F

(
·, y0

)
: X → Z is

Fréchet differentiable at x0, from (4.18) , by passing to limit, it follows that
〈
5xF

(
x0, y0

)
, x − x0

〉
/∈ −intC

(
x0, y0

)
,

and hence 〈
5xF

(
x0, y0

)
, x − x0

〉
/∈ −intC

(
x, y0

)
,

Consequently,
(
x0, y0

)
is a solution of (PVVIP) . The theorem is proved. �

Theorem 4.4. Let X and Z be two normed spaces, Y be a nonempty set, A
be a nonempty subset of X, B be a nonempty subset of Y,

(
x0, y0

)
∈ A × B,

F : A×B → Z be a function, and C : A×B → 2Z be a multifunction such that:

i) the set A is convex at x0;

ii) the multifunction C
(
·, y0

)
: A → 2Z is closed and has solid pointed closed

convex cone values;
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iii) the function F
(
·, y0

)
: A → Z is convex at x0 with respect to C

(
·, y0

)
, and

Fréchet differentiable at x0;

iv) C
(
x0, y0

)
⊆ C

(
x, y0

)
, for all x ∈ A.

If
(
x0, y0

)
∈ A × B is a solution of (PVVIP) , then

(
x0, y0

)
is a solution of

(PVSPP) .

Proof. Assume that
(
x0, y0

)
is a solution of (PVVIP); then y0 ∈ T

(
x0

)
and

(4.19)
〈
5xF

(
x0, y0

)
, x− x0

〉
/∈ −intC

(
x, y0

)
, for all x ∈ A.

In order to prove that
(
x0, y0

)
is a solution of (PVSPP) , let (x, y) ∈ A×B. From

y0 ∈ T
(
x0

)
= {y ∈ B : F

(
x0, v

)
− F

(
x0, y

)
/∈ intC

(
x0, y

)
, for all v ∈ B},

it results that

(4.20) F
(
x0, y

)
− F

(
x0, y0

)
/∈ intC

(
x0, y

)
.

Since F
(
·, y0

)
is convex at x0 with respect to C

(
·, y0

)
, we have

(1− t) F
(
x0, y0

)
+ tF

(
x, y0

)
− F

(
(1− t) x0 + tx, y0

)
∈ C

(
(1− t)x0 + tx, y0

)
,

for all t ∈ [0, 1]. Since, for each t ∈ [0, 1], the set C
(
(1 − t) x0 + tx, y0

)
is a cone,

we have

−
1

t

[
F

(
x0 + t

(
x − x0

)
, y0

)
− F

(
x0, y0

)]
− F

(
x0, y0

)
+ F

(
x, y0

)
∈

∈ C
(
(1 − t)x0 + tx, y0

)
, for all t ∈]0, 1].

Since F
(
·, y0

)
: X → Z is Fréchet differentiable at x0, and C

(
·, y0

)
is closed,

from the last relation, by passing to limit, we obtain that

−
〈
5xF

(
x0, y0

)
, x− x0

〉
+ F

(
x, y0

)
− F

(
x0, y0

)
∈ C

(
x0, y0

)
.

From condition (4.19), and hypothesis iv), it follows that

(4.21) F
(
x0, y0

)
− F

(
x, y0

)
/∈ intC

(
x, y0

)

because

C
(
x, y0

)
+ intC

(
x, y0

)
⊆ intC

(
x, y0

)
.

Conditions (4.20) and (4.21) prove that
(
x0, y0

)
is a solution of (PVSPP) . The

theorem is proved. �

In what follows, we use the following statement.

Theorem 4.5. (Fan − KKM Theorem) Let U be a subset of the topological linear

space X and S : U → 2X be a multifunction such that

(i) for each u ∈ U the set S (u) is closed;

(ii) there exists û ∈ U such that S (û) is compact.

If, for each finite subset {u1, · · ·, um} of U , we have

conv{u1, · · ·, um} ⊆ ∪{S
(
ui

)
: i ∈ {1, . . . , m}},
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then

∩{S (u) : u ∈ U} 6= ∅,

where conv (R) denotes the convex hull of the set R.

The following statement is an existence theorem for Problem (VSPP) to have
a solution.

Theorem 4.6. Let X and Z be two normed spaces, and Y be a topological linear

space. Let A be a nonempty closed subset of X, B be a nonempty compact subset

of Y, C : A×B → 2Z be a multifunction, and F : A×B → Z be a function such

that:

i) the set A is convex and closed and the set B is compact;

ii) the mulifunction C : A × B → 2Z is closed and has solid pointed closed

convex cone values;

iii) for each y ∈ B the function F (·, y) : X → Z is convex on A with respect

to C (·, y) , and Fréchet diferentiable on A;

iv) the function ∇xF is continuous in both x and y on A × B.

Let T : A → 2Y the multifunction defined by

T (x) = {y ∈ B : F (x, v)− F (x, y) /∈ intC (x, v) , for all v ∈ B}, for all x ∈ A.

If there exist a nonempty compact subset U of X and û ∈ A ∩ U such that for

each u ∈ A \ (A ∩ U) and y ∈ T (u) we have

〈∇xF (u, y) , û− u〉 ∈ −intC (u, y) ,

then there exists a point
(
x0, y0

)
∈ A × B such that y0 ∈ T

(
x0

)
and

〈
∇xF

(
x0, y0

)
, x − x0

〉
/∈ −intC

(
x0, y0

)
, for all x ∈ A.

If, in addition, the multifunction C : A × B → 2Z is constant with respect to

the first argument x, i.e. there exists a multifunction Ĉ : B → 2Z such that

Ĉ (y) = C (x, y) , for all (x, y) ∈ A × B,

then Problem (PVSPP) has a solution.

Proof. Let S : A → 2X be the multifunction defined, for all u ∈ A, by

S (u) = {x ∈ A : there exists t ∈ T (x) such that

〈∇xF (x, t) , u − x〉 /∈ −intC (x, t)}.

Let us show that

(4.22) ∩{S (u) : u ∈ A} 6= ∅.

In order to prove (4.22) , we use Fan-KKM Theorem (Theorem 4.5).

First, we prove that for each finite subset
{
u1, u2, . . . , um

}
of A, the convex

hull of the set
{
u1, u2, ..., um

}
is contained in the set

∪
{
S

(
ui

)
: i ∈ {1, 2, . . . , m}

}
,
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that is,

(4.23) conv
{
u1, u2, . . . , um

}
⊆ ∪

{
S

(
ui

)
: i ∈ {1, 2, . . . , m}

}
.

For this, we assume the contrary that there exist u1, u2, . . . , um ∈ A and
α1, α2, . . . , αm ∈ [0, 1] with

α1 + α2 + . . . + αm = 1,

such that

(4.24) u :=
m∑

i=1

αiu
i /∈ ∪

{
S

(
ui

)
: i ∈ {1, 2, . . . , m}

}
.

Since A is convex, we obtain that u ∈ A.

On the other hand, from (4.24), we deduce that u /∈ S
(
ui

)
, for all i ∈

{1, 2, . . . , m}. It follows that, for each i ∈ {1, . . . , m}, and each t ∈ T
(
ui

)
we

have 〈
∇xF (u, t) , ui − u

〉
∈ −intC (u, t) .

Let now, t ∈ T
(
ui

)
, i ∈ {1, ..., m}. Since intC (u, t) is convex

m∑

i=1

αi

〈
∇xF (u, t) , ui − u

〉
∈ −intC (u, t) .

But the operator ∇xF (u, t) is linear, and then

m∑

i=1

αi

〈
∇xF (u, t) , ui − u

〉

=

〈
∇xF (u, t) ,

m∑

i=1

αiu
i −

m∑

i=1

αiu

〉

= 〈∇xF (u, t) , u− u〉 = 0.

It follows that 0 ∈ −intC (u, t) which is a contradiction. Thus (4.23) is true.

Now, we show that the multifunction T is closed. Let (un)n∈N
be a sequence

of elements from A and u ∈ A such that un → u. Let (yn)n∈N
be a sequence of

elements from B such that yn ∈ T (un) , for all n ∈ N. From yn ∈ T (un) , (n ∈ N)
we deduce that

(4.25) F (un, v)− F (un, yn) /∈ intC (un, v) , for all v ∈ B and n ∈ N.

Since {yn : n ∈ N} is a subset of B and B is compact, the sequence (yn) contains
a convergent subsequence. Without loss of generality, we can assume that the
sequence itself is convergent. Hence there exists y ∈ B such that yn → y.

Then, by the continuity of F and the hypothesis ii), from (4.25) , by passing
to limit, we deduce that

F (u, v)− F (u, y) /∈ intC (u, v) , for all v ∈ B,

which shows that y ∈ T (u) . Consequently, the multifunction T is closed.
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Now, we show that, for each u ∈ A, the set S (u) is closed. For this let
u ∈ A. Let now s ∈ X and (sn)n∈N

be a sequence of elements from S (u) such
that sn → s. The set A being closed, the element s belongs to A. Since, for each
n ∈ N, we have sn ∈ S (u) , it follows that, for each n ∈ N, there exists tn ∈ T (sn)
such that

(4.26) 〈∇xF (sn, tn) , u− sn〉 /∈ −intC (sn, tn) .

The set B is compact and {tn : n ∈ N} is a subset of B, then the sequence (tn)
contains a convergent subsequence. Without loss of generality, we can assume
that the sequence itself is convergent. Let t ∈ B be the limit of the sequence
(tn) . Since T is closed, it follows that t ∈ T (u) .

On the other hand, the function ∇xF is continuous, and for each n ∈ N, the
set Z \ (−intC (sn, tn)) is closed, then, from (4.26) , by passing to limit, it follows
that

〈∇xF (s, t) , u − s〉 /∈ −intC (s, t) ,

which shows that the set S (u) is closed. Hence, for each u ∈ A, the set S (u) is
closed.

Now we show that S (û) is compact. Since S (û) is closed and U is compact,
it is sufficient to show that S (û) ⊆ U. Assume the contrary, i.e. there exists
ũ ∈ S (û) such that ũ /∈ U. From ũ ∈ S (û) , it follows that ũ ∈ A and there exists
ỹ ∈ T (ũ) such that

(4.27) 〈∇xF (ũ, ỹ) , û− ũ〉 /∈ −intC (ũ, ỹ) .

On the other hand, ũ ∈ A\(A ∩ U) because ũ ∈ A and ũ /∈ U. Since ỹ ∈ T (ũ) ,
by the hypotheses of the theorem, we have

〈∇xF (ũ, ỹ) , û− ũ〉 ∈ −intC (ũ, ỹ) ,

which contradicts (4.27) .

Consequently, (4.22) holds. Then there exists x0 ∈ A such that x0 ∈ S (u) , for
all u ∈ A, that is there exist x0 ∈ A and y0 ∈ T

(
x0

)
such that

〈
∇xF

(
x0, y0

)
, x − x0

〉
/∈ −intC

(
x0, y0

)
, for all x ∈ A.

If, in addition, the multifunction C is constant with respect to the first argu-
ment x, then we can apply Theorem 4.4. It follows that

(
x0, y0

)
is a solution of

Problem (PVSPP) .

The theorem is proved. �
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