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ON THE RATIONAL RECURSIVE SEQUENCE

xn+1 =
A + α0xn + α1xn−σ

B + β0xn + β1xn−τ

E. M. E. ZAYED AND M. A. EL-MONEAM

Abstract. The main objective of this paper is to study the boundedness, the
periodicity, the convergence and the global stability of the positive solutions
of the difference equation

xn+1 =
A + α0xn + α1xn−σ

B + β0xn + β1xn−τ

, n = 0, 1, 2, ...

where the coefficients A, B, α0, α1, β0, β1 ∈ (0,∞) and σ, τ ∈ N. The ini-
tial conditions x−ω,...,x−1, x0 are arbitrary positive real numbers and ω =
max{τ, σ}. Some numerical examples are presented.

1. Introduction

Our goal in this paper is to investigate the boundedness, the periodicity, the
convergence and the global stability of the positive solutions of the difference
equation

(1.1) xn+1 =
A + α0xn + α1xn−σ

B + β0xn + β1xn−τ
, n = 0, 1, 2, ...

where the coefficients A,B,α0, α1, β0, β1 ∈ (0,∞) and σ, τ ∈ N. The initial con-
ditions x−ω, ..., x−1, x0 are arbitrary positive real numbers and ω = max{τ, σ}.
The case where any of A,B,α0, α1, β0, β1 is allowed to be zero gives different
special cases of the equation (1.1) which are studied by many authors, (see for
example ([1]-[16]). For the related work, see [17]-[40]. The study of these equa-
tions is challenging and rewarding and is still in its infancy. We believe that
the nonlinear rational difference equations are of importance in their own right.
Furthermore, the results about such equations offer prototypes for the study of
the global behavior of nonlinear difference equations. Note that the difference
equation (1.1) has been discussed in [24] when σ = τ = 1.

Definition 1. A difference equation of order (ω + 1) is of the form

(1.2) xn+1 = F (xn, xn−1, ..., xn−ω), n = 0, 1, 2, ...
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where F is a continuous function which maps some set Jω+1 into J and J is a set
of real numbers. An equilibrium point x̃ of this equation is a point that satisfies
the condition x̃ = F (x̃, x̃, ...., x̃) . That is, the constant sequence {xn}∞n=−ω with
xn = x̃ for all n ≥ −ω is a solution of that equation.

Definition 2. Let x̃ ∈ (0,∞) be an equilibrium point of the difference equation
(1.2). Then

(i) An equilibrium point x̃ of the difference equation (1.2) is called locally stable
if for every ε > 0 there exists δ > 0 such that, if x−ω, ..., x−1, x0 ∈ (0,∞) with
|x−ω − x̃| + ... + |x−1 − x̃| + |x0 − x̃| < δ, then |xn − x̃| < ε for all n ≥ −ω.

(ii) An equilibrium point x̃ of the difference equation (1.2) is called locally
asymptotically stable if it is locally stable and there exists γ > 0 such that,
if x−ω, ..., x−1, x0 ∈ (0,∞) with |x−ω − x̃| + ... + |x−1 − x̃| + |x0 − x̃| < γ, then

lim
n→∞

xn = x̃.

(iii) An equilibrium point x̃ of the difference equation (1.2) is called a global
attractor if for every x−ω, ..., x−1, x0 ∈ (0,∞) we have

lim
n→∞

xn = x̃.

(iv) An equilibrium point x̃ of the equation (1.2) is called globally asymptotically
stable if it is locally stable and a global attractor.

(v) An equilibrium point x̃ of the difference equation (1.2) is called unstable if it
is not locally stable.

Definition 3. We say that a sequence {xn}∞n=−ω is bounded and persisting if
there exist positive constants m and M such that

m ≤ xn ≤ M for all n ≥ −ω.

Definition 4. A sequence {xn}∞n=−ω is said to be periodic with period p if xn+p =
xn for all n ≥ −ω. A sequence {xn}∞n=−ω is said to be periodic with prime period
p if p is the smallest positive integer having this property.

Assume that ã = α0 +α1, a = α0−α1, b̃ = β0 +β1 and b = β0−β1. Then the
equilibrium point x̃ of the difference equation (1.1) is the solution of the equation

(1.3) x̃ = (A + ã x̃) /(B + b̃ x̃).

Consequently, the positive equilibrium point x̃ of the difference equation (1.1) is
given by

x̃ =

(
(ã − B) +

√
(ã − B)2 + 4Ab̃

)
/2b̃.

Let F : (0,∞)3 −→ (0,∞) be a continuous function defined by

(1.4) F (u0, u1, u2) =
A + α0u0 + α1u1

B + β0u0 + β1u2
.
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Then the linearized equation associated with the difference equation (1.1) about
the positive equilibrium point x̃ takes the form

yn+1 =
∂F (x̃, x̃, x̃)

∂u0
yn +

∂F (x̃, x̃, x̃)

∂u1
yn−σ +

∂F (x̃, x̃, x̃)

∂u2
yn−τ

= a2yn + a1yn−σ + a0yn−τ ,(1.5)

where

(1.6) a2 =
α0 − β0x̃

B + b̃x̃
, a1 =

α1

B + b̃x̃
, and a0 =

− β1x̃

B + b̃x̃
.

The characteristic equation of the linearized equation (1.5) is

(1.7) λn+1 = a2λ
n + a1λ

n−σ + a0λ
n−τ .

2. Main results

In this section, we establish some results which show that the positive equi-
librium point x̃ of the difference equation (1.1) is globally asymptotically stable
and every positive solution of the difference equation (1.1) is bounded and has
prime period two.

Theorem 1. ([17, 18] The linearized stability theorem) Suppose F is a contin-

uously differentiable function defined on an open neighborhood of the equilibrium

x̃. Then the following statements are true.

(i) If all roots of the characteristic equation (1.7) of the linearized equation (1.5)
have absolute value less than one, then the equilibrium point x̃ is locally asymp-

totically stable.

(ii) If at least one root of equation (1.7) has absolute value greater than one, then

the equilibrium point x̃ is unstable.

(iii) If all roots of equation (1.7) have absolute value greater than one, then the

equilibrium point x̃ is a source.

Theorem 2. (see [4, 20]) Assume that a, b ∈ R and k ∈ N . Then

(2.1) |a| + |b| < 1

is a sufficient condition for the asymptotic stability of the difference equation

(2.2) xn+1 + axn + bxn−k = 0, n = 0, 1, ...

Remark 1. (see [10, 20]) Theorem 2 can be easily extended to a general linear
difference equation of the form

(2.3) xn+k + p1xn+k−1 + ... + pkxn = 0, n = 0, 1, 2, ....

where p1, p2, . . . , pk ∈ R and k ∈ {1, 2, . . .}. Then the equation (2.2) is asymp-
totically stable provided that

(2.4)

k∑

i=1

|pi| < 1.
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Theorem 3. Let {xn}∞n=−ω be a solution of the difference equation (1.1) such

that for some n0 ≥ 0,

either xn ≥ x̃ for n ≥ n0 + ω,(2.5)

or xn ≤ x̃ for n ≥ n0 + ω,(2.6)

where ω = max{τ, σ}. Then {xn} converges to x̃ as n → ∞.

Proof. Assume that (2.5) holds. The case where (2.6) holds is similar and will be
omitted. Then for n ≥ n0 + ω, where ω = max{τ, σ}, we deduce that

xn+1 = (A + α0xn + α1xn−σ) / (B + β0xn + β1xn−τ )

= (α0xn + α1xn−σ)

((
1 +

A

α0xn + α1xn−σ

)
/ (B + β0xn + β1xn−τ )

)

≤ (α0xn + α1xn−σ)
[1 + (A/ã x̃)](

B + b̃ x̃
) = (α0xn + α1xn−σ)

(A + ã x̃)

ã x̃
(
B + b̃ x̃

) .

With the aid of (1.3), the last inequality becomes

xn+1 ≤ (α0xn + α1xn−σ) / ã,

and so

(2.7) xn+1 ≤ max
0≤i≤ω

{xn−i} for n ≥ n0 + ω.

Set

(2.8) yn = max
0≤i≤ω

{xn−i} for n ≥ n0 + ω.

Then clearly

(2.9) yn ≥ xn+1 ≥ x̃ for n ≥ n0 + ω.

Next we claim that

(2.10) yn+1 ≤ yn for n ≥ n0 + ω.

Now, we have

yn+1 = max
0≤i≤ω

{xn+1−i} = max

{
xn+1, max

0≤i≤ω−1
{xn−i}

}
≤ max {xn+1, yn} = yn.

From (2.9) and (2.10), it follows that the sequence {yn} is convergent and that

(2.11) y = lim
n→∞

yn ≥ x̃.

Furthermore, we get

xn+1 ≤ (A + α0xn + α1xn−σ) /
(
B + b̃ x̃

)
≤ (A + ã yn) /

(
B + b̃ x̃

)
.

From this and by using (2.10), we obtain

xn+i ≤ (A + ã yn+i−1) /
(
B + b̃ x̃

)
≤ (A + ã yn) /

(
B + b̃ x̃

)
for i = 1, ..., ω+1.
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Then

(2.12) yn+ω+1 = max
1≤i≤ω+1

{xn+i} ≤ (A + ã yn) /
(
B + b̃ x̃

)
,

and by letting n −→ ∞, we obtain

(2.13) y ≤ A + ã y

B + b̃ x̃
.

Subtracting (1.3) from (2.13), we have the inequality

(2.14) (y − x̃)

(
1 − ã

B + b̃ x̃

)
≤ 0.

Since x̃ > ã−B

b̃
, then the term

(
1 − ã

B+b̃ x̃

)
is positive. Consequently, we deduce

that y ≤ x̃, and in view of (2.11) we obtain y = x̃. Thus, the proof of Theorem
3 is complete. �

Theorem 4. Let {xn}∞n=−ω be a positive solution of the difference equation (1.1)
and let B > 1. Then there exist positive constants m and M such that

(2.15) m ≤ xn ≤ M, n = 0, 1, . . .

Proof. From the difference equation (1.1) we deduce for B > 1 that

(2.16) xn+1 ≤ A

B
+

1

B
(α0xn + α1xn−σ) , n = 0, 1, . . .

Consider the linear difference equation

(2.17) yn+1 =
A

B
+

1

B
(α0yn + α1yn−σ) , n = 0, 1, . . .

with the initial conditions yi = xi > 0, i = −ω, . . . ,−1, 0. It follows by induction
that

(2.18) xn ≤ yn.

First of all, assume that B > ã. Then we have A/ (B − ã) is a particular solution
of the equation (2.17) and every solution of the homogeneous equation which is
associated with the equation (2.17) tends to zero as n → ∞. Hence

lim
n→∞

yn =
A

B − ã
.

From this and (2.18), it follows that the sequence {xn} is bounded from above
by a positive constant M , say. That is,

xn ≤ M, n = 0, 1, ...

Set

m =
A

B + b̃M
.

Then, we have

xn+1 =
A + α0xn + α1xn−σ

B + β0xn + β1xn−τ
≥ A

B + b̃M
= m
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and consequently, we get

m ≤ xn ≤ M, n = 0, 1, ...

which completes the proof of Theorem 4 when B > ã. Secondly, consider the
case when B ≤ ã, it suffices to show that, {xn} is bounded from above by some
positive constant. Assume the contrary, that {xn} is unbounded, then there
exists a subsequence

{
xnj

}
such that

lim
j→∞

nj = ∞ and lim
j→∞

x1+nj
= ∞,

and
x1+nj

= max {xn : −ω ≤ n ≤ 1 + nj} , ( j = 0, 1, 2, ...) .

From (2.16), we deduce that

α0xnj
+ α1xnj−σ ≥ Bx1+nj

− A.

Taking the limit as j → ∞ of both sides of the last inequality, we obtain

(2.19) lim
j→∞

(
α0xnj

+ α1xnj−σ

)
= ∞.

It is easy to show that xnj
≤ x1+nj

and xnj−σ ≤ x1+nj
for all σ ∈ N. Then, as

ã = α0 + α1, we have

(2.20)
(
α0xnj

+ α1xnj−σ

)
≤ ãx1+nj

.

From the inequality (2.20) and the difference equation (1.1), we obtain

(2.21) ãA +
(
α0xnj

+ α1xnj−σ

) [
ã − B −

(
β0xnj

+ β1xnj−τ

)]
≥ 0.

From (2.19) and (2.21), it follows that

(2.22) β0xnj
+ β1xnj−τ ≤ ã − B.

Then, from (2.22) we deduce, for every τ ∈ N for which β0 and β1 are positive
constants, that the subsequences

{
xnj

}
and

{
xnj−τ

}
are bounded which implies

that the sequence
{
α0xnj

+ α1xnj−σ

}
is bounded for all σ ∈ N for which α0 and

α1 are positive constants. This contradicts (2.19) and the proof of Theorem 4 is
complete. �

Theorem 5. Assume that B > ã holds. Then the positive equilibrium point x̃ of

the difference equation (1.1) is globally asymptotically stable.

Proof. The linearized equation (1.5) can be written in the form

yn+1 +

(
β0x̃ − α0

B + b̃x̃

)
yn −

(
α1

B + b̃x̃

)
yn−σ +

(
β1x̃

B + b̃x̃

)
yn−τ = 0.

As B > ã, we get
∣∣∣∣
β0x̃ − α0

B + b̃x̃

∣∣∣∣ +

∣∣∣∣
−α1

B + b̃x̃

∣∣∣∣ +

∣∣∣∣
β1x̃

B + b̃x̃

∣∣∣∣ ≤
ã + b̃ x̃

B + b̃ x̃
< 1.

Thus, by Theorems 1, 2, we deduce that the equilibrium point x̃ of the difference
equation (1.1) is locally asymptotically stable. It remains to prove that the
equilibrium point x̃ is a global attractor. To this end, set I = limn→∞ inf xn
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and S = limn→∞ sup xn, which by Theorem 4 exist and are positive numbers.
Then, from the difference equation (1.1), we see that

S ≤ A + ãS

B + b̃I
and I ≥ A + ãI

B + b̃S
.

Hence,

A + (ã − B) I ≤ b̃IS ≤ A + (ã − B)S.

From which, it follows that I ≥ S. Thus, we have I = S. The proof of Theorem
5 is now complete. �

Theorem 6. (i) If either σ and τ are even positive integers or σ is a positive odd

integer and τ is a positive even integer, then the difference equation (1.1) has no

positive solutions of prime period two.

(ii) If either σ and τ are odd positive integers or σ is a positive even integer and

τ is a positive odd integer, then the necessary and sufficient condition for the

difference equation (1.1) to have positive solutions of prime period two is that the

inequality

(2.23) 4β1 [Aβ1 − α0 (B + a)] < b (B + a)2 ,

is valid, provided that B + a < 0 and b > 0.

Proof. Suppose that there exist positive distinct solutions of prime period two

......., P,Q, P,Q, ........

of the difference equation (1.1), now, we discuss the following cases:

Case 1: σ and τ are even positive integers. In this case, xn = xn−σ = xn−τ . Then
there exists a positive period two solution {xn} such that

x2k = P, k = −1, 0, 1, ....

x2k+1 = Q, k = −1, 0, 1, ....

and P 6= Q. From the difference equation (1.1), we have

P =
A + (α0 + α1) Q

B + (β0 + β1) Q
, Q =

A + (α0 + α1) P

B + (β0 + β1) P
.

Consequently, we obtain

(2.24) A + (α0 + α1)Q = BP + (β0 + β1)PQ,

and

(2.25) A + (α0 + α1)P = BQ + (β0 + β1)PQ.

By subtracting, we have

(2.26) (α0 + α1 + B) (P − Q) = 0.

This implies P = Q. This is a contradiction. Thus, equation (1.1) has no prime
period two solution.



80 E. M. E. ZAYED AND M. A. EL-MONEAM

Case 2: σ is a positive odd integer and τ is a positive even integer. In this case,
xn+1 = xn−σ and xn = xn−τ . From the difference equation (1.1), we have

P =
A + α0Q + α1P

B + (β0 + β1) Q
, Q =

A + α0P + α1Q

B + (β0 + β1) P
.

Consequently, we obtain

(2.27) A + α0Q + α1P = BP + (β0 + β1)PQ,

and

(2.28) A + α0P + α1Q = BQ + (β0 + β1)PQ.

By subtracting, we have

(2.29) (α0 − α1 + B) (P − Q) = 0.

This implies P = Q. This is a contradiction. Thus, equation (1.1) has no prime
period two solution.

Case 3: σ and τ are odd positive integers. In this case, xn+1 = xn−σ = xn−τ .
From the difference equation (1.1), we have

P =
A + α0Q + α1P

B + β0Q + β1P
, Q =

A + α0P + α1Q

B + β0P + β1Q
.

Consequently, we obtain

A + α0Q + α1P = BP + β0PQ + β1P
2,

and
A + α0P + α1Q = BQ + β0PQ + β1Q

2.

By subtracting, we have

(2.30) P + Q = − B + a

β1
,

while, by adding we obtain

(2.31) PQ =
Aβ1 − α0 (B + a)

bβ1

,

provided that B + a < 0 and b > 0. Assume that P and Q are two positive
distinct real roots of the quadratic equation

(2.32) t2 − ( P + Q) t + PQ = 0.

Thus, we deduce that

(2.33)

(
− B + a

β1

)2

> 4

(
Aβ1 − α0 (B + a)

bβ1

)
.

From (2.33), we obtain

4β1 [Aβ1 − α0 (B + a)] < b (B + a)2 ,

and hence, the condition (2.23) is valid. Conversely, suppose that the condition
(2.23) is valid, provided that B + a < 0 and b > 0. Then, we deduce immediately
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from (2.23) that the inequality (2.23) holds. From which, there exist two positive
distinct real numbers P and Q representing two positive roots of (2.32) such that

(2.34) P =
− (B + a)

2β1
− 1

2

√
T1,

and

(2.35) Q =
− (B + a)

2β1
+

1

2

√
T1,

where T1 > 0 which is given by the formula

(2.36) T1 =

(− (B + a)

β1

)2

− 4

(
Aβ1 − α0 (B + a)

bβ1

)
.

Now, we are going to prove that P and Q are positive solutions of prime period
two of the difference equation (1.1). To this end, we assume that x−ω = Q and
x0 = P, where ω = max{τ, σ}. Now, we are going to show that x1 = Q and
x2 = P. From the difference equation (1.1), we deduce that

(2.37) x1 =
A + α0P + α1Q

B + β0P + β1Q
.

By substituting (2.34)-(2.36) into (2.37), we obtain

(2.38) x1 =

−2Aβ1

(B+a) +
[
1 +

√
K1

]
α0 +

[
1 −

√
K1

]
α1

−2Bβ1

(B+a) +
[
1 +

√
K1

]
β0 +

[
1 −

√
K1

]
β1

=

[
ã − 2Aβ1

(B+a)

]
+ a

√
K1

[
b̃ − 2Bβ1

(B+a)

]
+ b

√
K1

,

where

K1 = 1 −
[
4β1 [Aβ1 − α0 (B + a)]

b (B + a)2

]
.

From the condition (2.23), we deduce that K1 > 0. Multiplying the denominator
and numerator of (2.38) by

(
b̃ − 2Bβ1

(B + a)

)
− b

√
K1,

we have

x1 =

[
ã − 2Aβ1

(B+a)

] [
b̃ − 2Bβ1

(B+a)

]
− baK1

[
b̃ − 2Bβ1

(B+a)

]2
− b

2
K1

+

[
b̃a − ãb − a 2Bβ1

(B+a) + b 2Aβ1

(B+a)

]√
K1

[
b̃ − 2Bβ1

(B+a)

]2
− b

2
K1

.

After some reduction, we deduce that

x1 =
− (B + a)

(
1 +

√
K1

)

2β1
= − B + a

2β1
+

1

2

√
T1 = Q.

Similarly, we can show that

x2 =
A + α0x1 + α1x−(ω−1)

B + β0x1 + β1x−(ω−1)
=

A + α0Q + α1P

B + β0Q + β1P
= P.
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By using induction, we have

xn = Q and xn+1 = P for all n ≥ −ω.

Thus, the difference eqution (1.1) has positive solutions of prime period two.
Similarly, we can prove that if σ is a positive even integer and τ is a positive odd
integer, then the necessary and sufficient condition for the difference equation
(1.1) to have positive solutions of prime period two is that the condition (2.23)
is valid, provided that B + a < 0 and b > 0. Thus, the proof of Theorem 6 is now
complete. �

3. Numerical examples of the solutions of equation (1.1)

To illustrate the results of this paper, we consider numerical examples which
represent different types of solutions to equation (1.1).

Example 1. Figure 1 shows that equation (1.1) has no prime period two solution
if σ = 4, τ = 2, ω = max{τ, σ} = 4, x−4 = 1, x−3 = 2, x−2 = 3, x−1 = 4, x0 = 5,
A = 40, B = 0.25, α0 = 3, α1 = 30, β0 = 15, β1 = 0.25.
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(n
+

1)

plot of X(n+1)=(A+a*X(n)+b*X(n−4))/(B+c*X(n)+d*X(n−2))

Figure 1.

(
xn+1 =

40 + 3xn + 30xn−4

0.25 + 15xn + 0.25xn−2

)

Example 2. Figure 2 shows that equation (1.1) has no prime period two solution
if σ = 2, τ = 1, ω = max{τ, σ} = 2, x−2 = 1, x−1 = 2, x0 = 3, A = 40, B = 0.25,
α0 = 3, α1 = 30, β0 = 15, β1 = 0.
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Figure 2.

(
xn+1 =

40 + 3xn + 30xn−2

0.25 + 15xn + 0.25xn−1

)

Example 3. Figure 3 shows that equation (1.1) has prime period two solution if
σ = 1, τ = 3, ω = max{τ, σ} = 3, x−3 = 35.2, x−2 = 71.8, x−1 = 35.2, x0 = 71.8,
A = 40, B = 0.25, α0 = 3, α1 = 30, β0 = 15, β1 = 0.25.

Example 4. Figure 4 shows that the solution of equation (1.1) is global stability
if σ = 3, τ = 2, ω = max{τ, σ} = 3, x−3 = 1, x−2 = 2, x−1 = 3, x0 = 4, A = 40,
B = 100, α0 = 3, α1 = 30, β0 = 10, β1 = 0.5.

The following example verifies the definitions 1-4 of Section 1:

Example 5. The following four special cases of equation (1.1):

xn+1 =
1

xn
, n = 0, 1, 2, . . .(3.1)

xn+1 =
1

xn−1
, n = 0, 1, 2, . . .(3.2)

xn+1 =
1 + xn

xn−1
, n = 0, 1, 2, . . .(3.3)

xn+1 =
xn

xn−1
, n = 0, 1, 2, . . .(3.4)

are remarkable in the following sense:

(i) The equilibrium points of equations (3.1)-(3.4) are x̃ = ±1,±1, 1±
√

5
2 , 1

respectively.
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(
xn+1 =

40 + 3xn + 30xn−1

0.25 + 15xn + 0.25xn−3

)

(ii) Every positive solution of equations (3.1)-(3.4) is periodic with period
= 2, 4, 5, 6 respectively.

(iii) Suppose x0 = α ∈ (0,∞) is an initial value of equation (3.1) and let
|x0 − x̃| = |x0 ∓ 1| = |α ∓ 1| < δ where δ > 0. Then, we get

(3.5) |xn − x̃| = |xn ∓ 1| =

∣∣∣∣
1

xn−1
∓ 1

∣∣∣∣ =
|xn−1 ∓ 1|
|xn−1|

.

Consequently, we deduce from (3.5) that

|x1 ∓ 1| =
|x0 ∓ 1|

x0
<

δ

α
,

|x2 ∓ 1| =
|x1 ∓ 1|

x1
< δ,

|x3 ∓ 1| =
|x2 ∓ 1|

x2
<

δ

α
,(3.6)

and so on. From (3.6), we deduce that

(3.7) |xn ∓ 1| < ε (δ) for all n ≥ 0, ε (δ) > 0.

From the inequality (3.7), we deduce the following properties:

(a) The equilibrium points x̃ = ±1 are locally stable.

(b) Since |x0 − x̃| < δ and from (3.7) we have limn→∞ xn = ±1 then x̃ = ±1
are locally asymptotically stable.
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(
xn+1 =

40 + 3xn + 30xn−3

100 + 10xn + 0.5xn−2

)

(c) Since x0 = α ∈ (0,∞) and from (3.7), we have limn→∞ xn = ±1 then
x̃ = ±1 are global attractor.

(d) From (a) and (c), we deduce that x̃ = ±1 are globally asymptotically
stable.

(e) From (3.7), we have the inequality ±1 − ε (δ) < xn < ±1 + ε (δ) . This
implies that the sequence {xn}∞n=0 is bounded.

Similarly, we can investigate for the other equations (3.2)-(3.4) which are omit-
ted here.

Remark 2. Examples 1, 2 verify Theorem 6 (i) which show that equation (1.1)
has no prime period two solution, while Example 3 verifies Theorem 6 (ii) which
shows that equation (1.1) has prime period two solution. But Example 4 verifies
Theorem 5 which shows that the solution of equation (1.1) is globally asymptot-
ically stable.
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