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MAPPINGS IN σ-PONOMAREV-SYSTEMS

NGUYEN VAN DUNG

Abstract. We use the σ-Ponomarev-system (f, M, X, {Pn}) to give a con-
sistent method to construct an s-mapping (msss-mapping, mssc-mapping)
f with covering-properties onto a space X from a metric space M . As ap-
plications, we systematically get characterizations of s-images (msss-images,
mssc-images) of metric spaces.

1. Introduction

In [22], S. Lin and P. Yan introduced Ponomarev-systems (f,M,X,P) and
(f,M,X, {Pn}) to establish the general condition to construct a compact-covering
mapping f onto a space X from some metric space M . After that, these notions
were investigated in [9], [10], [11], [12], [28], and necessary and sufficient con-
ditions such that f is an s-mapping with covering-properties have been stated.
Among mappings with metric domains, msss-mappings and mssc-mappings play
important roles, and these mappings cause attentions in [4], [8], [17], [19]. By
definitions of mappings, we have that

mssc-mapping ⇒ msss-mapping ⇒ s-mapping.

However, for Ponomarev-systems (f,M,X,P) and (f,M,X, {Pn}), we do not
know what necessary and sufficient conditions such that the mapping f is an
msss-mapping (mssc-mapping) with covering-properties onto X from a metric
space M are. So, we are interested in finding a consistent method to construct an
s-mapping (msss-mapping, mssc-mapping) with covering-properties from some
metric space M onto a space X.

In this paper, we use the σ-Ponomarev-system (f,M,X, {Pn}) to give a consis-
tent method to construct an s-mapping (msss-mapping, mssc-mapping) f with
covering-properties onto X from a metric space M . As applications, we system-
atically get characterizations of s-images (msss-images, mssc-images) of metric
spaces. These results make the study of images of metric spaces more completely.

The paper is organized as follows. Beside the introduction, the paper contains
two sections. In Section 2 we introduce definitions and lemmas which will be
used throughout the paper. The main results are presented in Section 3.
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2. Preliminaries

Throughout this paper, all spaces are T1 and regular, all mappings are contin-
uous and onto, a convergent sequence includes its limit point, N denotes the set
of all natural numbers, ω = N ∪ {0}, and pk denotes the projection of

∏

n∈N
Xn

onto Xk. Let f : X −→ Y be a mapping, x ∈ X, and P be a family of sub-
sets of X, we denote st(x,P) =

⋃

{P ∈ P : x ∈ P},
⋃

P =
⋃

{P : P ∈ P},
⋂

P =
⋂

{P : P ∈ P}, and f(P) = {f(P ) : P ∈ P}. We say that a convergent
sequence {xn : n ∈ N} ∪ {x} converging to x is eventually (resp., frequently) in
A if {xn : n ≥ n0} ∪ {x} ⊂ A for some n0 ∈ N (resp., {xnk

: k ∈ N} ∪ {x} ⊂ A

for some subsequence {xnk
: k ∈ N} of {xn : n ∈ N}).

Definition 2.1. Let P be a cover for a space X and K be a subset of X.

(1) P is a network for K in X, if P =
⋃

{Px : x ∈ K}, where x ∈
⋂

Px, and
whenever x ∈ U with U open in X, there exists P ∈ Px such that x ∈ P ⊂ U for
every x ∈ K. Here, Px is a network at x in K. If K = X, then a network for K

in X is a network for X [23], and a network at x in K is a network at x in X.

(2) P is a cfp-network for K in X [1], if for each compact subset H of K

and H ⊂ U with U open in X, there exists a finite subfamily F of P such that
H ⊂

⋃

{CF : F ∈ F} ⊂
⋃

F ⊂ U , where CF is closed and CF ⊂ F for every
F ∈ F . If K = X, then a cfp-network for K in X is a cfp-network for X [30].

(3) P is a cs-network for K in X (resp., cs∗-network for K in X) [1], if for
each convergent sequence S in K converging to x ∈ U with U open in X, S is
eventually (resp., frequently) in P ⊂ U with some P ∈ P. If K = X, then a
cs-network for K in X (resp., cs∗-network for K in X) is a cs-network for X [14]
(resp., cs∗-network for X [6]).

(4) P is a wcs-network for K in X, if for each convergent sequence S in K

converging to x ∈ U with U open in X, S is eventually in
⋃

F ⊂ U with some
finite subfamily F of {P ∈ P : x ∈ P}. If K = X, then a wcs-network for K in
X is a wcs-network for X.

(5) P is point-countable [13], if for each x ∈ X, {P ∈ P : x ∈ P} is countable.

Remark 2.2. (1) A network (resp., cfp-network, cs-network, cs∗-network, wcs-
network) for X is abbreviated to a network (resp., cfp-network, cs-network, cs∗-
network, wcs-network).

(2) A countable cfp-network, a countable cs∗-network, and a countable wcs-
network for a convergent sequence are equivalent.

Definition 2.3. Let X be a space.

(1) X is a cosmic space [24] (resp., ℵ0-space [24], ℵ-space [25]), if X has a
countable network (resp., countable cs-network, σ-locally finite cs-network).

(2) A subset P of X is relatively compact in X, if P is a compact subset of X.

Definition 2.4. Let f : X −→ Y be a mapping.

(1) f is a metrizable stratified strong separable mapping or an msss-mapping
[19], if X is a subspace of the product space

∏

n∈N
Xn of a family {Xn : n ∈ N}
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of metric spaces, and for each y ∈ Y , there exists a sequence {Vy,n : n ∈ N} of
open neighborhoods of y in Y such that each pn(f−1(Vy,n)) is a separable subset
of Xn.

(2) f is a metrizable stratified strong compact mapping or an mssc-mapping
[19], if X is a subspace of the product space

∏

n∈N
Xn of a family {Xn : n ∈ N} of

metric spaces, and for each y ∈ Y , there exists a sequence {Vy,n : n ∈ N} of open

neighborhoods of y in Y such that each pn(f−1(Vy,n)) is a compact subset of Xn.
Moreover, if X is a relatively compact subset of

∏

n∈N
Xn, then f is a relatively

compact-metrizable stratified strong compact mapping or a rc-mssc-mapping.

(3) f is a sequence-covering mapping [26] if, for each convergent sequence S

of Y , there exists a convergent sequence L of X such that f(L) = S. Note that
a sequence-covering mapping is a strong sequence-covering mapping in the sense
of [17].

(4) f is a compact-covering mapping [24] if, for each compact subset K of Y ,
there exists a compact subset L of X such that f(L) = K.

(5) f is a pseudo-sequence-covering mapping [15] if, for each convergent se-
quence S of Y , there exists a compact subset K of X such that f(K) = S. Note
that a pseudo-sequence-covering mapping is a sequence-covering mapping in the
sense of [13].

(6) f is a subsequence-covering mapping [21] if, for each convergent sequence
S of Y , there exists a compact subset K of X such that f(K) is a subsequence
of S.

(7) f is a sequentially-quotient mapping or a sequentially quotient, sequentially
continuous mapping in the sense of [3] if, for each convergent sequence S of Y ,
there exists a convergent sequence L of X such that f(L) is a subsequence of S.

(8) f is an s-mapping [2], if for each y ∈ Y , f−1(y) is a separable subset of X.

Definition 2.5. Let P be a cover for a space X.

(1) P is a strong network for X if, for each x ∈ X, there exists a countable
Px ⊂ P such that Px is a network at x in X.

(2) P is a strong cs-network for X if, for each convergent sequence S of X,
there exists a countable PS ⊂ P such that PS is a cs-network for S in X.

(3) P is a strong cs∗-network for X if, for each convergent sequence S of
X, there exists a countable PS ⊂ P such that PS is a cs∗-network for some
subsequence of S in X.

(4) P is a strong cfp-network for X if, for each compact subset K of X, there
exists a countable PK ⊂ P such that PK is a cfp-network for K in X.

(5) P is a strong wcs-network for X if, for each convergent sequence S of X,
there exists a countable PS ⊂ P such that PS is a wcs-network for S in X.

(6) P is a σ-strong network for X [15], if P =
⋃

{Pn : n ∈ N} satisfying that
each Pn is a cover for X, Pn+1 refines Pn, and {st(x,Pn) : n ∈ N} is a network
at x in X for every x ∈ X.
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For terms which are not defined here, please refer to [5] and [27].

Lemma 2.6. If P is a cs-network for a convergent sequence S ⊂ U with U open
in a space X, then there exists F ⊂ P satisfying the following:

(1) F is finite;
(2) For each F ∈ F , ∅ 6= F ∩ S ⊂ F ⊂ U ;
(3) For each x ∈ S, there exists a unique F ∈ F such that x ∈ F ;
(4) If F ∈ F contains the limit point of S, then S − F is finite.

Such an F is called to have property cs(S,U).

Proof. Let S = {xn : n ∈ ω} with the limit point x0. Since P is a cs-network
for S in X, there exists some P0 ∈ P such that S is eventually in P0 ⊂ U .
Then S − P0 is finite. For each x ∈ S − P0, there exists some Px ∈ P such that
x ∈ Px ⊂ U ∩ (X − (S − {x})). Put F = {P0} ∪ {Px : x ∈ S − P0}. It is easy to
see that F has property cs(S,U). �

Lemma 2.7. If P is a cfp-network for a compact subset K ⊂ U with U open in
a space X, then there exists F ⊂ P satisfying the following:

(1) F is finite;
(2) For each F ∈ F , ∅ 6= F ∩ K ⊂ F ⊂ U ;
(3) For each F ∈ F , F − {F} is not a cover for K;
(4) For each F ∈ F , F ∩ K is compact.

Such an F is called to have property cfp(K,U).

Proof. Since P is a cfp-network for K in X, then there exists a finite Q ⊂ P
such that K ⊂

⋃

{CQ : Q ∈ Q} ⊂
⋃

Q ⊂ U , where CQ ⊂ Q is closed for every
Q ∈ Q. It is easy to pick F ⊂ Q such that F has property cfp(K,U). �

Definition 2.8. Let P =
⋃

{Pn : n ∈ N} be a network for a space X such that
for each x ∈ X, there exists a network {Pαn

: n ∈ N} at x in X with each
Pαn

∈ Pn. We may assume that X ∈ Pn ⊂ Pn+1 for each n ∈ N and P is closed
under finite intersections, if necessary. Let Pn = {Pα : α ∈ An}, where each An

endowed with the discrete topology, then An is a metric space. Put

M =
{

a = (αn) ∈
∏

n∈N

An : {Pαn
: n ∈ N} forms a network

at some point xa in X
}

.

Then, M is a metric space, and xa is unique for each a ∈ M . Define f : M −→ X

by f(a) = xa for every a ∈ M . Then f is a mapping by the following Lemma
2.9. The system (f,M,X, {Pn}) is a σ-Ponomarev-system.

Lemma 2.9. Let (f,M,X, {Pn}) be the system in Definition 2.8. Then the
following hold.

(1) f is onto.
(2) f is continuous.
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Proof. (1). It is obvious.

(2). For each a = (αn) ∈ M and f(a) = xa, let V be an open neighborhood of
xa in X. Then there exists k ∈ N such that xa ∈ Pαk

⊂ V . Put U = {b = (βn) ∈
M : βk = αk}. Then U is an open neighborhood of a in M and f(U) ⊂ V . This
implies that f is continuous. �

Remark 2.10. (1) In [22], the Ponomarev-system (f,M,X,P) requires P being a
strong network for X, and the Ponomarev-system (f,M,X, {Pn}) requires P =
⋃

{Pn : n ∈ N} being a σ-strong network for X.

(2) For a σ-Ponomarev-system (f,M,X, {Pn}), we have that P =
⋃

{Pn : n ∈
N} can not be a σ-strong network for X whenever the topology on X is not
trivial by the assumption X ∈ Pn ⊂ Pn+1, and if Pn = P for every n ∈ N, then
(f,M,X, {Pn}) is a Ponomarev-system (f,M,X,P) in the sense of [22].

Lemma 2.11. Let (f,M,X, {Pn}) be a σ-Ponomarev-system, a = (αn) ∈ M

where {Pαn
: n ∈ N} is a network at some point xa in X, and

Un = {b = (βi) ∈ M : βi = αi if i ≤ n},

for every n ∈ N. Then the following hold.

(1) {Un : n ∈ N} is a base at a in M .
(2) f(Un) =

⋂n
i=1 Pαi

for every n ∈ N.

Proof. (1). It is obvious.

(2). For each n ∈ N, let x ∈ f(Un). Then x = f(b) for some b = (βi) ∈ Un.
This implies that x =

⋂

i∈N
Pβi

⊂
⋂n

i=1 Pβi
=

⋂n
i=1 Pαi

. Then f(Un) ⊂
⋂n

i=1 Pαi
.

Conversely, let x ∈
⋂n

i=1 Pαi
, where x = f(b) for some b = (βi) ∈ M . For

each i ∈ N, since Pi ⊂ Pn+i, there exists γn+i ∈ An+i such that γn+i = βi. Put
c = (γi), where γi = αi for all i ≤ n. Then we get c ∈ Un and f(c) = x. This
implies that

⋂n
i=1 Pαi

⊂ f(Un).

By the above inclusion, we get f(Un) =
⋂n

i=1 Pαi
. �

3. Main results

In [9] and [11], Y. Ge and S. Lin stated necessary and sufficient conditions such
that f is an s-mapping for Ponomarev-systems (f,M,X,P) and (f,M,X, {Pn}).
But we do not know whether conditions for msss-mappings and mssc-mappings
can be obtained in these systems. In the following, we state necessary and suf-
ficient conditions such that f is an s-mapping (mssc-mapping, msss-mapping)
for a σ-Ponomarev-system (f,M,X, {Pn}).

Theorem 3.1. Let (f,M,X, {Pn}) be a σ-Ponomarev-system. Then the follow-
ing hold.

(1) f is an s-mapping if and only if each Pn is point-countable.
(2) f is an msss-mapping if and only if each Pn is locally countable.
(3) f is an mssc-mapping if and only if each Pn is locally finite.
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Proof. (1). Necessity. Let f be an s-mapping. If there exists k ∈ N such that Pk

is not point-countable, then, for some x ∈ X, we have that Ax,k = {α ∈ Ak : x ∈
Pα} is uncountable. For each α ∈ Ax,k, put Uα = {c = (γn) ∈ M : γk = α}, then
Uα is open. If c = (γn) ∈ f−1(x), then x = f(c) ∈ Pγk

. This implies that γk = α

for some α ∈ Ax,k, hence c ∈ Uα. Therefore, {Uα : α ∈ Ax,k} is an uncountable
open cover for f−1(x), but it has not any proper subcover. So f−1(x) is not
separable, hence f is not an s-mapping. This is a contradiction.

Sufficiency. Let each Pn be point-countable. For each x ∈ X, we have that
Ax,n = {α ∈ An : x ∈ Pα} is countable for every n ∈ N. Then

∏

n∈N
Ax,n

is hereditarily separable. It follows from f−1(x) ⊂
∏

n∈N
Ax,n that f−1(x) is

separable. Then f is an s-mapping.

(2). Necessity. Let f be an msss-mapping. If there exists k ∈ N such that Pk

is not locally countable, then, for some x ∈ X, we have that Ax,k = {α ∈ Ak :
Pα ∩Ux 6= ∅} is uncountable for every open neighborhood Ux of x in X. For each
α ∈ Ax,k, pick some y ∈ Pα ∩ Ux, and put y = f(a) with a = (αn) ∈ M . Put
bα = (βn), where βn = αn if n < k, βk = α, and βn = αn−1 if n > k. Then
βn ∈ An for every n ∈ N by Pn ⊂ Pn+1, and {Pβn

: n ∈ N} forms a network at y

in X. So bα ∈ f−1(y) ⊂ f−1(Ux). This implies that α = pk(bα) ∈ pk(f
−1(Ux)).

Then Ax,k ⊂ pk(f
−1(Ux)) ⊂ Ak. Since Ax,k is uncountable and Ak is discrete,

pk(f
−1(Ux)) is not separable. This is a contradiction to the fact that f is an

msss-mapping.

Sufficiency. Let each Pn be locally countable. For each x ∈ X, there exists an
open neighborhood Ux,n of x in X such that Ax,n = {α ∈ An : Pα ∩ Ux,n 6= ∅}
is countable for every n ∈ N. This implies that f−1(Ux,n) ⊂

∏

n∈N
Ax,n, then

pn(f−1(Ux,n)) ⊂ Ax,n. Since Ax,n is countable, pn(f−1(Ux,n)) is separable. Then
f is an msss-mapping .

(3). Necessity. Let f be an mssc-mapping. If there exists k ∈ N such that
Pk is not locally finite, then, by using notations and arguments in the necessity
of (2) again, we have that Ax,k is infinite and Ax,k ⊂ pk(f

−1(Ux)). Therefore,

pk(f−1(Ux)) is not compact. This is a contradiction to the fact that f is an
mssc-mapping.

Sufficiency. Let each Pn be locally finite. By using notations and arguments in
the sufficiency of (2) again, we have that Ax,n is finite and pn(f−1(Ux,n)) ⊂ Ax,n

for every n ∈ N. Then pn(f−1(Ux,n)) is compact. This implies that f is an
mssc-mapping. �

In [9], [10], [11], [12], necessary and sufficient conditions such that f is a
covering-mapping have been obtained in Ponomarev-systems (f,M,X,P) and
(f,M,X, {Pn}). Next, we state necessary and sufficient conditions such that f

is a covering-mapping in a σ-Ponomarev-system (f,M,X, {Pn}).

Theorem 3.2. Let (f,M,X, {Pn}) be a σ-Ponomarev-system. Then the follow-
ing hold.
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(1) f is sequence-covering if and only if P is a strong cs-network for X.
(2) f is compact-covering if and only if P is a strong cfp-network for X.
(3) f is pseudo-sequence-covering if and only if P is a strong wcs-network

for X.
(4) f is sequentially-quotient (subsequence-covering) if and only if P is a

strong cs∗-network for X.

Proof. (1). Necessity. Let f be a sequence-covering mapping. Then for each
convergent sequence S in X, there exists a convergent sequence C in M such
that f(C) = S. Put B =

⋃

{pn(C) : n ∈ N}, and let PS be the family of all finite
intersections of members of {Pα : α ∈ B}. Then PS is countable. Since P is
closed under finite intersections, PS ⊂ P. We shall prove that PS is a cs-network
for S in X. Let L be a convergent sequence in S converging to x ∈ U with U

open in X. Then there exists a convergent sequence T ⊂ C such that f(T ) = L.
We have that T converges to some a ∈ f−1(x) ⊂ f−1(U). Let a = (αn), for each
n ∈ N put

Un = {b = (βi) ∈ M : βi = αi if i ≤ n}.

It follows from Lemma 2.11 that {Un : n ∈ N} is a base at a in M . Since T

converges to a ∈ f−1(U) which is open in M , T is eventually in some Un ⊂
f−1(U). Therefore, L is eventually in f(Un) ⊂ U . Since f(Un) =

⋂n
i=1 Pαi

by
Lemma 2.11 and

⋂n
i=1 Pαi

∈ PS , we get that PS is a cs-network for S in X.

Sufficiency. Let P be a strong cs-network for X. For each sequence S = {xm :
m ∈ ω} converging to x0 in X, (assume that all xm’s are distinct, if necessary),
there exists PS ⊂ P such that PS is a countable cs-network for S in X. We
have that F = {X} ⊂ PS ∪ {X} has property cs(S,X). Since PS is countable,
{F ⊂ PS ∪ {X} : F has property cs(S,X)} is countable. So we can put

{

F ⊂ PS ∪ {X} : F has property cs(S,X)
}

= {Fi : i ∈ N},

and put Fn(1) = {X} ⊂ P1 ∩ (PS ∪ {X}). For each i ≥ 2, if there exists j ∈ N

such that Fj ⊂
(

Pi ∩ (PS ∪ {X}) − {Fn(k) : k = 1, . . . , i − 1}
)

, then put

n(i) = min
{

j ∈ N : Fj ⊂
(

Pi ∩ (PS ∪ {X}) − {Fn(k) : k = 1, . . . , i − 1}
)}

;

otherwise, put Fn(i) = {X}. Then {Fn(i) : i ∈ N} = {Fi : i ∈ N}. Put
Fn(i) = {Pα : α ∈ Bi}, where Bi ⊂ Ai is finite. For every m ∈ ω and i ∈ N,
since Fn(i) has property cs(S,X), there exists a unique αim ∈ Bi such that
xm ∈ Pαim

∈ Fn(i). Put am = (αim) ∈
∏

i∈N
Bi and C = {am : m ∈ ω}, we shall

prove that C is a convergent sequence in M and f(C) = S.

To show C ⊂ M and f(C) = S it suffices to prove that {Pαim
: i ∈ N} is a

network in X at xm for every m ∈ ω. Indeed, let U be an open neighborhood of
xm in X. We consider two following cases (a) and (b).

(a) xm = x0.

We have that U∩S is a convergent sequence in X and S∩U ⊂ U . It follows from
Lemma 2.6 that there exists a subfamily F of PS such that F has property cs(S∩
U,U). Since S − (S ∩U) is finite, put S − (S ∩U) = {xmi

: i = 1, . . . , l} for some
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l ∈ N. For each i ∈ {1, . . . , l}, note that X−(S−{xmi
}) is an open neighborhood

of xmi
in X, so there exists Pi ∈ PS such that xmi

∈ Pi ⊂ X − (S − {xmi
}). It

is easy to see that F ∪ {Pi : i = 1, . . . , l} has property cs(S,X). So there exists
k ∈ N such that F ∪{Pi : i = 1, . . . , l} = Fn(k). Thus x0 ∈ Pαk0

∈ Fn(k). Because
Pαk0

must be an element of F which has property cs(S ∩ U,U), x0 ∈ Pαk0
⊂ U .

(b) xm 6= x0.

We have that S−{xm} is a convergent sequence in X and S−{xm} ⊂ X−{xm}
with X −{xm} open. It follows from Lemma 2.6 that there exists a subfamily F
of PS such that F has property cs(S−{xm},X−{xm}). Note that U−(S−{xm})
is an open neighborhood of xm, so there exists Pm ∈ PS such that xm ∈ Pm ⊂
U − (S − {xm}). It is easy to see that F ∪ {Pm} has property cs(S,X). Hence
there exists k ∈ N such that F ∪ {Pm} = Fn(k), then xm ∈ Pαkm

= Pm ⊂ U .

By the above cases, there exists k ∈ N such that xm ∈ Pαkm
⊂ U for every

m ∈ ω. Then {Pαim
: i ∈ N} is a network in X at xm for every m ∈ ω. This

implies that C ⊂ M and f(C) = S. To complete the proof we shall prove
that C = {am : m ∈ ω} converges to a0. For every k ∈ N there exists a unique
αk0 ∈ Bk such that x0 ∈ Pαk0

∈ Fn(k). Since Fn(k) has property cs(S,X), S−Pαk0

is finite. So there exists mk ∈ N such that xm ∈ Pαk0
for every m > mk. Note that

xm ∈ Pαkm
∈ Fn(k). Thus αkm = αk0 for every m > mk. So C = {am : m ∈ ω}

converges to a0 in M . This implies that S = f(C) with C being a convergent
sequence in M , hence f is a sequence-covering mapping.

(2). Necessity. Let f be a compact-covering mapping. Then for each compact
subset K of X, there exists a compact subset C of M such that f(C) = K.
Put B =

⋃

{pn(C) : n ∈ N}, and let PK be the family of all finite intersections
of members of {Pα : α ∈ B}. Then PK is countable. Since P is closed under
finite intersections, PK ⊂ P. We shall prove that PK is a strong cfp-network
for K in X. Let H be a compact subset of K and H ⊂ U with U open in
X. Then L = f−1(H) ∩ C is compact. For each a = (αn) ∈ L, we have that
αn ∈ An for every n ∈ N, and {Pαn

: n ∈ N} is a network at some point
xa = f(a) ∈ H in X. Then there exists k ∈ N such that xa ∈ Pαk

⊂ U .
Put Ua,k = {b = (βn) ∈ M : βn = αn if n ≤ k}. Then Ua,k ∩ L is an open
neighborhood of a in L. So there exists an open neighborhood Va,k of a in L such

that a ∈ Va,k ⊂ V a,k ⊂ Ua,k ∩ L. Since {Va,k : a ∈ L} is an open cover for L

and L is compact, there exists {a1, . . . , am} ⊂ L such that {Va1,k, . . . , Vam,k} is

a finite cover for L. It is easy to see that
⋃

{V ai,k : i = 1, . . . ,m} = L, and so
⋃

{f(V ai,k) : i = 1, . . . ,m} = f(
⋃

{V ai,k : i = 1, . . . ,m}) = f(L) = H. For each

i ∈ {1, . . . ,m}, put Hi = f(V ai,k) and ai = (αin)n. Then each Hi is closed, and
H =

⋃

{Hi : i = 1, . . . ,m}. On the other hand, f(Uai,k) ⊂ Pαik
by Lemma 2.11,

then Hi ⊂ f(Uai,k ∩ L) ⊂ f(Uai,k) ⊂ Pαik
. This proves that PK is a cfp-network

for K in X.

Sufficiency. Let P be a strong cfp-network for X. For each compact subset
K of X, there exists PK ⊂ P such that PK is a countable cfp-network for K in
X. We have that F = {X} ⊂ PK ∪ {X} has property cfp(K,X). Since PK is



MAPPINGS IN σ-PONOMAREV-SYSTEMS 283

countable, {F ⊂ PK ∪{X} : F has property cfp(K,X)} is countable. So we can
put

{

F ⊂ PK ∪ {X} : F has property cfp(K,X)
}

= {Fi : i ∈ N},

and put Fn(1) = {X} ⊂ P1 ∩ (PK ∪ {X}). For each i ≥ 2, if there exists j ∈ N

such that Fj ⊂
(

Pj ∩ (PK ∪ {X}) − {Fn(k) : k = 1, . . . , i − 1}
)

, then put

n(i) = min
{

j ∈ N : Fj ⊂
(

Pj ∩ (PK ∪ {X}) − {Fn(k) : k = 1, . . . , i − 1}
)}

;

otherwise, put Fn(i) = {X}. Then {Fn(i) : i ∈ N} = {Fi : i ∈ N}. Put
Fn(i) = {Pα : α ∈ Bi}, where Bi is a finite set, and put

C =
{

a = (αn) ∈
∏

n∈N

Bn :
⋂

n∈N

(Pαn
∩ K) 6= ∅

}

.

We shall prove that C is a compact subset of M and f(C) = K by the following
facts (a), (b), and (c).

(a) C ⊂ M and f(C) ⊂ K.

Let a = (αn) ∈ C, then
⋂

n∈N
(Pαn

∩ K) 6= ∅. Pick x ∈
⋂

n∈N
(Pαn

∩ K). Then
it suffices to show that {Pαn

: n ∈ N} is a network at x in X. In this case, a ∈ M

and f(a) = x ∈ K, so C ⊂ M and f(C) ⊂ K.

Let V be a neighborhood of x in X. Then there exist open neighborhoods
W1,W2 of x in K such that x ∈ W1 ⊂ W1 ⊂ W2 ⊂ W2 ⊂ V ∩ K. Since W2

is a compact subset of K, there exists R1 ⊂ PK such that R1 has property
cfp(W2, V ). On the other hand, K − W2 is also a compact subset of K and
K −W2 ⊂ X −W1, so there exists R2 ⊂ PK such that R2 has property cfp(K −
W2,X−W1). Then there exists F ⊂ R1∪R2 such that F has property cfp(K,X).
This implies that F = Fn(i) for some i ∈ N, and then x ∈ Pαi

∈ F . By our
construction, Pαi

∈ R1. Then x ∈ Pαi
⊂ V , hence {Pαn

: n ∈ N} is a network at
x in X.

(b) K ⊂ f(C).

For each x ∈ K and each i ∈ N, pick Pαi
∈ Fn(i) such that x ∈ Pαi

. Then
⋂

i∈N
(Pαi

∩ K) 6= ∅. This implies that a = (αi) ∈ C, and {Pαi
: i ∈ N} forms a

network at x in X as in the proof of (a). Then f(a) = x. It shows that x ∈ f(C),
i.e., K ⊂ f(C).

(c) C is a compact subset of M .

Because C ⊂
∏

n∈N
Bn and

∏

n∈N
Bn is a compact subset of

∏

n∈N
An, it suffices

to prove that C is closed in
∏

n∈N
Bn. Let a = (αn) ∈

∏

n∈N
Bn − C, then

⋂

n∈N
(Pαn

∩K) = ∅. Since each Pαn
∩K is compact, there exists k ∈ N such that

⋂

n≤k(Pαn
∩ K) = ∅. Put U = {b = (βn) ∈

∏

n∈N
Bn : βn = αn if n ≤ k}. Then

U is an open neighborhood of a in
∏

n∈N
Bn and U ∩C = ∅. This implies that C

is closed in
∏

n∈N
Bn.

(3). By Remark 2.2 and using arguments as in (2), where “compact-covering”,
“a compact subset”, and “strong cfp-network” are replaced by “pseudo-sequence-
covering”, “a convergent sequence”, and “strong wcs-network” respectively.
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(4). Necessity. Let f be a sequentially-quotient mapping. Then for each
convergent sequence S in X, there exists a convergent sequence C in M such
that f(C) is a subsequence of S. By using arguments as in the necessity of (1)
again, we have that there exists Pf(C) ⊂ P such that Pf(C) is a countable cs-
network for f(C) in X. This implies that P is a strong cs∗-network for X. For
the parenthetic part, it is obvious by the fact that each subsequence-covering
mapping is a sequentially-quotient mapping.

Sufficiency. Let P be a strong cs∗-network for X. Then for each convergent
sequence S in X, there exists a countable PK such that PK is a cs∗-network for
some subsequence K of S in X. By Remark 2.2 and using arguments as in the
sufficiency of (2), we have that there exists a compact subset C of M such that
f(C) = K. This implies that f is subsequence-covering, then f is sequentially-
quotient by [7, Proposition 2.1]. �

By using Theorem 3.1 and Theorem 3.2, we systematically get characteri-
zations of images of metric spaces under s-mappings (msss-mappings, mssc-
mappings) with covering-properties as in [8], [16], [17], [20], and others as follows.

Corollary 3.3 ([8], Theorem 5). The following are equivalent for a space X.

(1) X is an ℵ-space.
(2) X is a sequence-covering mssc-image of a metric space.
(3) X is a pseudo-sequence-covering mssc-image of a metric space.
(4) X is a subsequence-covering mssc-image of a metric space.
(5) X is a sequentially-quotient mssc-image of a metric space.

Proof. The main proof is (1) ⇒ (2), other implications are easy. Let P =
⋃

{Pn :
n ∈ N} be a σ-locally finite cs-network for X. Then the σ-Ponomarev-system
(f,M,X, {Pn}) exists. Since P is σ-locally finite, P is a strong cs-network for
X. It follows from Theorem 3.1 and Theorem 3.2 that f is a sequence-covering
mssc-mapping from a metric space M onto X. �

By using arguments as in the proof of Corollary 3.3, we get the following
results, which partly appeared in [17], [18], and [20].

Corollary 3.4. The following are equivalent for a space X. We can replace “σ-
locally countable” and “msss-image” by “point-countable” and “s-image”, and re-
place “cs-network” and “sequence-covering” by “cs∗-network” and “sequentially-
quotient”(“wcs-network” and “pseudo-sequence-covering”, “cfp-network” and
“compact-covering”) respectively.

(1) X has a σ-locally countable cs-network.
(2) X is a sequence-covering msss-image of a metric space.

Corollary 3.5. The following are equivalent for a space X.

(1) X has a point-countable cs∗-network.
(2) X is a pseudo-sequence-covering s-image of a metric space.
(3) X is a subsequence-covering s-image of a metric space.
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(4) X is a sequentially-quotient s-image of a metric space.

Related to characterizations of images of metric spaces, many authors were
interested in that of separable metric spaces. In [24], E. Michael characterized
compact-covering images (resp., images) of separable metric spaces by ℵ0-spaces
(resp., cosmic spaces). Recently, some nice results on spaces with countable
networks have been obtained. In [29, Corollary 8], Y. Tanaka and Z. Li proved
that a space X has a countable cs∗-network (resp., cs-network) if and only if
X is a pseudo-sequence-covering (resp., sequence-covering) image of a separable
metric space. Next, based on the σ-Ponomarev-system (f,M,X, {Pn}), we get
new results on spaces having certain countable network as follows.

Corollary 3.6. The following are equivalent for a space X.

(1) X is a cosmic space.
(2) X is a rc-mssc-image of a separable metric space.
(3) X is an mssc-image of a separable metric space.
(4) X is an image of a separable metric space.

Proof. We only need to prove (1) ⇒ (2), other implications are easy. Since X is
a cosmic space, X has a countable network P = {Pi : i ∈ N}. For each n ∈ N,
put Pn = {X} ∪ {Pi : i ≤ n}. Then P ∪ {X} =

⋃

{Pn : n ∈ N} is a σ-locally
finite network for X, so the σ-Ponomarev-system (f,M,X, {Pn}) exists. Since
each Pn is finite,

∏

n∈N
An is a compact space. This implies that M is relatively

compact in
∏

n∈N
An. Therefore, f is a rc-mssc-mapping by Theorem 3.1. �

Corollary 3.7. The following are equivalent for a space X.

(1) X is an ℵ0-space.
(2) X is a sequence-covering, compact-covering rc-mssc-image of a separable

metric space.
(3) X is a sequence-covering, compact-covering mssc-image of a separable

metric space.
(4) X is a sequentially-quotient image of a separable metric space.

Proof. We only need to prove (1) ⇒ (2), other implications are easy. Since X

is an ℵ0-space, X has a countable cs-network Q and a countable cfp-network
R. Put P = Q ∪ R, then P is a strong cs-network and cfp-network for X.
Put P = {Pi : i ∈ N}, and put Pn = {Pi : i ≤ n} ∪ {X}. Then P ∪ {X} =
⋃

{Pn : n ∈ N} is a σ-locally finite cs-network and cfp-network for X, so the
σ-Ponomarev-system (f,M,X, {Pn}) exists. Since each Pn is finite,

∏

n∈N
An is

a compact space. Then M is relatively compact in
∏

n∈N
An. It follows from

Theorem 3.1 and Theorem 3.2 that f is a sequence-covering, compact-covering
rc-mssc-mapping from a separable metric space M onto X. �

The following example shows that Corollary 3.6 and Corollary 3.7 are better
results than preceding ones of E. Michael [24], Y.Tanaka and Z. Li [29].
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Example 3.8. A sequence-covering, compact-covering mapping from a separable
metric space is not an mssc-mapping.

Proof. Recall that Q ⊂ R is a non-locally compact, separable metric space, where
Q is the set of all rational numbers and R is the set of all real numbers with the
usual topology. Put M = Q × {0} × · · · × {0} · · · ⊂

∏

i∈N
Xi, where Xi = Q

for every i ∈ N. Then M is a separable metric space. Define f : M −→ Q by
f(x, 0, . . . ) = x for each x ∈ Q. Then f is a sequence-covering, compact-covering
mapping from a separable metric space onto Q. If f is an mssc-mapping, then, for
every x ∈ Q, there exists a sequence {Vx,i : i ∈ N} of open neighborhoods of x in

Q such that each pi(f−1(Vx,i)) is a compact subspace of Xi. Thus, p1(f−1(Vx,1))
is a compact subset of Q, so Q is a locally compact space. This is a contradiction.
Hence f is not an mssc-mapping. �
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