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CONVERGENCE THEOREMS OF MULTI-STEP ITERATION

WITH ERRORS FOR FINITE FAMILIES OF

ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

GURUCHARAN SINGH SALUJA AND HEMANT KUMAR NASHINE

Abstract. The aim of this paper is to study weak and strong convergence
of common fixed points for multi-step iterative scheme with errors for finite
families of asymptotically nonexpansive mappings in real uniformly convex
Banach spaces. Our results extend and improve the corresponding results of
Khan and Takahashi [13], Schu [22], Takahashi and Tamura [26], Rhoades [21],
Xu and Noor [28], Khan and Fukhar-ud-din [12], Plubtieng et al. [20] and many
others.

1. Introduction

Let K be a nonempty subset of a real Banach space E. A self-mapping T : K →
K is said to be nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖

for all x, y ∈ K. T is said to be asymptotically nonexpansive [8] if there exists a
sequence {rn} ⊂ [0,∞) with limn→∞ rn = 0 such that

‖T nx − T ny‖ ≤ (1 + rn)‖x− y‖

for all x, y ∈ K and n ≥ 1.

The class of asymptotically nonexpansive mappings which is an important
generalization of that of nonexpansive mappings was introduced by Goebel and
Kirk [8]. Iteration processes for nonexpansive and asymptotically nonexpansive
mappings in Banach spaces including Mann [15] and Ishikawa [11] iteration pro-
cess have been studied extensively by many authors to solve operators as well as
variational inequalities, see [2-28] and references therein.

In 2000, Noor [16] introduced a three step iterative scheme and studied the
approximate solution of variational inclusion in Hilbert spaces by using the tech-
niques of updating the solution and auxiliary principle. Glowinski and Le Tal-
lec [7] used three step iterative schemes to find the approximate solution of the
elastoviscoplasticity problem, liquid crystal theory, and eigenvalue computation.
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It has been shown [7] that three step iterative scheme gives better numerical re-
sults than the two step and one step approximate iterations. Thus we conclude
that three step scheme plays an important and significant role in solving various
problems, which arise in pure and applied sciences. Recently, Xu and Noor [28]
studied a three step scheme to approximate fixed points of asymptotically nonex-
pansive mappings in Banach spaces. In 2004, Cho et al. [5] extended the work of
Xu and Noor [28] to the three step iterative scheme with errors in Banach spaces
and gave weak and strong convergence theorems for asymptotically nonexpan-
sive mappings in a Banach space. Moreover, Suantai [25] gave weak and strong
convergence theorems for a new three step iterative scheme of asymptotically non-
expansive mappings. More recently, Plubtieng et al. [20] introduced three step
iterative scheme with errors for three asymptotically nonexpansive mappings and
established strong convergence of this scheme to common fixed point of three
asymptotically nonexpansive mappings.

Inspired and motivated by the above facts, a new multi-step iteration scheme
with errors for finite family of asymptotically nonexpansive mappings is intro-
duced and strong and weak convergence theorems for this scheme to common
fixed point are proved.

Let K be a nonempty closed subset of a normed space E and let T1, T2 . . . , TN :
K → K be N asymptotically nonexpansive mappings. For a given x1 ∈ K and
a fixed N ∈ N (N denote the set of all positive integers), compute the sequence
{xn} by

x1
n = α1

nT n
1 xn + β1

nxn + γ1
nu1

n,

x2
n = α2

nT n
2 x1

n + β2
nxn + γ2

nu2
n,

. . . = . . .(1.1)

. . . = . . .

xn+1 = xN
n = αN

n T n
NxN−1

n + βN
n xn + γN

n uN
n ,

where {αi
n}, {β

i
n}, {γ

i
n} are appropriate sequences in [0, 1] with αi

n +βi
n +γi

n = 1
for each i ∈ {1, 2, . . . , N} and {u1

n}, {u
2
n}, . . . , {u

N
n } are bounded sequences in K.

In this paper, we extend the scheme of Xu and Noor [28] to N -step iteration
scheme with errors for finite families of asymptotically nonexpansive mappings
and without boundedness condition on K. Our results presented in this paper
extend and improve the corresponding results in [12, 13, 20, 21, 22, 26, 28].

2. Preliminaries

For the sake of convenience, we gather some basic definitions and set out our
terminology needed in the sequel.

Definition 2.1. (see [8]) A Banach space X is said to be uniformly convex if the
modulus of convexity of X

δX(ε) = inf{1 −
‖x + y‖

2
: ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε} > 0
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for all 0 < ε ≤ 2 ( i.e. δX(ε) is a function (0, 2] → (0, 1]).

Definition 2.2. (see [17]) A Banach space X is said to satisfy Opial’s condi-
tion [17] if for any sequence {xn} in X , xn → x weakly implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ X with y 6= x.

Definition 2.3. (i) A mapping T : K → K with F (T ) 6= ∅ is said to satisfy
condition (A) [24] on K if there exists a nondecreasing function f : [0,∞) →
[0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that for all x ∈ K,
‖x − Tx‖ ≥ f(d(x, F (T ))) where d(x, F (T )) = inf{‖x − p‖ : p ∈ F (T )}, where
F (T ) denotes the set of fixed points of T .

(ii) A family {T1, T2, . . . , TN} of N self mappings on K with F = ∩N
i=1F (Ti) 6= ∅

is said to satisfy condition (B) on K if there exist f and d as in (i) such that
max1≤i≤N {‖x− Tix‖} ≥ f(d(x,F )) for all x ∈ K.

Note that condition (B) reduces to condition (A), when Ti = T for all i =
1, 2, . . . , N .

Lemma 2.4. Let {an}∞n=1, {βn}∞n=1 and {rn}∞n=1 be sequences of nonnegative

real numbers satisfying

an+1 ≤ (1 + rn)an + βn, ∀n ∈ N.

If
∑∞

n=1 rn < ∞ and
∑∞

n=1 βn < ∞, then limn→∞ an exists.

Lemma 2.5. (see [29]) Let p > 1 and R > 1 be two fixed numbers and E a

Banach space. Then E is uniformly convex if and only if there exists a continuous,

strictly increasing and convex function g : [0,∞) → [0,∞) with g(0) = 0 such that

‖λx + (1− λ)y‖p ≤ λ‖x‖p+(1−λ)‖y‖p−Wp(λ)g(‖x− y‖) for all x, y ∈ BR(0) =
{x ∈ E : ‖x‖ ≤ R} and λ ∈ [0, 1], where Wp(λ) = λ(1− λ)p + λp(1 − λ).

Lemma 2.6. (see [9]) Let E be a uniformly convex Banach space satisfying

Opial’s condition and C be a nonempty closed and convex subset of E. Let

T : C → C be an asymptotically nonexpansive mapping. Then I − T is demi-

closed with respect to zero, i.e. for any sequence {xn} in C with xn → x weakly

and xn − Txn → 0, we have x = Tx.

Lemma 2.7. Let E be a normed linear space and K be a nonempty closed and

convex subset of E. Let T1, T2, . . . , TN : K → K be N uniformly L-Lipschitzian

mappings. Let {xn} be the sequence defined by (1.1) with sequences {ui
n} in K

for all i = 1, 2, . . . , N and {αi
n}, {β

i
n} and {γi

n} are sequences in [0, 1] satisfying

αi
n + βi

n + γi
n = 1 for all i = 1, 2, . . . , N . Set ci

n = ‖xn − T n
i xn‖ for all i =

1, 2, . . . , N . If limn→∞ ‖xn − T n
i xn‖ = 0 and limn→∞ ‖xn+1 − xn‖ = 0, then

limn→∞ ‖xn − Tixn‖ = 0.

Proof. Since Ti is uniformly L-Lipschitzian for all i = 1, 2, . . . , N , we have

‖xn+1 − Tixn+1‖ ≤ ‖xn+1 − T n+1
i xn+1‖ + ‖T n+1

i xn+1 − Tixn+1‖
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≤ ci
n+1 + L‖T n

i xn+1 − xn+1‖

≤ ci
n+1 + L{‖xn+1 − xn‖ + ‖xn − T n

i xn‖+ ‖T n
i xn − T n

i xn+1‖}

≤ ci
n+1 + L{‖xn+1 − xn‖ + ci

n + L‖xn+1 − xn‖}

≤ ci
n+1 + L(L + 1)‖xn+1 − xn‖+ Lci

n → 0 as n → ∞.

This completes the proof. �

Remark 2.8. Lemma 2.7 generalizes the corresponding Lemma of Schu [23] for
one mapping. Further, if F = ∩N

i=1F (Ti) 6= ∅ and limn→∞ ‖xn − T n
i xn‖ = 0,

then we have limn→∞ ‖xn+1 − xn‖ = 0.

3. Main results

Theorem 3.1. Let E be a real uniformly convex Banach space and K be a

nonempty closed convex subset of E. Let T1, T2, . . . , TN : K → K be N asymp-

totically nonexpansive mappings and F = ∩N
i=1F (Ti) 6= ∅. Let {αi

n}, {βi
n} and

{γi
n} are sequences in [0, 1] with αi

n + βi
n + γi

n = 1 for all i = 1, 2, . . . , N . From

arbitrary x1 ∈ K, define the sequence {xn} iteratively by (1.1). Then

(i) ‖xn+1 − x∗‖ = ‖xN
n − x∗‖ ≤ (1+ bN−1

n )‖xn − x∗‖+dN−1
n , for all n ≥ 1 and

x∗ ∈ F , and for some sequences {bi
n} and {di

n} for all i = 1, 2, . . . , N of numbers

such that
∑∞

n=1 bi
n < ∞ and

∑∞
n=1 di

n < ∞.

(ii) There exists a constant M > 0 such that ‖xn+m − x∗‖ ≤ M.‖xn − x∗‖ +

M.
∑n+m−1

k=n dN−1
k

for all n, m ≥ 1 and x∗ ∈ F .

Proof. (i) Let x∗ ∈ F , then from (1.1) we have

‖x1
n − x∗‖ = ‖α1

nT n
1 xn + β1

nxn + γ1
nu1

n − x∗‖

≤ α1
n‖T

n
1 xn − x∗‖ + β1

n‖xn − x∗‖ + γ1
n‖u

1
n − x∗‖

≤ α1
n(1 + r1

n)‖xn − x∗‖ + β1
n‖xn − x∗‖ + γ1

n‖u
1
n − x∗‖

≤ (1 − β1
n)(1 + r1

n)‖xn − x∗‖ + β1
n(1 + r1

n)‖xn − x∗‖ + γ1
n‖u

1
n − x∗‖

≤ (1 + r1
n)‖xn − x∗‖+ γ1

n‖u
1
n − x∗‖

≤ (1 + r1
n)‖xn − x∗‖+ d0

n

where d0
n = γ1

n‖u
1
n − x∗‖. Since

∑∞

n=1 γ1
n < ∞, then

∑∞

n=1 d0
n < ∞. Next, we

note that

‖x2
n − x∗‖ = ‖α2

nT n
2 x1

n + β2
nxn + γ2

nu2
n − x∗‖

≤ α2
n‖T

n
2 x1

n − x∗‖ + β2
n‖xn − x∗‖ + γ2

n‖u
2
n − x∗‖

≤ α2
n(1 + r2

n)‖x1
n − x∗‖ + β2

n‖xn − x∗‖ + γ2
n‖u

2
n − x∗‖

≤ α2
n(1 + r2

n)[(1 + r1
n)‖xn − x∗‖ + d0

n] + β2
n‖xn − x∗‖ + γ2

n‖u
2
n − x∗‖

≤ [(1 + r1
n)(1 + r2

n)α2
n + β2

n]‖xn − x∗‖ + α2
n(1 + r2

n)d0
n + γ2

n‖u
2
n − x∗‖

≤ (α2
n + β2

n)(1 + r1
n)(1 + r2

n)‖xn − x∗‖ + α2
n(1 + r2

n)d0
n + γ2

n‖u
2
n − x∗‖
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≤ (1 + r1
n + r2

n + r1
nr2

n)‖xn − x∗‖ + α2
n(1 + r2

n)d0
n + γ2

n‖u
2
n − x∗‖

≤ (1 + b1
n)‖xn − x∗‖+ d1

n,

where d1
n = α2

n(1 + r2
n)d0

n + γ2
n‖u

2
n − x∗‖ and b1

n = (1 + r1
n + r2

n + r1
nr2

n). Since∑
∞
n=1 d0

n < ∞,
∑

∞
n=1 γ2

n < ∞,
∑

∞
n=1 ri

n < ∞ for i = 1, 2 and so
∑

∞
n=1 d1

n < ∞
and

∑∞
n=1 b1

n < ∞. Similarly, we have

‖x3
n − x∗‖ = ‖α3

nT n
3 x2

n + β3
nxn + γ3

nu3
n − x∗‖

≤ α3
n‖T

n
3 x2

n − x∗‖ + β3
n‖xn − x∗‖ + γ3

n‖u
3
n − x∗‖

≤ α3
n(1 + r3

n)‖x2
n − x∗‖ + β3

n‖xn − x∗‖+ γ3
n‖u

3
n − x∗‖

≤ α3
n(1 + r3

n)[(1 + b1
n)‖xn − x∗‖ + d1

n] + β3
n‖xn − x∗‖ + γ3

n‖u
3
n − x∗‖

≤ [α3
n(1 + r3

n)(1 + b1
n) + β3

n]‖xn − x∗‖ + α3
n(1 + r3

n)d1
n + γ3

n‖u
3
n − x∗‖

≤ (α3
n + β3

n)(1 + b1
n)(1 + r3

n)‖xn − x∗‖ + α3
n(1 + r3

n)d1
n + γ3

n‖u
3
n − x∗‖

≤ (1 + b1
n)(1 + r3

n)‖xn − x∗‖ + d2
n

≤ (1 + b2
n)‖xn − x∗‖ + d2

n,

where b2
n = b1

n+r3
n +b1

nr3
n and d2

n = α3
n(1+r3

n)d1
n+γ3

n‖u
3
n − x∗‖. Since

∑∞
n=1 b1

n <

∞,
∑∞

n=1 r3
n < ∞,

∑∞

n=1 d1
n < ∞ and

∑∞

n=1 γ3
n < ∞, so

∑∞

n=1 b2
n < ∞ and∑∞

n=1 d2
n < ∞.

By continuing the above process, there exist nondecreasing sequences {dl−1
n }

and {bl−1
n } such that

∑∞

n=1 dl−1
n < ∞ and

∑∞

n=1 bl−1
n < ∞ and

‖xi
n − x∗‖ ≤ (1 + bi−1

n )‖xn − x∗‖ + di−1
n , ∀n ≥ 1, ∀i = 1, 2, . . . , N.

Thus

‖xn+1 − x∗‖ = ‖xN
n − x∗‖ ≤ (1 + bN−1

n )‖xn − x∗‖ + dN−1
n , ∀n ∈ N.

This completes the proof of (i).

(ii) Since 1 + x ≤ ex for all x > 0, therefore from (i) it can be obtained that

‖xn+m − x∗‖ ≤ (1 + bN−1
n+m−1)‖xn+m−1 − x∗‖ + dN−1

n+m−1

≤ eb
N−1

n+m−1‖xn+m−1 − x∗‖ + dN−1
n+m−1

≤ e(bN−1

n+m−1
+b

N−1

n+m−2
)‖xn+m−2 − x∗‖ + eb

N−1

n+m−1dN−1
n+m−2 + dN−1

n+m−1

≤ e(bN−1
n+m−1+b

N−1
n+m−2)‖xn+m−2 − x∗‖ + eb

N−1
n+m−1(dN−1

n+m−1 + dN−1
n+m−2)

≤ . . . . . .

≤ . . . . . .

≤ e
Pn+m−1

k=n b
N−1

k ‖xn − x∗‖ + e
Pn+m−1

k=n b
N−1

k .

n+m−1∑

k=n

dN−1
k
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≤ M.‖xn − x∗‖ + M.

n+m−1∑

k=n

dN−1
k

, where M = e
P

∞

k=n b
N−1

k .

This completes the proof of (ii). �

Theorem 3.2. Let E be a real uniformly convex Banach space and K be a

nonempty closed convex subset of E. Let T1, T2, . . . , TN : K → K be N uniformly

continuous asymptotically nonexpansive mappings and F = ∩N
i=1F (Ti) 6= ∅. Let

{xn} be the sequence defined by (1.1) with
∑∞

n=1 γi
n < ∞ and {αi

n} ⊆ [ε, 1 − ε]
for all i = 1, 2, . . . , N , for some ε ∈ (0, 1). Then limn→∞ ‖xn − Tixn‖ = 0 for all

i = 1, 2, . . . , N .

Proof. Let x∗ ∈ F = ∩N
i=1F (Ti). Then by Theorem 3.1 (i) and Lemma 2.4,

limn→∞ ‖xn − x∗‖ exists. Let limn→∞ ‖xn − x∗‖ = a. If a = 0, then by the
continuity of each Ti the conclusion follows. Now suppose that a > 0. Firstly, we
now show that limn→∞ ‖T n

Nxn − xn‖ = 0. Since {xn} and {ui
n} are bounded for

all i = 1, 2, . . . , N , there exists R > 0 such that xn − x∗ + γi
n(ui

n − xn), T n
i xi−1

n −
x∗ + γi

n(ui
n − xn) ∈ BR(0) for all n ≥ 1 and for all i = 1, 2, . . . , N . Using Lemma

2.5, we have

‖xN
n − x∗‖2 = ‖αN

n T n
NxN−1

n + βN
n xn + γN

n uN
n − x∗‖2

= ‖αN
n (T n

NxN−1
n − x∗ + γN

n (uN
n − xn))

+ (1− αN
n )(xn − x∗ + γN

n (uN
n − xn))‖2

≤ αN
n |T n

NxN−1
n − x∗ + γN

n (uN
n − xn)‖2 + (1− αN

n )

‖xn − x∗ + γN
n (uN

n − xn)‖2 − W2(α
N
n )g(‖T n

NxN−1
n − xn‖)

≤ αN
n (‖T n

NxN−1
n − x∗‖ + γN

n ‖uN
n − xn‖)

2 + (1 − αN
n )

(‖xn − x∗‖ + γN
n ‖uN

n − xn‖)
2 − W2(α

N
n )g(‖T n

NxN−1
n − xn‖)

≤ αN
n [(1 + bN−2

n )‖xn − x∗‖+ dN−2
n + γN

n ‖uN
n − xn‖]

2 + (1 − αN
n )

[(1 + bN−2
n )‖xn − x∗‖ + dN−2

n + γN
n ‖uN

n − xn‖]
2

− W2(α
N
n )g(‖T n

NxN−1
n − xn‖)

≤ [(1 + bN−2
n )‖xn − x∗‖ + dN−2

n + γN
n ‖uN

n − xn‖]
2

− W2(α
N
n )g(‖T n

NxN−1
n − xn‖)

≤ [‖xn − x∗‖ + λN−2
n ]2 − W2(α

N
n )g(‖T n

NxN−1
n − xn‖),(3.1)

where λN−2
n = dN−2

n + γN
n ‖uN

n − xn‖. Observe that ε3 ≤ W2(α
N
n ). Now (3.1)

implies that ε3g(‖T n
NxN−1

n − xn‖) ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + ρN−2
n , where

ρN−2
n = 2λN−2

n + (λN−2
n )2. Since

∑∞
n=1 dN−2

n < ∞ and
∑∞

n=1 γN−2
n < ∞, we get∑∞

n=1 ρN−2
n < ∞. This implies that limn→∞ g(‖T n

NxN−1
n − xn‖) = 0. Since g is

strictly increasing and continuous at 0, it follows that limn→∞ ‖T n
NxN−1

n − xn‖ =
0. Since for all N , TN is asymptotically nonexpansive,

‖xn − x∗‖ ≤ ‖xn − T n
NxN−1

n ‖ + ‖T n
NxN−1

n − x∗‖
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= ‖xn − T n
NxN−1

n ‖ + (1 + rN
n )‖xN−1

n − x∗‖

for all n ≥ 1. Thus

a = lim
n→∞

‖xn − x∗‖ ≤ lim inf
n→∞

‖xN−1
n − x∗‖ ≤ lim sup

n→∞

‖xN−1
n − x∗‖ ≤ a

and therefore limn→∞ ‖xN−1
n − x∗‖ = a. Using the same argument in the proof

above, we have

‖xN−1
n − x∗‖2 ≤ αN−1

n ‖T n
N−1x

N−2
n − x∗ + γN−1

n (uN−1
n − xn)‖2 + (1− αN−1

n )

‖xn − x∗ + γN−1
n (uN−1

n − xn)‖2 − W2(α
N−1
n )g(‖T n

N−1x
N−2
n − xn‖)

≤ αN−1
n [(1 + bN−3

n )‖xn − x∗‖ + dN−3
n + γN−1

n ‖uN−1
n − xn‖]

2

+ (1− αN−1
n )[(1 + bN−3

n )‖xn − x∗‖ + dN−3
n + γN−1

n ‖uN−1
n − xn]2

− W2(α
N−1
n )g(‖T n

N−1x
N−2
n − xn‖)

≤ bN−3
n )‖xn − x∗‖ + dN−3

n + γN−1
n ‖uN−1

n − xn‖]
2

− W2(α
N−1
n )g(‖T n

N−1x
N−2
n − xn‖)

≤ [‖xn − x∗‖+ λN−3
n ]2 − W2(α

N−1
n )g(‖T n

N−1x
N−2
n − xn‖),(3.2)

where λN−3
n = dN−3

n + γN−1
n ‖uN−1

n − xn‖. This implies that

ε3g(‖T n
N−1x

N−2
n − xn‖) ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + ρN−3

n ,

where ρN−3
n = 2λN−3

n + (λN−3
n )2 and therefore limn→∞ ‖T n

N−1x
N−2
n − xn‖ = 0.

Thus, we have

‖xn − T n
Nxn‖

≤‖xn − T n
NxN−1

n ‖ + ‖T n
NxN−1

n − T n
Nxn‖

≤‖xn − T n
NxN−1

n ‖ + (1 + rN
n )‖xN−1

n − xn‖

≤‖xn − T n
NxN−1

n ‖ + (1 + rN
n )‖αN−1

n T n
N−1x

N−2
n + βN−1

n xn + γN−1
n uN−1

n − xn‖

≤‖xn − T n
NxN−1

n ‖ + (1 + rN
n )[αN−1

n ‖T n
N−1x

N−2
n − xn‖ + γN−1

n ‖uN−1
n − xn‖].

Since limn→∞ ‖xn − T n
NxN−1

n ‖ = 0, limn→∞ ‖xn − T n
N−1x

N−2
n ‖ = 0 and

∑∞

n=1 γN−1
n

< ∞,
∑∞

n=1 rN
n < ∞, it follows that limn→∞ ‖xn − T n

Nxn‖ = 0. Similarly, by us-

ing the same argument as in the proof above we have limn→∞ ‖xn − T n
N−2x

N−3
n ‖ =

limn→∞ ‖xn − T n
N−3x

N−4
n ‖ =, . . . , = limn→∞ ‖xn − T n

2 x1
n‖ = 0. This implies that

lim
n→∞

‖xn − T n
N−1xn‖ = lim

n→∞
‖xn − T n

N−2xn‖ = · · · = lim
n→∞

‖xn − T n
3 xn‖ = 0.

It remains to show that

lim
n→∞

‖xn − T n
1 xn‖ = 0, lim

n→∞
‖xn − T n

2 xn‖ = 0.

Note that

‖x1
n − x∗‖2 ≤ α1

n(‖T n
1 xn − x∗‖+ γ1

n‖u
1
n − x∗‖)2 + (1 − α1

n)

(‖xn − x∗‖+ γ1
n‖u

1
n − x∗‖)2 − W2(α

1
n)g(‖T n

1 xn − xn‖)
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≤ α1
n[(1 + r1

n)‖xn − x∗‖ + γ1
n‖u

1
n − x∗‖]2 + (1 − α1

n)

[(1 + r1
n)‖xn − x∗‖ + γ1

n‖u
1
n − x∗‖]2 − W2(α

1
n)g(‖T n

1 xn − xn‖)

≤ [(1 + r1
n)‖xn − x∗‖ + γ1

n‖u
1
n − x∗‖]2

− W2(α
1
n)g(‖T n

1 xn − xn‖)

≤ [‖xn − x∗‖+ γ1
n‖u

1
n − x∗‖]2 − W2(α

1
n)g(‖T n

1 xn − xn‖).

Thus, we have ε3g(‖T n
1 xn − xn‖) ≤ [‖xn − x∗‖+γ1

n‖u
1
n − x∗‖]2−‖x1

n − x∗‖2 and
therefore limn→∞ ‖T n

1 xn − xn‖ = 0. Since

‖xn − T n
2 xn‖ ≤ ‖xn − T n

2 x1
n‖ + ‖T n

2 x1
n − T n

2 xn‖

≤ ‖xn − T n
2 x1

n‖ + (1 + r2
n)‖x1

n − xn‖

≤ ‖xn − T n
2 x1

n‖ + (1 + r2
n)‖α1

nT n
1 xn + β1

nxn + γ1
nu1

n − xn‖

≤ ‖xn − T n
2 x1

n‖ + (1 + r2
n)[α1

n‖T
n
1 xn − xn‖ + γ1

n‖u
1
n − xn‖],

it follows that limn→∞ ‖T n
2 xn − xn‖ = 0. Therefore limn→∞ ‖T n

i xn − xn‖ = 0
for all i = 1, 2, . . . , N . On the other hand, by Remark 2.8, it is clear that
limn→∞ ‖xn+1 − xn‖ = 0. Therefore, by Lemma 2.7, we can conclude that
limn→∞ ‖xn − Tixn‖ = 0 for all i = 1, 2, . . . , N . This completes the proof. �

Theorem 3.3. Let E be a real uniformly convex Banach space satisfying Opial’s

condition and K be a nonempty closed convex subset of E. Let T1, T2, . . . , TN : K →
K be N asymptotically nonexpansive mappings and F = ∩N

i=1F (Ti) 6= ∅. Let {xn}
be the sequence defined by (1.1). Then {xn} converges weakly to a common fixed

point of the mappings {T1, T2, . . . , TN}.

Proof. From Theorem 3.2, we have limn→∞ ‖xn − Tixn‖ = 0. It remains to show
that {xn} has a unique weak subsequential limit in F = ∩N

i=1F (Ti). To prove
this, let u and v be weak limits of the subsequences {xni

} and {xnj
} of {xn}

respectively. Since limn→∞ ‖xn − Tixn‖ = 0 and I−Ti is demiclosed with respect
to zero for all i = 1, 2, . . . , N by Lemma 2.6, we obtain that Tiu = u for all
i = 1, 2, . . . , N . Similarly, we can prove that v ∈ F = ∩N

i=1F (Ti). Now we prove
that u = v. If u 6= v, then by Opial’s condition

lim
n→∞

‖xn − u‖ = lim
ni→∞

‖xni
− u‖

< lim
ni→∞

‖xni
− v‖

= lim
n→∞

‖xn − v‖

< lim
nj→∞

‖xnj
− u‖

= lim
n→∞

‖xn − u‖

which is a contradiction. Therefore, we have u = v. This completes the proof. �

Remark 3.4. Theorem 3.3 extends Theorem 1 of Khan and Takahashi [13] and
Theorem 2.1 of Schu [22] to the case of multi step iteration and finite families of
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asymptotically nonexpansive mappings and relaxed the condition of boundedness
on K.

It is well known that every continuous and demicompact mapping must satisfy
condition (A) [24]. Since every completely continuous mapping T : K → K is
continuous and demicompact, it satisfies condition (A). Therefore to study strong
convergence of {xn} defined by (1.1), we use condition (B) instead of the complete
continuity of mappings T1, T2, . . . , TN .

Now we shall prove the following strong convergence theorem by using condi-
tion (B):

Theorem 3.5. Let E be a real uniformly convex Banach space and K be a

nonempty closed convex subset of E. Let T1, T2, . . . , TN : K → K be N asymptot-

ically nonexpansive mappings and F = ∩N
i=1F (Ti) 6= ∅. Suppose {T1, T2, . . . , TN}

satisfies condition (B). Let {xn} be the sequence defined by (1.1) with
∑∞

n=1 γi
n <

∞ and {αi
n} ⊆ [ε, 1 − ε] for all i = 1, 2, . . . , N , for some ε ∈ (0, 1). Then {xn}

converges strongly to a common fixed point of the mappings {T1, T2, . . . , TN}.

Proof. From Theorem 3.1(i) and by Lemma 2.4, we see that limn→∞ ‖xn − x∗‖
exists for all x∗ ∈ F = ∩N

i=1F (Ti). Let limn→∞ ‖xn − x∗‖ = a for some a ≥ 0.
Without loss of generality, suppose a = 0, then there is nothing to prove. If we
assume a > 0, we have from the proof of Theorem 3.1(i)

‖xn+1 − x∗‖ ≤ (1 + bN−1
n )‖xn − x∗‖ + dN−1

n , ∀n ∈ N

where {bi
n}

∞
n=1 and {di

n}
∞
n=1 for all i = 1, 2, . . . , N are nonnegative real sequences

such that
∑

∞
n=1 bi

n < ∞ and
∑

∞
n=1 di

n < ∞ for all i = 1, 2, . . . , N . This gives
that

d(xn+1,F ) ≤ (1 + bN−1
n )d(xn,F ) + dN−1

n , ∀n ∈ N.

Applying Lemma 2.4 to the above inequality, we obtain that limn→∞ d(xn,F ) ex-
ists. Also by Theorem 3.2, limn→∞ ‖xn − Tixn‖ = 0 for all i = 1, 2, . . . , N . Since
{T1, T2, . . . , TN} satisfies condition (B), we conclude that limn→∞ d(xn,F ) = 0.
Next we show that {xn} is a Cauchy sequence. Since limn→∞ d(xn,F ) = 0, given
any ε > 0, there exists a natural number n0 such that d(xn,F ) < ε

3 for all n ≥ n0.
So we can find p∗ ∈ F such that ‖xn0

− p∗‖ < ε
2 . For all n ≥ n0 and m ≥ 1, we

have

‖xn+m − xn‖ ≤ ‖xn+m − p∗‖ + ‖xn − p∗‖

≤ ‖xn0
− p∗‖ + ‖xn0

− p∗‖

<
ε

2
+

ε

2
= ε.

This shows that {xn} is a Cauchy sequence and so is convergent since E is
complete. Let limn→∞ xn = q∗. Then q∗ ∈ K. It remains to show that q∗ ∈ F .
Let ε1 > 0 be given. Then there exists a natural number n1 such that ‖xn − q∗‖ <
ε1

4 for all n ≥ n1. Since limn→∞ d(xn,F ) = 0, there exists a natural number
n2 ≥ n1 such that for all n ≥ n2 we have d(xn,F ) < ε1

5 and in particular, we
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have d(xn2
,F ) < ε1

5 . Therefore, there exists w∗ ∈ F such that ‖xn2
− w∗‖ < ε1

4 .
For any i ∈ I and n ≥ n2, we have

‖Tiq
∗ − q∗‖ ≤ ‖Tiq

∗ − w∗‖ + ‖w∗ − q∗‖

≤ 2‖q∗ − w∗‖

≤ 2(‖q∗ − xn2
‖ + ‖xn2

− w∗‖)

< 2(
ε1

4
+

ε1

4
)

< ε1.

This implies that Tiq
∗ = q∗. Hence q∗ ∈ F (Ti) for all i ∈ I and so q∗ ∈ F =

∩N
i=1F (Ti). This completes the proof. �

Remark 3.6. (1) Theorem 3.5 extend Theorem 2 of Khan and Fukhar-ud-
din [12], Theorem 2.4 of Plubtieng et al. [20], Theorem 2 and 3 of Rhoades [21],
Theorem 1.5 of Schu [22] and Theorems 2.1-2.3 of Xu and Noor [28] to the case
of multi-step iteration and finite families of asymptotically nonexpansive map-
pings and relaxed the condition of boundedness on K. Also our iteration scheme
generalizes the iteration scheme of Noor [28].

(2) Theorem 3.5 also generalizes Theorem 3.5 of Chidume and Ali [4] to the
case of the iteration with errors in the sense of Xu [30].

For our next result, we shall need the following definition:

Definition 3.7. Let C be a nonempty closed subset of a Banach space E. A
mapping T : C → C is said to be semi-compact, if for any bounded sequence {xn}
in C such that limn→∞ ‖xn − Txn‖ = 0 there exists a subsequence {xni

} ⊂ {xn}
such that limi→∞ xni

= x ∈ C.

Theorem 3.8. Let E be a real uniformly convex Banach space and K be a

nonempty closed convex subset of E. Let T1, T2, . . . , TN : K → K be N asymptot-

ically nonexpansive mappings and F = ∩N
i=1F (Ti) 6= ∅. Suppose that one of the

mappings in {T1, T2, . . . , TN} is semi-compact. Let {xn} be the sequence defined

by (1.1) with
∑∞

n=1 γi
n < ∞ and {αi

n} ⊆ [ε, 1−ε] for all i = 1, 2, . . . , N , for some

ε ∈ (0, 1). Then {xn} converges strongly to a common fixed point of the mappings

{T1, T2, . . . , TN}.

Proof. Suppose that Ti0 is semi-compact for some i0 ∈ {1, 2, . . . , N}. By Theo-
rem 3.2, we have

(3.3) lim
n→∞

‖xn − Ti0xn‖ = 0.

So there exists a subsequence {xnj
} of {xn} such that limnj→∞ xnj

= x∗ ∈ K. So
from (3.3), we have limnj→∞ ‖xnj

− Tjxnj
‖ = 0 for all j ∈ {1, 2, . . . , N} and so

‖x∗ − Tjx
∗‖ = 0 for all j ∈ {1, 2, . . . , N}. This implies that x∗ ∈ F = ∩N

i=1F (Ti).
Since limn→∞ d(xn,F ) = 0, it follows, as in the proof of Theorem 3.5, that
{xn} converges strongly to some common fixed point in F . This completes the
proof. �
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Remark 3.9. Theorem 3.8 extends Theorem 2 of Osilike and Aniagbosor [18]
and Theorem 2.2 of Schu [22] to the case of finite families of asymptotically
nonexpansive mappings and multi-step iteration and relaxed the condition of
boundedness on K.
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