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A NOTE ON WEAKLY KOSZUL MODULES

YUAN PAN

Abstract. Let M be a weakly Koszul module. Then Mart́ınez-Villa and
Zacharia proved that M admitted a filtration of submodules 0 = U0 ⊆ U1 ⊆

U2 ⊆ · · · ⊆ Up = M , such that all Ui+1/Ui are Koszul modules (see [11]).
Now further, let P

i
∗
→ Ui/Ui−1 → 0 and P∗ → M → 0 be the corresponding

minimal graded projective resolutions. We prove that, for all n ≥ 0, Pn
∼=⊕

i
Pi

n. Moreover, we also give a new characterization for a module M to be
weakly Koszul in terms of the filtration of the complex P∗, where P∗ → M → 0
is a minimal graded projective resolution.

1. Introduction

Throughout, k denotes an arbitrary field, N and Z denote the sets of natural
numbers and integers, respectively. Each graded k-algebra A =

⊕
i≥0 Ai is as-

sumed with the following properties: (1) A0 = k × · · · × k, a finite product of k;
(2) Ai · Aj = Ai+j for all 0 ≤ i, j < ∞ and (3) each Ai is of finite dimension as
a k-space. The graded Jacobson radical of such a graded algebra A is obvious⊕

i≥1 Ai. Let Gr(A) and gr(A) denote the categories of graded A-modules and
finitely generated graded A-modules, respectively.

Weakly Koszul modules, a natural generalization of Koszul modules, were first
introduced by Mart́ınez-Villa and Zacharia in [11] and one of the main results of
[11] was to prove that weakly Koszul modules can be approximated by modules
with linear resolutions:

• Let A be a Koszul algebra, M an arbitrary finitely generated graded A-
module, and {Sd1

, Sd2
, · · · , Sdp

} a set of minimal homogeneous generating
spaces of M . Suppose that Sdi

⊆ Mdi
, di ∈ N for 1 ≤ i ≤ p, and

d1 < d2 < · · · < dp. Consider the filtration

FM : 0 = U0 ⊂ U1 ⊂ · · · ⊂ Up−1 ⊂ Up = M

of M , where U1 = 〈Sd1
〉, U2 = 〈Sd1

, Sd2
〉, · · · , Up = 〈Sd1

, Sd1
, · · · , Sdp

〉.
Then M is a weakly Koszul module if and only if, for all 1 ≤ i ≤ p,
Ui/Ui−1 are Koszul modules.
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Recently, this notion has been generalized to d-Koszul modules and piecewise-
Koszul modules and so on. It turned out that such class of modules also admits
a lot of good homological properties similar to Koszul modules and we refer to
[4]-[8] for the further details.

Now let us recall some definitions, most of the materials of this section can be
found in [11].

Definition 1.1. Let A be a graded algebra and M ∈ gr(A). We call M a Koszul

module if there exists a minimal graded projective resolution

· · · // Pn
// · · · // P1

// P0
// M // 0

of M and a fixed integer s such that for each n ≥ 0, Pn is generated in degree
n + s. In particular, if the trivial A-module A0 is a Koszul module, then we call
A a Koszul algebra.

Definition 1.2. Let A be a Koszul algebra. We say that M ∈ gr(A) is a weakly

Koszul module if there exists a minimal graded projective resolution

· · · // Pi

fi
// · · · // P1

f1
// P0

f0
// M // 0

of M such that for i, k ≥ 0, Jk ker fi = Jk+1Pi ∩ ker fi .

From the above definitions, we know that both Koszul modules and weakly
Koszul modules can be defined in terms of their minimal graded projective reso-
lutions. Motivated by the above result, one can ask the following questions: Do
there exist some relationships between the minimal graded projective resolutions
of M and these Ui/Ui−1’s? Can we characterize weakly Koszul modules in terms
of the resolutions of M and Ui/Ui−1’s?

In this paper, we mainly answer the above questions and the following are the
main results:

Theorem 1.3. Let M be a weakly Koszul module and FM : 0 = U0 ⊂ U1 ⊂
· · · ⊂ Up−1 ⊂ Up = M its submodule filtration. Let P∗ → M → 0 and Pi

∗ →
Ui/Ui−1 → 0 be the minimal graded projective resolutions. Then for n ≥ 0, we

have

Pn
∼=

p⊕

i=1

Pi
n.

Theorem 1.4. Let M ∈ gr(A) and

· · · → Pi → Pi−1 → · · · → P1 → P0 → M → 0

a minimal projective resolution of M . Set

P∗ := · · · → Pi → Pi−1 → · · · → P1 → P0 → 0.

Then M is a weakly Koszul module if and only if the complex P∗ has a filtration

FP∗ : 0 = P0
∗ ⊂ P1

∗ ⊂ · · · ⊂ Pp−1
∗ ⊂ Pp

∗ = P∗,
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such that for all 1 ≤ j ≤ p,

· · · → P j
i /P j−1

i → P j
i−1/P

j−1
i−1 → · · · → P j

1 /P j−1
1 → P j

0 /P j−1
0 → 0

has only one non-zero homology Kj at P j
0 /P j−1

0 , which is a Koszul module. In

fact, Pi =
⊕p

j=1 P j
i /P j−1

i . Moreover, M has a filtration, FM : 0 = U0 ⊂ U1 ⊂

· · · ⊂ Up−1 ⊂ Up = M such that Uj/Uj−1
∼= Kj and all Kj are Koszul modules.

2. Proofs of the main results

Lemma 2.1. ([3]) Let A be a Koszul algebra and M ∈ gr(A) generated in a

single degree. Let

P = · · · // Pn

fn
// · · · // P1

f1
// P0

f0
// M // 0

be a minimal graded projective resolution of M . Then the following two state-

ments are equivalent:

(a) M is a Koszul module.

(b) P satisfies that J ker fn = J2Pn ∩ ker fn for all n ≥ 0.

Lemma 2.2. Let A be a graded algebra and

0 // K
f

// M
g

// N // 0

be an exact sequence in Gr(A). Then the following are equivalent for some k ≥ 0:

(a) JkK = K ∩ JkM ;

(b) A/Jk ⊗A K → A/Jk ⊗A M is a monomorphism;

(c) 0 → JkK → JkM → JkN → 0 is exact;

(d) 0 → JkK/Jk+1K → JkM/Jk+1M → JkN/Jk+1N → 0 is exact;

(e) 0 → JkK/JmK → JkM/JmM → JkN/JmN → 0 is exact for all m > k.

Proof. The equivalence of (a) and (b) has been proved in [11]. We only prove (a)
⇔ (c) ⇔ (d) ⇔ (e). For all k ≥ 0, JkK = K ∩ JkM is equivalent to that the
sequence

0 // JkK // JkM // JkN // 0

is exact, which is equivalent to that the following diagram with exact rows and
columns is commutative
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0

��

0

��

0

��

0 // JmK

��

// JmM

��

// JmN

��

// 0

0 // JkK

��

// JkM

��

// JkN

��

// 0

0 // JkK/JmK

��

// JkM/JmM

��

// JkN/JmN

��

// 0,

0 0 0

where m > k and m ≥ 0. Now by “3 × 3” Lemma, we are done. �

Lemma 2.3. Let A be a graded algebra and 0 // K // M // N // 0
an exact sequence in gr(A) with JK = K ∩ JM . Then we have the following

commutative diagram with exact rows and columns

0

��

0

��

0

��

0 // Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��

// 0

0 // P0

��

// Q0

��

// L0

��

// 0

0 // K

��

// M

��

// N

��

// 0,

0 0 0

where P0, Q0 and L0 are graded projective covers, Ω1(K), Ω1(M) and Ω1(N) are

the first syzygies of K, M and N respectively.

Proof. We can obtain the exact sequence

0 // K/JK // M/JM // N/JN // 0

since JK = K ∩ JM by Lemma 2.2. Note that for a finitely generated graded
module over a positively graded algebra, M/JM is the minimal generating space

of M and we denote M/JM := SM = Sd1

M ⊕ Sd2

M ⊕ · · · ⊕ S
dp

M , where Sdi

M is the
set of homogeneous elements of M of degree di and the “⊕” is with respect to
A0-modules. Therefore, we get an exact sequence of A0-modules

0 // SK
// SM

// SN
// 0.
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It should be noted that

A ⊗A0
SK

f
// K // 0 , f(

∑
ai ⊗ si

K) =
∑

ai · s
i
K ,

A ⊗A0
SM

g
// M // 0 , g(

∑
ai ⊗ si

M ) =
∑

ai · s
i
M

and

A ⊗A0
SN

h
// N // 0 , h(

∑
ai ⊗ si

N ) =
∑

ai · s
i
N

are graded projective covers since it is clear that A ⊗A0
SK , A ⊗A0

SM and
A ⊗A0

SN are graded projective A-modules.

Now set P0 := A⊗A0
SK , Q0 := A⊗A0

SM and L0 := A⊗A0
SN . We have the

following exact sequence since A0 is semisimple

0 // P0
// Q0

// L0
// 0 .

Therefore, we have the following commutative diagram

0

��

0

��

0

��

Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��

0 // P0

f

��

// Q0

g

��

// L0

h

��

// 0

0 // K

��

// M

��

// N

��

// 0,

0 0 0

where the columns, the middle and the bottom rows are exact. Now by “3 × 3”
Lemma, we get the following exact sequence

0 // Ω1(K) // Ω1(M) // Ω1(N) // 0.

Therefore, we get the desired diagram. �

Lemma 2.4. ([11]) Let M =
⊕

i≥0 Mi be a weakly Koszul module with M0 6= 0.

Set K = 〈M0〉. Then

(a) K is a Koszul module;

(b) K ∩ JkM = JkK for each k ≥ 0;

(c) M/K is a weakly Koszul module.

Lemma 2.5. Let M =
⊕

i≥0 Mi be a weakly Koszul module with M0 6= 0, K :=

〈M0〉 and N := M/K. Then we have the following commutative diagram with



66 YUAN PAN

exact rows and columns

...

��

...

��

...

��

0 // P2

��

// P2 ⊕ Q2

��

// Q2

��

// 0

0 // P1

��

// P1 ⊕ Q1

��

// Q1

��

// 0

0 // P0

��

// P0 ⊕ Q0

��

// Q0

��

// 0

0 // K

��

// M

��

// N

��

// 0,

0 0 0

where the columns are minimal graded projective resolutions of K, M and N ,

respectively.

Proof. By Lemma 2.4 (b), we get JK = K ∩ JM . By Lemma 2.3, we have the
following commutative diagram with exact rows and columns

0

��

0

��

0

��

0 // Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��

// 0

0 // P0

��

// L0

��

// Q0

��

// 0

0 // K

��

// M

��

// N

��

// 0,

0 0 0

where P0, Q0 and L0 are graded projective covers, Ω1(K), Ω1(M) and Ω1(N) are
the first syzygies of K, M and N , respectively. Of course, L0 = P0 ⊕ Q0 since

the sequence 0 // P0
// L0

// Q0
// 0 is exact and Q0 is a graded

projective module.
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Clearly, we have the following commutative diagram with exact rows and
columns

0

��

0

��

0

��

0 // Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��

// 0

0 // JP0

��

// JL0

��

// JQ0

��

// 0

0 // JK

��

// JM

��

// JN

��

// 0.

0 0 0

Applying the functor A/J⊗A to the above diagram, note that M and N are
weakly Koszul modules, by Lemmas 2.4 and 2.2, we get the following commutative
diagram

0

��

0

��

A/J ⊗A Ω1(K)

α

��

β
// A/J ⊗A Ω1(M)

��

// A/J ⊗A Ω1(N)

��

// 0

0 // A/J ⊗A JP0

��

// A/J ⊗A JL0

��

// A/J ⊗A JQ0

��

// 0

A/J ⊗A JK

��

// A/J ⊗A JM

��

// A/J ⊗A JN

��

// 0.

0 0 0

By Lemma 2.4, K is a Koszul module. By Lemma 2.1, JΩ1(K) = Ω1(K) ∩
J2P0. By Lemma 2.2, α is a monomorphism, which implies that β is also a
monomorphism. By Lemma 2.2 again, we have JΩ1(K) = Ω1(K)∩JΩ1(M). Now
repeating the above argument and by an easy induction, we finish the proof. �

Now we are ready to prove Theorem 1.3.

Proof. Consider the following exact sequence

0 // U1
// M // M/U1

// 0.
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By Lemma 2.5, we have the following commutative diagram with exact rows and
columns

0 // P1
∗

��

// P∗

��

// L1
∗

��

// 0

0 // U1

��

// M

��

// M/U1

��

// 0,

0 0 0

where P1
∗ , P∗ and L1

∗ are the minimal graded projective resolutions of U1, M and
M/U1, respectively. Clearly, P∗ = P1

∗ ⊕ L1
∗. Set W = M/U1. Then 〈Wd2

〉 =
U2/U1. Consider the following exact sequence

0 // U2/U1
// W // W/(U2/U1) // 0.

By Lemma 2.5 again, we have the following commutative diagram with exact
rows and columns

0 // P2
∗

��

// L1
∗

��

// L2
∗

��

// 0

0 // U2/U1

��

// W

��

// W/(U2/U1)

��

// 0,

0 0 0

where P2
∗ , L1

∗ and L2
∗ are the minimal graded projective resolutions of U2/U1,

W and W/(U2/U1), respectively. Clearly, L1
∗ = P2

∗ ⊕ L2
∗. Repeating the above

argument and by induction, we are done. �

Lemma 2.6. Let M =
⊕

i≥0 Mi be a weakly Koszul module with its natural

filtration:

FM : 0 = U0 ⊂ U1 ⊂ · · · ⊂ Up−1 ⊂ Up = M.

Then for each exact sequence, 0 // Uj
// Uj+1

// Uj+1/Uj
// 0, we

also have the similar conclusion and commutative diagram stated in Lemma 2.5.

Proof. By Lemma 2.5, we have the following commutative diagram with exact
rows and columns

0 // P1
∗

��

// P2
∗

��

// Q2
∗

��

// 0

0 // U1

��

// U2

��

// U2/U1

��

// 0,

0 0 0
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where P1
∗ , P2

∗ and Q2
∗ are the minimal graded projective resolutions of U1, U2

and U2/U1, respectively. Clearly, for each i, the terms P 1
i , P 2

i and Q2
i in the

complexes P1
∗ , P2

∗ and Q2
∗ respectively satisfy P 2

i = P 1
i ⊕ Q2

i .

Similarly, we also have the following two commutative diagrams with exact
rows and columns

0 // Q2
∗

��

// Q

��

// Q3
∗

��

// 0

0 // U2/U1

��

// U3/U1

��

// U3/U2

��

// 0,

0 0 0

where Q2
∗, Q and Q3

∗ are the minimal graded projective resolutions of U2/U1,
U3/U1 and U3/U2, respectively,

0 // P1
∗

��

// P3
∗

��

// Q

��

// 0

0 // U1

��

// U3

��

// U3/U1

��

// 0,

0 0 0

where P1
∗ , P3

∗ and Q are the minimal graded projective resolutions of U2/U1,
U3/U1 and U3/U2, respectively. If we further denote the terms in complexes P3

∗

and Q3
∗ by P 3

i and Q3
i , then it is clear that P 3

i = P 1
i ⊕ Q2

i ⊕ Q3
i .

For the exact sequence 0 // U2
// U3

// U3/U2
// 0, by ‘Horse-

shoe Lemma’, we have the following commutative diagram

0 // P2
∗

��

// P∗

��

// Q3
∗

��

// 0

0 // U2

��

// U3

��

// U3/U2

��

// 0,

0 0 0

with exact rows and columns, where P2
∗ and Q3

∗ are the minimal graded projective
resolutions of U2 and U3/U2, respectively. For each term Pi in P∗, it is clear that
Pi = P 2

i ⊕ Q3
i = P 1

i ⊕ Q2
i ⊕ Q3

i , which shows that P∗ is the minimal graded
projective resolution of U3. Then we can get the desired result by induction. �

Now we can prove Theorem 1.4.



70 YUAN PAN

Proof. (⇒) Suppose M =
⊕

i≥0 Mi is a weakly Koszul module with its natural
filtration:

FM : 0 = U0 ⊂ U1 ⊂ · · · ⊂ Up−1 ⊂ Up = M.

By Lemma 2.6, we can get the following commutative diagram with exact columns,

0 // P1
∗

��

⊂
// P2

∗

��

⊂
// · · ·

⊂
// Pp−1

∗

��

⊂
// P

��

// 0

0 // U1

��

⊂
// U2

��

⊂
// · · ·

⊂
// Up−1

��

⊂
// M

��

// 0,

0 0 0 0

which induces minimal graded projective resolutions of Uj/Uj−1 = Kj for each
1 ≤ j ≤ p,

· · · → P j
i /P j−1

i → P j
i−1/P

j−1
i−1 → · · · → P j

1 /P j−1
1 → P j

0 /P j−1
0 → Kj → 0.

Thus, each Kj is a Koszul module.

(⇐) If M ∈ gr(A) has the minimal projective resolution

· · · → Pi → Pi−1 → · · · → P1 → P0 → M → 0

and the complex

P∗ : · · · → Pi → Pi−1 → · · · → P1 → P0 → 0

has a filtration as stated in the theorem, then it is not hard to check that for each
1 ≤ j ≤ p,

Pj : · · · → P j
i → P j

i−1 → · · · → P j
1 → P j

0 → 0

has only one non-zero homology, say Uj, at P j
0 . Therefore, the filtration of the

complex P∗ induces a filtration of the module M :

FM : 0 = U0 ⊂ U1 ⊂ · · · ⊂ Up−1 ⊂ Up = M.

Moreover, for each 1 ≤ j ≤ p, we have Kj = Uj/Uj−1 is a Koszul module. Then
of course, M is a weakly Koszul module, as desired. �
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