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A NEW DECOMPOSITION ALGORITHM FOR GLOBALLY
SOLVING MATHEMATICAL PROGRAMS WITH AFFINE

EQUILIBRIUM CONSTRAINTS

L. D. MUU, Q. TRAN DINH, L. T. H. AN AND P. D. TAO

Abstract. This paper proposes a new decomposition method for globally
solving mathematical programming problems with affine equilibrium constraints
(AMPEC). First, we view AMPEC as a bilevel programming problem where
the lower level problem is a parametric affine variational inequality. Then we
use a regularization technique to formulate the resulting problem as a math-
ematical program with an additional constraint defined by the difference of
two convex functions (DC function). A main feature of this DC decomposi-
tion is that the second component depends upon only the parameter in the
lower level problem. This property allows us to develop branch-and-bound
algorithms for globally solving AMPEC where the adaptive rectangular bisec-
tion takes place only in the space of the parameters. As an example, we use
the proposed algorithm to solve a bilevel Nash-Cournot equilibrium market
model. Computational results show the efficiency of the proposed algorithm.

1. Introduction

In this paper, we consider the following mathematical programming problem
with affine (not necessarily monotone) variational inequality constraints (AM-
PEC):

min
x∈Rn,y∈Rm

f(x, y)(1.1)

s.t. (x, y) ∈ S,(1.2)

x ∈ C, (Ax+By + a)T (v − x) ≥ 0, ∀v ∈ C,(1.3)

where ∅ 6= S ⊆ Rn+m, ∅ 6= C ⊆ Rn are two closed convex sets, f : Rm+n → R
is a convex function, A, B are given appropriate real matrices and a ∈ Rn.
This class of optimization problems is known to be very difficult to solve due
to its nonconvexity, nondifferentiability and loss of the constraint qualification.
However such problems arise frequently in many applications, for example, in
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shape optimization, design transportation network, economic modeling and data
mining. A natural way to handle a nested problem such as (1.1)-(1.3) is to
reduce it into an one-level optimization problem by using the Karush-Kuhn-
Tucker theorem for the lower level variational inequality. Several algorithms
for globally solving the reduced mathematical programs with complementarity
constraints were proposed, see, e.g. [3, 5, 19, 22]. Since the number of the
complementarity constraints is just equal to the number of constraints defining
the set C in the lower variational inequality problem, these global optimization
algorithms become expensive when the number of constraints is high, for example,
when C := {x ∈ Rn | x ≥ 0, cj(x) ≤ 0, j = 1, . . . , p} with cj , j = 1, ..., p being
continuous functions (even linear) and either n or p are somewhat large (often
appears in practice).

In this paper, we propose another solution-approach to AMPEC without using
the Karush-Kuhn-Tucker theorem for the lower level variational inequality. We
use a regularization technique to formulate AMPEC as a mathematical program
with an additional constraint defined by g1(x, y)− h1(x, y) ≤ 0, where g1 and h1

are differentiable convex functions. The main feature of this constraint is that the
second component h1 can be chosen such that it only depends upon the parameter
y. Moreover, in some special important cases such as bilevel convex quadratic
problems, h1 is separable. This formulation allows us to develop a decomposition
branch-and-bound algorithm for globally solving AMPEC where the branching
operation involving only the parameters in the lower level variational inequality.
Unlike the existing global optimization algorithms mentioned above, the proposed
algorithm can solve AMPEC where the constraint set C is given as C := {x ∈
Rn | x ≥ 0, cj(x) ≤ 0, j = 1, . . . , p} with n and p relatively large. As an
example, we use the proposed algorithm to find a global optimal equilibrium
pair to a bilevel Nash-Cournot equilibrium market model. We test the proposed
algorithm by some randomly generated data. The numerical results show that
our algorithm can solve this bilevel model for high dimensional problems.

The rest of the paper is organized as follows. In the next section we give a DC
formulation to AMPEC by using suitable regularization matrices. Some impor-
tant special cases of AMPEC are presented at the end of this section. The third
section is devoted to description of a branch-and-bound algorithm for globally
solving a bilevel Nash-Cournot equilibrium market model by using a DC decom-
position, where the second component is separable and depends upon only the
parameter y. Section 4 presents a numerical example. The paper is ended by
some conclusions.

2. DC formulations and examples

Let us recall the AMPEC problems (1.1)-(1.3). As usual, we will refer to
x as a primary variable or decision variable and y as a parameter. We call
(x, y) a feasible point to (1.1)-(1.3) if (x, y) ∈ S and x solves the lower level
variational inequality (1.3). Note that when A is symmetric positive semidefinite,
the variational inequality (1.3) is equivalent to the following parametric convex
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quadratic problem

(2.1) min
{
ϕ(x, y) :=

1
2
xTAx+ (By + a)Tx | x ∈ C

}
.

In this particular case, (1.1)-(1.3) becomes a bilevel convex program

(BP) min{f(x, y) | (x, y) ∈ S},

where x solves the convex quadratic program

(2.2) min
{
ϕ(x, y) :=

1
2
xTAx+ (By + a)Tx | x ∈ C

}
.

In the general case, when A is indefinite, the variational inequality (1.3) is not
necessarily equivalent to problem (2.2). Therefore, Problem (1.1)-(1.3), in gen-
eral, can not be reformulated as a bilevel problem of the form (BP), see, e.g.
[7, 14].

2.1. DC Formulations. The main difficulty of solving problem (1.1)-(1.3) is
that the constraint defined by the variational inequality (1.3) is neither convex
nor given explicitly as a constraint set of a standard mathematical programming
problem. A natural way for solving (1.1)-(1.3) is to reformulate it into a standard
mathematical programming problem. In this paper, we shall reformulate problem
(1.1)-(1.3) as a smoothly DC (difference of two convex functions) program. We
recall that a function f is said to be DC on a convex set D if it can be expressed
as the difference of two convex functions on D, i.e. f = g − h, where g and h
are convex on D. In order to reformulate (1.3) as a DC constraint, we use a
gap function proposed in [21] to formulate the variational inequality (1.3) into a
nonlinear equation defined by a smoothly DC function. More precisely, for each
(x, y), we define the function g(x, y) by letting

(2.3) g(x, y) := max
v∈C

{
(x− v)T (Ax+By + a)− 1

2
(v − x)TG(v − x)

}
,

where G is an arbitrary n× n-symmetric positive definite matrix. We refer to G
as a regularization matrix. Since G is positive definite, the optimization problem
in (2.3) is uniquely solvable for every (x, y), i.e. g is well-defined.

The following lemma provides the properties of the gap function g. The proof
of this lemma can be found in [21].

Lemma 2.1. Let g be defined by (2.3). Then
(i) g(x, y) ≥ 0 for every (x, y) ∈ C × Rm,
(ii) (x, y) ∈ S, x ∈ C, g(x, y) = 0 if and only if (x, y) is a feasible solution of

(1.1)-(1.3).

For any symmetric matrix A, it can be expressed as A = A1 − A2, where A1

is symmetric positive definite and A2 is symmetric. In what follows by diag(α)
we denote the diagonal matrix whose every diagonal entry is α. The following
proposition shows that, with a suitable choice of the regularization matrix G, the
function g can be represented as a DC representation.
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Proposition 2.2. Suppose that A is symmetric and A = A1 − A2, where A1

is a symmetric positive definite matrix and A2 is a symmetric matrix such that
A2 + 1

2U
TU is positive (semi) definite, and U , V are two appropriate matrices

satisfying UTV = B. Let G = 2A1. Then

(2.4) g(x, y) = g1(x, y)− h1(x, y),

where g1 and h1 are two differentiable convex functions given by

g1(x, y) :=
1
2
‖Ux+ V y‖2 + aTx

(2.5)
+ max

v∈C

{
[(A1 +A2)x−By − a]T v − vTA1v

}
,

and

(2.6) h1(x, y) :=
1
2
xT (2A2 + UTU)x+

1
2
‖V y‖2.

Proof. With a simple arrangement from (2.3), it shows that

g(x, y) = xTAx− 1
2
xTGx+ xTBy + aTx

(2.7)
+ max

v∈C
{−vTAx− vTBy − aT v − 1

2
vTGv + xTGv}.

Since A = A1 −A2 and G = 2A1, the last expression implies

g(x, y) = −xTA2x+ xTBy + aTx
(2.8)

+ max
v∈C
{−vTA1v + [(A1 +A2)x−By − a]T v}.

On the other hand, since B = UTV we can express

2xTBy = 2xTUTV y = ‖Ux+ V y‖2 − ‖Ux‖2 − ‖V y‖2.

Substituting this expression into (2.8) we get

g(x, y) = −xTA2x+
1
2
‖Ux+ V y‖2 − 1

2
‖Ux‖2 − 1

2
‖V y‖2 + aTx

+ max
v∈C
{−vTA1v + [(A1 +A2)x−By − a]T v}.

Hence
g(x, y) = g1(x, y)− h1(x, y),

where g1 and h1 are two functions given by (2.5) and (2.6), respectively. Since
A2 + 1

2U
TU is positive semidefinite, h1 is convex. Clearly, h1 is differentiable

everywhere, while g1 is differentiable everywhere because the convex program
(strongly quadratic concave maximization):

max
v∈C

{
− vTA1v + [(A1 +A2)x−By − a]T v

}
is uniquely solvable for any (x, y). �
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Remark 2.3. From (2.5), by a simple computation, we have

∇xg1(x, y) = UT (Ux+ V y) + a+ (A1 +A2)T z(x, y),(2.9)

∇yg1(x, y) = V T (Ux+ V y)−BT z(x, y),(2.10)

where z(x, y) is a unique solution of the strongly convex quadratic program

max
v∈C

{
− vTA1v + [(A1 +A2)x−By − a]T v

}
.

Remark 2.4. Since matrices U and V in Proposition 2.2 can be arbitrary, we
can choose U and V such that V has a simple form. For example, if we choose
U = [(ΣB+)T ]+, where B+ is the (Moore-Penrose) pseudo-inverse of B and Σ is
a diagonal matrix, then V is a diagonal matrix, precisely, V = Σ.

We call the DC decomposition g(x, y) = g1(x, y) − h1(x, y), where g1 and
h1 are given by (2.5) and (2.6), respectively, a spectral decomposition. In this
decomposition, the function h1 is a quadratic form, even separable quadratic if
2A2 + UTU is diagonal. The separable quadratic property of h1 is useful when
applying to global algorithms that use the convex envelope of −h1 (see Section 3
below).

By using Proposition 2.2, problem (1.1)-(1.3) can be reformulated equivalently
to a convex optimization problem with an additional DC constraint of the form:

min
x∈Rn,y∈Rm

f(x, y)(P1)

s.t. (x, y) ∈ S, x ∈ C(2.11)

g(x, y) = g1(x, y)− h1(x, y) ≤ 0,(2.12)

where g1 and h1 are given by (2.5) and (2.6), respectively.
Formulation (P1) allows us to apply theory and methods in smooth and DC

optimization both local and global to mathematical programs with affine equi-
librium constraints.

2.2. Special Cases. In this subsection, we consider some special, but important,
cases of problem (1.1)-(1.3) and their reformulation in the form of (P1).

2.2.1. Linear program with linear complementarity constraints. Note that when
C = Rn

+, S is a polyhedron defined by

S :=
{

(x, y) : Ax+By + a ≥ 0
}
,

and f(x, y) = cTx+ cT y, Problem (1.1)-(1.3) becomes a linear program with an
additional linear complementarity constraint of the form

min
(x,y)

f(x, y),(CP)

s.t. x ≥ 0, Ax+By + a ≥ 0, xT (Ax+By + a) = 0.(2.13)

For this program, the following gap function has been used [4, 16, 3]:

p(x, y) =
n∑

j=1

min{xj , (Ax+By + a)j}.
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It has been shown that if f is bounded from below, then there exists t∗ > 0
such that for every t ≥ t∗, Problem (CP) is equivalent to the following concave
minimization problem

min
(x,y)

{
f(x, y) + tp(x, y)

}
s.t. x ≥ 0, Ax+By + a ≥ 0,

in the sense that their solution sets coincide. In [16], Mangasarian and Pang
replaced p by the differentiable function

min{
n∑

j=1

rjxj + sj(Ax+By + a)j | rj , sj ≥ 0, rj + sj = 1, j = 1, . . . , n}.

Note that the DC function g(x, y) = g1(x, y)−h1(x, y) with g1 and h1 given as in
Proposition 2.2 is a differentiable merit DC function for (CP) without introducing
2n-extra variables r and s.

2.2.2. Linear optimization over the Pareto-efficient set. LetX ⊂ Rn be a nonempty
bounded polyhedron and W be a (p× n)-real matrix. Consider the vector opti-
mization problem of the form

(2.14) min{Wx | x ∈ X}.

We recall that a point x∗ ∈ X is said to be an efficient solution or a Pareto solution
to (2.14), if whenever x ∈ X,Wx ≤Wx∗, then Wx = Wx∗. Let E(W,X) denote
the set of all efficient solutions to (2.14). Consider the optimization over the
efficient set

(PP) min{f(x) | x ∈ E(W,X)},

where f is a real valued convex function on Rn. This problem has some applica-
tions in decision making and recently has been studied in many research articles,
see, e.g.[1, 2, 6, 15, 17, 20] and the references therein. Since the efficient set is
rarely convex, this problem is a nonconvex optimization problem.

It has been shown in [20] that one can find a simplex Y in Rp such that a point
x∗ is efficient for (2.14) if and only if there exists y∗ ∈ Y such that

(W T y∗)T (x− x∗) ≥ 0, ∀x ∈ X.

Thus the above optimization problem over the efficient set can be formulated as
a mathematical program with affine equilibrium constraints of the form:

(EP) min
{
f(x) | (x, y) ∈ X × Y, (W T y)T (v − x) ≥ 0, ∀v ∈ X

}
.

Consequently, a point x∗ is a global optimization to (PP) if and only if there exists
y∗ ∈ Y such that (x∗, y∗) is a global optimal solution to (EP). The latter problem
is of the form (1.1)-(1.3) with S = X × Y , C = X and A = 0, B = W T , a = 0.
Since A = 0, we can apply Proposition 2.2, for example, with A1 = A2 = I,
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where I is the identity matrix. Since B = W T , a = 0, from Proposition 2.2 we
have g(x) = g1(x)− h1(x) with

g1(x, y) =
1
2
‖Ux+ V y‖2 + aTx+ max

v∈C

{
(2Ix−W T y)v − vTA1v

}
,

h1(x, y) =
1
2
xT (2A2 + UTU)x+

1
2
‖V y‖2,

where UTV = W T . Thus, by Lemma 2.1, we can formulate (PP) as the following
optimization problem with a DC constraint

min{f(x) | (x, y) ∈ X × Y, g1(x, y)− h1(x, y) ≤ 0}.

2.2.3. A bilevel Nash-Cournot oligopolistic equilibrium market model. Suppose
that there are n-firms (sectors) that supply a homogeneous product whose price
p at each sector j (j = 1, . . . , n) depends on total producing quantity and is given
by

p(
n∑

j=1

xj) = α− β
n∑

j=1

xj ,

where α > 0, β > 0 are given constants, xj is the quantity of goods supplied by
firm j that we have to determine. Suppose further that, to produce the goods,
the firms need m-different materials represented by a vector y ∈ Rm. Let yi be
the quantity of material i needed to produce a unique of goods (i = 1, . . . ,m).
Let cji denote the price of a unit material i for firm j (i = 1, . . . ,m, j = 1, . . . , n).
When cji ≤ 0, it means that firm j is encouraged to use material i; for example,
it is a waste material. Assume that the cost of firm j is given by

hj(xj , y) := xj

m∑
i=1

cjiyi + δj , j = 1, . . . , n,

where δj ≥ 0 is the fixed charge cost at firm j. Then the utility function of firm
j can be given by

uj(x, y) := p(
n∑

i=1

xi)xj − hj(xj , y).

Let

Yi := {yi : 0 ≤ yi ≤ ξi} (i = 1, . . . ,m),

Xj := {τ : 0 ≤ τ ≤ ηj} (j = 1, . . . , n),

where ξi is the upper bound of the material i, and ηj is the upper bound of the
quantity of the goods produced by firm j.

Let
Y := Y1 · · · × Ym, X = X1 × · · · ×Xn

be the feasible (strategy)-sets of the model.
Given y ∈ Y , each firm j seeks to find its producing quantity xj such that its

benefit uj(x, y) is maximal. However, a maximal policy for all firms altogether,
in general, does not exist. So they agree with an equilibrium point in the sense
of Nash [8].
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By the definition, a vector (x∗1, . . . , x
∗
n) ∈ X1 × · · · ×Xn is said to be a Nash-

equilibrium point with respect to y∗ ∈ Y if, for all xj ∈ Xj and j,

uj(x∗1, . . . , x
∗
j−1, xj , x

∗
j+1, . . . , x

∗
n, y
∗) ≤ uj(x∗1, . . . , x

∗
j−1, x

∗
j , x
∗
j+1, . . . , x

∗
n, y
∗).

We will refer to such a pair (x∗, y∗) as an equilibrium pair of the model.
Beside the utility function of each firm, there is another cost function (leader’s

objective function) f(x, y) depending on y and the quantity x of the goods. The
problem needs to be solved is to find an equilibrium pair that minimizes leader’s
objective function over the set of all equilibrium pairs. We call such a pair (x∗, y∗)
a global optimal equilibrium pair of the model. This problem can be reformulated
as a mathematical program with affine equilibrium constraints. To this end, let

Hj(xj , y) := ∇xjhj(xj , y) (j = 1, . . . , n),

e := (1, . . . , 1)T ,
and

σx :=
n∑

j=1

xj .

Applying Proposition 3.2.6 in [12] we see that a point (x1, . . . , xn) is equilibrium
with respect to y if and only if it is a solution of the following variational inequality
problem

Find x ∈ X such that: F (x, y)T (z − x) ≥ 0, for all z ∈ X,

where F (x, y) is an n-dimensional vector function whose j-th component is de-
fined by

(2.15) Fj(x, y) := Hj(x, y)− p(σx)−∇p(σx)xj .

Using (2.15) and the definition of Hj(x, y) we have

Fj(x, y) =
m∑

i=1

cjiyi − α+ β
n∑

k=1

xk + βxj (j = 1, . . . , n).

Thus
F (x, y) = Ax+By + a,

where

(2.16) A =


2β β β · · · β
β 2β β · · · β
· · · · · · · · · · · · · · ·
β β β · · · 2β


and B is an (n×m) matrix (independent of x) whose Bij entry is

(2.17) Bji = cji, j = 1, . . . , n, i = 1, . . . ,m,

and

(2.18) a = (−α, . . . ,−α)T ∈ Rn.
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Finally, the problem needs to be solved takes the form:

min
x,y

f(x, y)

s.t. y ∈ Y := Y1 × · · · × Ym, x ∈ X := X1 × · · · ×Xn

where x solves the parametric variational inequality:
(Ax+By + a)T (v − x) ≥ 0, ∀v ∈ X,

with A, B and a being given by (2.16), (2.17) and (2.18), respectively. This
problem is indeed in the form of (1.1)-(1.3), and therefore, we can use Proposition
2.2 to obtain its DC formulation.

2.2.4. Optimization over the solution-set of a variational inequality. Let us con-
sider a particular case of problem (1.1)-(1.3) when the variable y is absent. In
this case, with S = Rm+n, it takes the form

min f(x)(P2)

s.t. x ∈ C, (Ax+ a)T (v − x) ≥ 0, ∀v ∈ C,

where, as before, f is a real valued convex function on C and ∅ 6= C ⊆ Rn is a
closed convex set. Problems over the solution-set of a pseudomonotone variational
inequality were studied in [11] (notions of pseudomonotonicity and monotonicity
can be found in [12, 13]). Here, we do not require any assumption on mono-
tonicity. Note that without monotonicity of A, the solution-set of the variational
inequality constraint in (P2) is not necessarily convex. Therefore, this problem
remains a nonconvex optimization one. By Lemma 2.1 we can rewrite (P2) as

min
{
f(x) | x ∈ C, g(x) ≤ 0

}
,

where, by (2.3),

g(x) = xTAx− 1
2
xTGx+ aTx+ max

v∈C

{
− vTAx− aT v − 1

2
vTGv + xTGv

}
.

If A is symmetric, we express A as A = A1−A2 with A1 being symmetric positive
definite and A2 symmetric positive (semi) definite. From Proposition 2.2 we have

g1(x) = aTx+ max
v∈C

{
[(A1 +A2)x− a]T v − vTA1v

}
,(2.19)

and

(2.20) h1(x, y) = xTA2x.

Note that when f is constant, Problem (P2) becomes an affine variational in-
equality of the form [8, 14]:

Find x ∈ C such that: (Ax+ a)T (v − x) ≥ 0, for all v ∈ C.
By Lemma 2.1, x is a solution to this problem if and only if it is a global optimal
solution to the differentiable DC program:

0 = min{g(x) := g1(x)− h1(x) : x ∈ C},
where g1 and h1 are given as in Propositions 2.2.
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3. On global optimization methods for AMPEC

Theoretically, the global optimization methods such as branch-and-bound,
outer and inner approximations, e.g., [10], can be applied to AMPEC by us-
ing the DC formulations obtained in the preceding sections. Note that AMPEC
can be equivalently converted into an one-level mathematical program with an
additionally complementarity constraint by applying the Karush-Kuhn-Tucker
theorem to the lower level variational inequality. Branch-and-Bound-type algo-
rithms developed in [3, 5, 19, 22] can be applied to globally solve the latter prob-
lem. These existing algorithms use different subdivisions, but all of them take
place in a space whose dimension is equal to the number of the Lagrangian mul-
tipliers. The latter number is large when the feasible set of the lower level affine
variational inequality is given, as usual, as C := {x ∈ Rn | x ≥ 0, Px = q} with
n large (often in practical problems). However, it is well recognized that global
optimization algorithms are only recommended to the case when the dimension
of the space, where the global optimization operations such as subdivision take
place, is relatively small.

It can be observed that in AMPEC problem (1.1)-(1.3), where A is monotone
on C, only the variable y makes the problem nonconvex. In fact, when A is
monotone and y is absent, the solution-set of the lower variational inequality is
convex. This observation suggests us to look for DC decompositions of g where the
second component h1 that makes g nonconvex depends upon only y. From (2.6)
in Proposition 2.2 and Remark 2.4 we see that if we choose U = [(ΣB+)T ]+ and
A2 such that 2A2 +UTU = 0, then h1 is independent of x and separable. In some
models such as bilevel strongly convex quadratic problem [18] and Nash-Cournot
equilibrium model (Example 2.2.c), since A is positive definite, one can choose
A2 = −(1/2)UTU . Then, by virtue of Proposition 2.2, we have h1(x, y) = 1

2‖Σy‖
2

is independent of x and separable.
As an example, we now describe a branch-and-bound algorithm for minimiz-

ing a convex function over the equilibrium set of the Nash-Cournot equilibrium
market model that we have studied in Subsection 2.2. In practical Nash-Cournot
models, the number m of the materials that the producers need to produce the
goods is much less than the number n of the firms, for example, in electricity
production, it takes only oil and coal as two main materials into account.

This fact suggests that we should choose a DC decomposition such that the
function h1, which makes the problem nonconvex, only depends upon y variable.
For this purpose we choose the DC decomposition given in Proposition 2.2 with

(3.1) A1 =


2β β β · · · β
β 2β β · · · β
· · · · · · · · · · · · · · ·
β β β · · · 2β

− 1
2
UTU.

and

(3.2) A2 = −1
2
UTU.
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Note that since λmin(A) = β > 0, where λmin(A) is the smallest eigenvalue of
A, the matrix A is positive definite. If we choose Σ such that λmax(Σ) < β,
where λmax(Σ) is the largest eigenvalue of Σ, then A1 is still positive definite. By
Proposition 2.2, one has

g1(x, y) =
1
2
‖Ux+ V y‖2 + aTx+ max

v∈C

{
− vTA1v+[(A− UTU)x−By − a]T v

}
,

(3.3)

and

h1(x, y) = h1(y) :=
1
2
‖Σy‖2 (separable and depending on y only).(3.4)

Thus computing global optimal Nash equilibrium pairs of the bilevel Nash-Cournot
equilibrium market model presented in Subsection 2.2 leads to the problem:

(NC) α∗ := min
{
f(x, y) | x ∈ X, y ∈ Y, g1(x, y)− h1(y) ≤ 0

}
,

where g1 and h1 are given by (3.3) and (3.4), respectively.
The separability property of h1 suggests us to use the convex envelope of h1

on the box (rectangle) Y to compute the lower bounds in the branch-and-bound
algorithm to be described below. Moreover, since h1 only depends upon the
variable y ∈ Y , one can use an adaptive rectangular bisection that only takes
place in the y-space.

Now we describe in detail these bounding and branching operations.

3.1. Bounding by the convex envelope. We recall [9, 10] that a function
l(y) is said to be the convex envelope of a function q(y) on a convex set Y if l
is convex on Y , l(y) ≤ q(y) for every y ∈ Y and if p(y) is a convex function on
Y such that p(y) ≤ q(y) for every y ∈ Y then p(y) ≤ l(y) for every y ∈ Y . In
general, computing the convex envelope of a function on an arbitrary convex set,
even polyhedron, is expensive. Fortunately, in our case, since h1 given in (3.4) is
separable, concave, and Y is a box, its convex envelope is an affine function that
can be given explicitly (see, e.g. [9]). Namely, suppose that h1(y) =

∑m
j=1 ξjy

2
j ,

(ξ ≥ 0). Let lR denote the convex envelope of −h1 on the box

R := {y = (y1, . . . , ym)T | aj ≤ yj ≤ bj , j = 1, . . . ,m} ⊆ Y.

Then lR(y) =
∑m

j=1 l
R
j (yj), where lRj is the convex envelope of the function −ξjy2

j

on the interval [aj , bj ] (j = 1, . . . ,m). The latter in turn is the affine function
joining aj and bj .

Let α(R) and β(R) denote the optimal value of problem (NC) restricted on R
and the optimal value of its relaxed problem, respectively, that is

α(R) := min
{
f(x, y) | x ∈ X, y ∈ R, g1(x, y)− h1(y) ≤ 0

}
,(NCR)

β(R) := min
{
f(x, y) | x ∈ X, y ∈ R, g1(x, y) + lR(y) ≤ 0

}
.(RNCR)

Since lR(y) ≤ −h1(y) for every y ∈ R, we have β(R) ≤ α(R).
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3.2. An adaptive rectangular bisection. It is clear that if β(R) = α(R) then
the minimum of f over the set x ∈ X, y ∈ R, g1(x, y)−h1(y) ≤ 0 has been found.
Otherwise, if β(R) < α(R) then there must exist at least one index j such that
lRj (y∗j ) < −ξjy∗2j , where y∗j denotes the jth entry of an optimal solution to the
relaxed problem defining β(R). Let jR be an index such that

δ(R) := −ξjRy
∗2
jR
− lRj (y∗jR

) = max
1≤j≤m

{
− ξjy∗2j − lRj (y∗j )

}
.

Note that at the ends of each edge of the box R, the value of the function −ξjy2
j

and of its convex envelope coincide. Thus δ(R) 6= 0 implies that y∗jR
is not an

endpoint of the edge jR of R.
Using jR and y∗jR

we bisect R into two sub-boxes R+ and R− by setting

(3.5) R+ := {y = (y1, . . . , ym)T ∈ R | yjR ≥ y
∗
jR
},

(3.6) R− := {y = (y1, . . . , ym)T ∈ R | yjR ≤ y
∗
jR
}.

Clearly, both R+ and R− are not empty. For this bisection we have the following
lemma whose proof can be found, e.g., in [17]:

Lemma 3.1. Let {Rk} be an infinite sequence of boxes generated by the bisection
process defined by (3.5) and (3.6). Suppose that Rk+1 ⊂ Rk for every k. Then

lim
k→∞

{
α(Rk)− β(Rk)

}
= 0.

3.3. Computing an upper bound. Note that a feasible point of the AMPEC
problem (1.1)-(1.3) can be computed whenever the lower level problem is solved.
In the Nash-Cournot equilibrium market model described in Subsection 2.2, the
lower level problem can be solved efficiently with available codes, since it is a
strongly convex quadratic program over the polyhedron X. In fact, with a fixed
y ∈ Y , the lower level problem is the strongly monotone variational inequality

(VIy) Find x ∈ X such that: (Ax+By + a)T (v − x) ≥ 0, for all v ∈ X,
where A is given by (2.16) and a = (−α, . . . ,−α)T . This variational inequality
is reduced to the strongly convex quadratic program (see, e.g. [12]):

min
{1

2
xTAx+

n∑
k=1

(µk + α)xk | x ∈ X
}
,

where µk =
∑m

i=1 ckiyi. Hence, if x is the optimal solution to this problem then
(x, y) is a feasible point to the model, and therefore, f(x, y) is an upper bound for
the optimal value α∗. Now we are able to describe in detail an algorithm for glob-
ally solving Problem (NC) thereby obtaining a global optimal equilibrium pair to
the bilevel Nash-Cournot equilibrium market model presented in Subsection 2.2.

The B&B algorithm is described as follows:
B&B Algorithm.
Initialization. Choose a tolerance ε ≥ 0, take R0 = Y and solve the relaxed
problem (RNCR) with R = R0 to obtain the optimal value β0 := β(R0) and an
optimal solution (xR0 , yR0). If lR0(yR0) = h1(yR0) then (xR0 , yR0) is a global



A NEW DECOMPOSITION ALGORITHM FOR GLOBALLY SOLVING AMPEC 213

optimal solution to Problem (NC) and terminate the algorithm. Otherwise, solve
the lower level problem (VIy) with y = yR0 to obtain a feasible point. Let (x0, y0)
be the currently best feasible point and α0 = f(x0, y0) be the currently best upper
bound (we also call it the score). Set

Γ0 :=

{
{R0} if α0 − β0 > ε(|α0|+ 1),
∅ otherwise.

Iteration k (k = 0, 1, . . . ). At the beginning of each iteration k we have a family
Γk of subboxes of Y , a lower bound βk, an upper bound αk for the optimal value
α∗ and a feasible point (xk, yk) such that αk = f(xk, yk).

a) If Γk = ∅, then terminate: αk is an ε-optimal value and (xk, yk) is an
ε-global optimal solution.
b) If Γk 6= ∅, choose Rk ∈ Γk such that

β(Rk) = min{β(R) | R ∈ Γk}.
Bisect Rk into two rectangles Rk1 and Rk2 according to the bisection (3.5)
and (3.6). For each (j = 1, 2), compute

(RNCRkj
) β(Rkj) := min

{
f(x, y) | x ∈ X, y ∈ Rkj , g1(x, y) + lRkj (y) ≤ 0

}
.

Let (xRkj , yRkj ) be the obtained optimal solution to this subproblem. Use yRkj

(j = 1, 2) to compute new feasible points by solving the strongly monotone
variational inequalities (VIy) with y = yRkj (j = 1, 2). Let (xk+1, yk+1) be the
currently best feasible point and αk+1 = f(xk+1, yk+1) be the new upper bound
(new score). Delete all R ∈ Γk such that

αk+1 − β(R) ≤ ε(|αk+1|+ 1).

Let Γk+1 be the remaining set of subrectangles (may be empty). Then go to
iteration k with k := k + 1. �

The following theorem shows the convergence of the B&B algorithm.

Theorem 3.2. Suppose that the sequence {(xk, yk)}k is generated by the B&B
algorithm. Then

(i) If the algorithm terminates at some iteration k then (xk, yk) is an ε-global
optimal equilibrium pair to the Nash-Cournot equilibrium market model.

(ii) If the algorithm does not terminate then αk ↘ α∗, βk ↗ α∗ as k →
+∞ and any limit point of the sequence {(xk, yk)} is a global optimal
equilibrium pair to the model.

Proof. We only give a sketch for the proof, because it can be done by using
Lemma 3.1 and by a standard argument commonly used in global optimization.

The statement (i) is obvious, since if the algorithm is terminated at iteration
k, then Γk = ∅. In this case αk − βk ≤ ε(|αk| + 1). Hence, αk is an ε-global
optimal value and (xk, yk) is an ε-global optimal solution.

Now, we prove (ii). If the algorithm does not terminate, then it generates
an infinite sequence of iterates (xk, yk). Let (x∗, y∗) be any limit point of this
sequence. Suppose (xkq , ykq) → (x∗, y∗) as q → ∞. Then the corresponding
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sequence of the rectangles has a nested subsequence, which for simplicity of no-
tation, we denote by {Rkq}. Then, by Lemma 3.1, limq→∞(αkq −βkq) = 0. Since
both sequences {αk}, {βk} are monotone, it follows that limαk = limβk. By the
definition, αk ≥ α∗ and βk ≤ α∗ for every k, we have αk ↘ α∗, βk ↗ α∗ . Note
that αkq = f(xkq , ykq), by the continuity of f , we can deduce that (x∗, y∗) is a
global optimal solution of the problem. �

4. Numerical results

We test the proposed B&B algorithm for the bilevel Nash-Cournot equilibrium
market model presented in Subsection 2.2.3. All the tests are implemented in
Matlab 7.8.0 (R2009a) for Linux running on a PC Desktop Intel(R) Core(TM)2
Quad CPU Q6600 with 2.4GHz and 3Gb RAM. The input data of the problem
is generated randomly.

• The objective function is chosen by a convex quadratic form f(x, y) =
1
2x

TQ1x + 1
2y

TQ2y + qT
1 x + qT

2 y, where Q1, Q2, q1 and q2 are generated
randomly. The parameters β = 0.125, α = 10 whereas B = (cij)n×m is
generated randomly in (0, 1). The convex setsX = [0, 5]n and Y = [0, 5]m,
• For computing the lower bound, we used the interior point method im-

plemented in the built-in Matlab solver FMINCON with maximum of
iterations being 500 to solve the convex subproblems. The convex qua-
dratic problems are solved by QUADPROG (a built-in Matlab solver)
and the CVX package with the Sedumi solver (a freely available Malab
code for convex programming at http://cvxr.com/cvx/).
• For computing the upper bound, a local optimization method in DC op-

timization is used that proves a feasible point to the problem (1.3).

We perform the B&B algorithm for 20 random problems with different sizes. The
results are reported in Table 1, where m,n are the sizes of the problem; iter is
the number of iterations; cbval is the currently best upper bound (score); lbval
is the lower bound for the optimal value; cputime is the CPU time in second;
status is the status of stopping criterion (solved shows that an ε-global optimal
solution is found, incomp. indicates that the solver is stopped when the lower
bound is improved too slowly, exceed means that the running time exceeds the
limit 36.000 seconds); and node is the maximum number of the nodes in the B&B
tree that have been stored.

From the computational results we can observe the following preliminary re-
marks:

(1) The proposed B&B algorithm can solve globally AMPEC, in particular,
bilevel convex quadratic problems, with several hundreds of decision vari-
ables while the number of the parameters is relatively small.

(2) The numbers of iterations in Table 1 indicates that the adaptive rectan-
gular bisection used is rather effective.

(3) Almost CPU time spends on solving the general convex subproblems for
computing lower and upper bounds. Note that at each iteration in the
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Table 1. Computational results of the B&B algorithm for Nash-Cournot Problem

Problem Info. Branch & Bound algorithm
N0 m n cbval lbval iter time(s) node status
1 5 10 1338.2220 1338.2021 17 88.46 7 solved
2 10 10 1576.4746 1576.4407 154 962.99 56 solved
3 5 20 3711.1289 3711.1289 43 521.23 7 solved
4 5 30 3537.2899 3537.2899 46 693.88 7 solved
5 8 50 3994.0027 3992.7705 99 7944.81 24 solved
6 5 100 3162.2176 3160.5017 47 7004.01 8 solved
7 6 100 4073.9795 4049.4880 62 9822.34 12 incomp.
8 7 100 3825.4430 3825.2157 73 11194.71 17 solved
9 5 150 2731.9005 2692.1867 43 14730.51 8 incomp.
10 6 150 3781.3484 3711.8269 73 20531.79 14 incomp.
11 1 200 3173.2954 3173.2954 9 4662.39 2 solved
12 2 200 2738.1198 2738.1198 19 5123.47 6 solved
13 3 200 2391.6111 2391.6111 18 6089.43 4 solved
14 4 200 2869.7684 2869.7684 22 10175.95 4 solved
15 5 200 3726.2399 3726.2399 55 26477.86 9 solved
16 6 200 2759.8484 2751.9396 75 36107.07 14 exceed
17 7 200 2459.9965 2390.6909 78 36270.34 21 exceed
18 8 200 3333.2645 3102.4295 80 36456.48 34 exceed
19 2 300 3008.2311 2975.1594 14 14963.37 2 incomp.
20 3 300 3275.0818 3275.0818 29 29976.60 6 solved

interior point algorithm for solving the convex subproblem one needs to
solve a strongly convex quadratic program.

5. Conclusion

We have formulated some classes of bilevel programming problems in the form
of AMPEC. We have also used a regularization technique to obtain smoothly DC
optimization formulations to AMPEC. A suitable regularization matrix results
into a DC decomposition, where the second component depends upon only the
parameter of the lower problem. We have described a decomposition branch-and-
bound algorithm for
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globally solving AMPEC. This algorithm uses an adaptive rectangular bisection
involving only the parameter which is often much less than the number of the
decision variables in practical problems. Computational results on a bilevel Nash-
Cournot equilibrium market model show efficiency of the proposed algorithm.
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