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WEAK LAWS OF LARGE NUMBERS FOR DOUBLE ARRAYS

OF RANDOM ELEMENTS IN BANACH SPACES

LE VAN DUNG

Abstract. In this paper, we establish the weak laws of large numbers with
or without random indices for double arrays of random elements in Banach
spaces. Our results are more general and stronger than some well-known ones.

1. Introduction

Consider a double array {Vmn;m ≥ 1, n ≥ 1} of random elements defined
on a probability space (Ω,F , P ) taking values in a real separable Banach space
X with norm ‖ · ‖. Let {un;n ≥ 1} and {vn;n ≥ 1} be sequences of positive
integers, let {Tn;n ≥ 1} and {τn;n ≥ 1} be sequences of positive integer-valued
random variables and let {amn;m ≥ 1, n ≥ 1} and {bmn;m ≥ 1, n ≥ 1} be
arrays of positive numbers with amn ↑ ∞ and bmn ↑ ∞ as max{m,n} → ∞.
In the current work, weak laws of large numbers will be established for double

arrays max
1≤k≤um,1≤l≤vn

a−1
mn‖

k
∑

i=1

l
∑

j=1

(Vij−cmnij)‖ and for double arrays with random

indices a−1
mn

Tm
∑

i=1

τn
∑

j=1

(Vij − cmnij), where cmnij is a conditional expectation.

Limit theorems for weighted sums (with or without random indices) for random
variables (real-valued or Banach space-valued) are studied by many authors. The
reader may refer to Wei and Taylor [15], Ordóñez Cabrera [7, 8], Adler et al. [1].
Recently, S. H. Sung et al. [14] obtained the weak law of large numbers with
random indices for array of random elements, N. V. Quang and L. H. Son [11]
established the weak laws of large numbers for sequences of Banach space valued
random elements, N. V. Quang and N. N. Huy [12] established the weak laws
of large numbers for adapted double arrays of random variables. In this paper,
we establish weak laws of large numbers for double arrays of random elements in
martingale type p Banach spaces.
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2. Preliminaries

For a, b ∈ R, min {a, b} and max {a, b} will be denoted, respectively, by a ∧ b,
a ∨ b. Throughout this paper, the symbol C will denote a generic constant
(0 < C < ∞) which is not necessarily the same one in each appearance.

Technical definitions relevant to the current work will be discussed in this
section. Scalora [13] introduced the idea of the conditional expectation of a
random element in a Banach space. For a random element V and sub σ-algebra
G of F , the conditional expectation E(V |G) is defined analogously to that in the
random variable case and enjoys similar properties.

A real separable Banach space X is said to be martingale type p (1 ≤ p ≤ 2) if
there exists a finite positive constant C such that for all martingales {Sn;n ≥ 1}
with values in X ,

sup
n≥1

E‖Sn‖
p ≤ C

∞
∑

n=1

E‖Sn − Sn−1‖
p.

It can be shown using classical methods from martingale theory that if X is of
martingale type p, then for all 1 ≤ r < ∞ there exists a finite constant C such
that

E sup
n≥1

‖Sn‖
r ≤ CE

(

∞
∑

n=1

‖Sn − Sn−1‖
p

)
r
p

.

Clearly every real separable Banach space is of martingale type 1 and the real
line (the same as any Hilbert space) is of martingale type 2.

It follows from the Hoffmann-Jφrgensen and Pisier [4] characterization of Rade-
macher type p Banach spaces that if a Banach space is of martingale type p, then it
is of Rademacher type p. But the notion of martingale type p is only superficially
similar to that of Rademacher type p and has a geometric characterization in
terms of smoothness. For proofs and more details, the reader may refer to Pisier
[9, 10].

The following lemma is needed to prove Lemma 2.2.

Lemma 2.1. If {Xkl,Fl; l ≥ 1}, k = 1, 2, . . . ,m are nonnegative submartingales,

then {max1≤k≤m Xkl,Fl; l ≥ 1} is a nonnegative submartingale.

Proof. For L > l ≥ 1,

E( max
1≤k≤m

XkL|Fl) ≥ max
1≤k≤m

E(XkL|Fl) ≥ max
1≤k≤m

Xkl.

�

Let Fkl be the σ-field generated by the family of random elements {Vij ; i <
k or j < l}, F1,1 = {∅; Ω}. We have the following lemma.

Lemma 2.2. Let 0 < p ≤ 2. Let {Vij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} be a collection

of mn random elements in a real separable Banach space. When 1 < p ≤ 2
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we assume further that the underlying Banach space is of martingale type p and

E(Vij |Fij) = 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then

(2.1) E max
1≤k≤m

1≤l≤n

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

Vij

∥

∥

∥

∥

∥

∥

p

≤ C
m
∑

i=1

n
∑

j=1

E‖Vij‖
p,

where the constant C is independent of m and n.

Proof. We easily obtain the conclusion (2.1) in the case of 0 < p ≤ 1.

Now we consider the case of 1 < p ≤ 2. In this case, we set Skl =
k
∑

i=1

l
∑

j=1

Vij,

Yml = max1≤k≤m ‖Skl‖. If σl is a σ-field generated by {Vij ; 1 ≤ i ≤ m, 1 ≤ j ≤ l}
then for each l (1 ≤ l ≤ n), σl ⊂ Fi,l+1 for all i ≥ 1. It follows that E(Vi,l+1|σl) =
E(E(Vi,l+1|Fi,l+1)|σl) = 0. Thus, we have

E(Sk,l+1|σl) = E(Skl|σl) +

k
∑

i=1

E(Vi,l+1|σl) = Skl.

It means that {Skl, σl; 1 ≤ l ≤ n} is a martingale. Hence, {‖Skl‖, σl; 1 ≤ l ≤ n}
is a nonnegative submartingale for each k = 1, 2, . . . ,m, it follows from Lemma
2.1 that {Yml, σl; 1 ≤ l ≤ n} is a nonnegative submartingale. Applying Doob’s
inequality (see, e.g., Chow and Teicher [2, p. 255]), we obtain

(2.2) E

(

max
1≤k≤m

1≤l≤n

‖Skl‖
p

)

= E

(

max
1≤l≤n

Yml

)p

≤ CE(Ymn)p.

On the other hand, since E(Vij |Fij) = 0 we see that {Skn,Gk = Fk+1,1; 1 ≤ k ≤
m} is a martingale. Thus

(2.3) E(Ymn)p = E max
1≤k≤m

‖Skn‖
p ≤ C

m
∑

k=1

E‖
n
∑

j=1

Vkj‖
p.

We again have that for each k (1 ≤ k ≤ m), {
l
∑

j=1

Vkj,Gkl = Fk,l+1; 1 ≤ l ≤ n} is

a martingale. Hence,

(2.4) E‖
n
∑

j=1

Vkj‖
p ≤ E max

1≤l≤n
‖

l
∑

j=1

Vkj‖
p ≤ C

n
∑

l=1

E‖Vkl‖
p.

Combining (2.2), (2.3) and (2.4) yields the conclusion (2.1). �

Random elements {Vmn;m ≥ 1, n ≥ 1} are said to be stochastically dominated

by a random element V if for some finite constant D

P{‖Vmn‖ > t} ≤ DP{‖DV ‖ > t}, t ≥ 0, m ≥ 1, n ≥ 1.
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3. The main results

In the following we let {Vmn;m ≥ 1, n ≥ 1} be an array of random elements
defined on a probability (Ω,F , P ) and taking values in a real separable Banach
space X with norm ‖·‖, Fkl be a σ-field generated by {Vij ; i < k or j < l}, F1,1 =
{∅; Ω}. Let {un;n ≥ 1}, {vn;n ≥ 1} be sequences of positive integers such that
limn→∞ un = limn→∞ vn = ∞ and let {amn;m ≥ 1, n ≥ 1}, {bmn;m ≥ 1, n ≥ 1}
be arrays of positive numbers with amn ↑ ∞ and bmn ↑ ∞ as m ∨ n → ∞. For
any set A, let I(A) be the indicator function, i.e.

I(A)(ω) =

{

1 if ω ∈ A,
0 if ω 6∈ A.

Set V ′
mnij = VijI(‖Vij‖ ≤ bmn).

Theorem 3.1. Let 0 < p ≤ 2. When 1 ≤ p ≤ 2 we assume further that the

underlying Banach space is of martingale type p. If

(3.1)

um
∑

i=1

vn
∑

j=1

P{‖Vij‖ > bmn} → 0 as m ∨ n → ∞

and

(3.2)
1

ap
mn

um
∑

i=1

vn
∑

j=1

E‖V ′
mnij − cmnij)‖

p → 0 as m ∨ n → ∞,

then

(3.3) max
1≤k≤um
1≤l≤vn

1

amn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(Vij − cmnij)

∥

∥

∥

∥

∥

∥

P
−→ 0 as m ∨ n → ∞,

where cmnij = 0 if 0 < p ≤ 1 and cmnij = E(V ′
mnij |Fij) if 1 < p ≤ 2.

Proof. For an arbitrary ε > 0,

P







max
1≤k≤um
1≤l≤vn

1

amn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(Vij − cmnij)

∥

∥

∥

∥

∥

∥

> ε







≤P







max
1≤k≤um
1≤l≤vn

1

amn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(Vij − V ′
mnij)

∥

∥

∥

∥

∥

∥

> ε/2







+ P







max
1≤k≤um
1≤l≤vn

1

amn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(V ′
mnij − cmnij)

∥

∥

∥

∥

∥

∥

> ε/2







=P







max
1≤k≤um
1≤l≤vn

1

amn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(VijI(‖Vij‖ > bmn)

∥

∥

∥

∥

∥

∥

> ε/2
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+ P







max
1≤k≤um
1≤l≤vn

1

amn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(V ′
mnij − cmnij)

∥

∥

∥

∥

∥

∥

> ε/2







≤P







um
⋃

i=1

vn
⋃

j=1

(‖Vij‖ > bmn)







+ P







max
1≤k≤um
1≤l≤vn

1

amn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(V ′
mnij − cmnij)

∥

∥

∥

∥

∥

∥

> ε/2







≤
um
∑

i=1

vn
∑

j=1

P (‖Vij‖ > bmn) + P







max
1≤k≤um
1≤l≤vn

1

amn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(V ′
mnij − cmnij)

∥

∥

∥

∥

∥

∥

> ε/2







≤
um
∑

i=1

vn
∑

j=1

P (‖Vij‖ > bmn) +
2p

εpap
mn

E max
1≤k≤um
1≤l≤vn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(V ′
mnij − cmnij)

∥

∥

∥

∥

∥

∥

p

(by Markov’s inequality)

≤
um
∑

i=1

vn
∑

j=1

P (‖Vij‖ > bmn) +
C

εpap
mn

um
∑

i=1

vn
∑

j=1

E‖(V ′
mnij − cmnij)‖

p

(by Lemma 2.2)

→ 0 as m ∨ n → ∞ (by (3.1) and (3.2)).

The proof is complete. �

Corollary 3.2. Let 1 ≤ p ≤ 2 and let X be a martingale type p Banach space. If

um
∑

i=1

vn
∑

j=1

P{‖Vij‖ > bmn} → 0 as m ∨ n → ∞,

(3.4) max
1≤k≤um
1≤l≤vn

1

amn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

E(V ′
mnij |Fij)

∥

∥

∥

∥

∥

∥

P
−→ 0 as m ∨ n → ∞

and

1

ap
mn

um
∑

i=1

vn
∑

j=1

E‖V ′
mnij − E(V ′

mnij |Fij))‖
p → 0 as m ∨ n → ∞,

then

(3.5) max
1≤k≤um
1≤l≤vn

1

amn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

Vij

∥

∥

∥

∥

∥

∥

P
−→ 0 as m ∨ n → ∞.

Remark 3.3. If the condition (3.4) is replaced by the condition

1

amn

∥

∥

∥

∥

∥

∥

um
∑

i=1

vn
∑

j=1

E(V ′
mnij |Fij)

∥

∥

∥

∥

∥

∥

P
−→ 0 as m ∨ n → ∞,
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then the conclusion (3.5) will be replaced by

1

amn

um
∑

i=1

vn
∑

j=1

Vij
P

−→ 0 as m ∨ n → ∞.

The following result is random indices version of Theorem 3.1.

Theorem 3.4. Let 0 < p ≤ 2. When 1 ≤ p ≤ 2, we assume further that the

underlying Banach space is of martingale type p. Suppose that {Tn;n ≥ 1} and

{τn;n ≥ 1} are sequences of positive integer-valued random variables such that

(3.6) lim
n→∞

P{Tn > un} = lim
n→∞

P{τn > vn} = 0.

If

(3.7)

um
∑

i=1

vn
∑

j=1

P{‖Vij‖ > bmn} → 0 as m ∧ n → ∞

and

(3.8)
1

ap
mn

um
∑

i=1

vn
∑

j=1

E‖V ′
mnij − cmnij‖

p → 0 as m ∧ n → ∞,

then

1

amn

Tm
∑

i=1

τn
∑

j=1

(Vij − cmnij)
P

−→ 0 as m ∧ n → ∞,

where cmnij = 0 if 0 < p ≤ 1 and cmnij = E(V ′
mnij |Fij) if 1 < p ≤ 2.

Proof. For arbitrary ε > 0,

P







1

amn
‖

Tm
∑

i=1

τn
∑

j=1

(Vij − cmnij)‖ > ε







≤P







1

amn
‖

Tm
∑

i=1

τn
∑

j=1

(Vij − V ′
mnij)‖ > ε/2







+ P







1

amn
‖

Tm
∑

i=1

τn
∑

j=1

(V ′
mnij − cmnij)‖ > ε/2







=P







1

amn
‖

Tm
∑

i=1

τn
∑

j=1

(VijI(‖Vij‖ > bmn)‖ > ε/2







+ P







1

amn
‖

Tm
∑

i=1

τn
∑

j=1

(V ′
mnij − cmnij)‖ > ε/2







=Amn + Bmn.
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For Amn, we have

Amn ≤ P











1

amn
‖

Tm
∑

i=1

τn
∑

j=1

VijI(‖Vij‖ > bmn)‖ > ε/2





⋂

(Tm ≤ um)
⋂

(τn ≤ vn)







+ P{Tm > um} + P{τn > vn}

≤ P







um
⋃

i=1

vn
⋃

j=1

(‖Vij‖ > bmn)







+ P{Tm > um} + P{τn > vn}

≤
um
∑

i=1

vn
∑

j=1

P (‖Vij‖ > bmn) + P{Tm > um} + P{τn > vn} → 0 as m ∧ n → ∞,

by (3.6) and (3.7).
Next, for Bmn we have

Bmn ≤ P











1

amn
‖

Tm
∑

i=1

τn
∑

j=1

(V ′
mnij − cmnij)‖ > ε/2





⋂

(Tm ≤ um)
⋂

(τn ≤ vn)







+ P{Tm > um} + P{τn > vn}

≤ P







1

amn
max

1≤k≤um
1≤l≤vn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(V ′
mnij − cmnij)

∥

∥

∥

∥

∥

∥

> ε/2







+ P{Tm > um} + P{τn > vn}.

By (3.6), in order to prove that Bmn → 0 as m ∧ n → ∞, we need to show that

P







1

amn
max

1≤k≤um
1≤l≤vn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(V ′
mnij − cmnij)

∥

∥

∥

∥

∥

∥

> ε/2







→ 0 as m ∧ n → ∞.

Note that in the case of 1 < p ≤ 2, we have E(V ′
mnij − E(V ′

mnij |Fij)|Fij) = 0 for
all m ≥ 1, n ≥ 1, 1 ≤ i ≤ um, 1 ≤ j ≤ vn. Applying Markov’s inequality and
Lemma 2.2 we obtain

P







max
1≤k≤um
1≤l≤vn

1

amn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(V ′
mnij − cmnij)

∥

∥

∥

∥

∥

∥

> ε/2







≤
2p

εpap
mn

E



 max
1≤k≤um
1≤l≤vn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(V ′
mnij − cmnij)

∥

∥

∥

∥

∥

∥

p



≤
C

εpap
mn

um
∑

i=1

vn
∑

j=1

E‖V ′
mnij − cmnij)‖

p → 0 as m ∧ n → ∞ (by (3.8)),

which completes the proof. �
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Theorem 3.5. Let 0 < p ≤ 2. When 1 ≤ p ≤ 2 we assume further that the

underlying Banach space is of martingale type p. Let {kmn;m ≥ 1, n ≥ 1} be an

array of positive integers such that kmn → ∞ as m ∨ n → ∞ and

(3.9)
kmn

ap
mn

→ 0 as m ∨ n → ∞.

Suppose that there exists a positive nondecreasing function g on [0,∞) satisfying

(3.10) lim
a→0

g(a) = 0,

∞
∑

j=1

gp(1/j) < ∞

and

(3.11) sup
m≥1,n≥1

kmn

ap
mn

kmn−1
∑

j=1

gp(j + 1) − gp(j)

j
< ∞.

If

(3.12) sup
a>0

sup
m≥1,n≥1

1

kmn

um
∑

i=1

vn
∑

j=1

aP{‖Vij‖ > g(a)} < ∞,

and

(3.13) lim
a→∞

sup
m≥1,n≥1

1

kmn

um
∑

i=1

vn
∑

j=1

aP{‖Vij‖ > g(a)} = 0,

then

(3.14) max
1≤k≤um
1≤l≤vn

1

amn

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(Vij − cmnij)

∥

∥

∥

∥

∥

∥

P
−→ 0 as m ∨ n → ∞.

Moreover, let {Tn;n ≥ 1} and {τn;n ≥ 1} be sequences of positive integer-valued

random variables satisfying (3.6), then

(3.15)
1

amn

Tm
∑

i=1

τn
∑

j=1

(Vij − cmnij)
P

−→ 0 as m ∧ n → ∞,

where cmnij = 0 if 0 < p ≤ 1; cmnij = E(VijI(‖Vij‖ ≤ g(kmn)|Fij) if 1 < p ≤ 2.

Proof. By (3.13), take a = kmn and bmn = g(kmn) we immediately have (3.1).

Now we need to verify the condition (3.2) with bmn = g(kmn). Since g is a
nondecreasing function, it follows that

1

ap
mn

um
∑

i=1

vn
∑

j=1

E‖V ′
mnij − cmnij‖

p

≤C
1

ap
mn

um
∑

i=1

vn
∑

j=1

E‖V ′
mnij‖

p (by cr- inequality)
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=C
1

ap
mn

um
∑

i=1

vn
∑

j=1

E‖VijI(‖Vij‖

≤g(1))‖p + C
1

ap
mn

um
∑

i=1

vn
∑

j=1

kmn
∑

l=2

E‖VijI(g(l − 1) < ‖Vij‖ ≤ g(l))‖p

=C.Mmn + C.Nmn.

By (3.9), (3.10) and (3.12), we have

Mmn =
1

ap
mn

um
∑

i=1

vn
∑

j=1

∞
∑

l=1

E‖VijI(g(1/(l + 1)) < ‖Vij‖ ≤ g(1/l))‖p

≤
1

ap
mn

um
∑

i=1

vn
∑

j=1

∞
∑

l=1

gp(1/l)P{g(1/(l + 1)) < ‖Vij‖ ≤ g(1/l)}

≤
1

ap
mn

um
∑

i=1

vn
∑

j=1

(

∞
∑

l=2

[(gp(1/(l − 1)) − gp(1/l))P{‖Vij‖ > g(1/l)}]

−gp(1)P{‖Vij‖ > g(1)})

≤
1

ap
mn

um
∑

i=1

vn
∑

j=1

(

∞
∑

l=2

[(gp(1/(l − 1)) − gp(1/l))P{‖Vij‖ > g(1/l)}]

)

≤
kmn

ap
mn

∞
∑

l=2

l(gp(1/(l − 1)) − gp(1/l))×

× sup
m≥1,n≥1







1

kmn

um
∑

i=1

vn
∑

j=1

1

l
P{‖Vij‖ > g(1/l)}







≤
kmn

ap
mn

(

gp(1) +

∞
∑

l=1

gp(1/l)

)

sup
a>0

sup
m≥1,n≥1







1

kmn

um
∑

i=1

vn
∑

j=1

aP{‖Vij‖ > g(a)}







→ 0 as m ∨ n → ∞.

For Nmn, we have

Nmn ≤
1

ap
mn

um
∑

i=1

vn
∑

j=1

kmn
∑

l=2

gp(l)P{g(l − 1) < ‖Vij‖ ≤ g(l)}

≤ gp(1)
1

ap
mn





um
∑

i=1

vn
∑

j=1

P{‖Vij‖ > g(1)}





+
1

ap
mn

um
∑

i=1

vn
∑

j=1

(

kmn−1
∑

l=1

(gp(l + 1) − gp(l))P{‖Vij‖ > g(l)}

)
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= gp(1)
kmn

ap
mn





1

kmn

um
∑

i=1

vn
∑

j=1

P{‖Vij‖ > g(1)}





+
1

ap
mn

kmn−1
∑

l=1

(gp(l + 1) − gp(l))

l





um
∑

i=1

vn
∑

j=1

lP{‖Vij‖ > g(l)}





≤ gp(1)
kmn

ap
mn



sup
a>0

sup
m≥1,n≥1

1

kmn

um
∑

i=1

vn
∑

j=1

aP{‖Vij‖ > g(a)}





+
kmn

ap
mn

kmn−1
∑

l=1

(gp(l + 1) − gp(l))

l





1

kmn

um
∑

i=1

vn
∑

j=1

lP{‖Vij‖ > g(l)}



 .

Because of (3.9) and (3.12) we have

kmn

ap
mn



sup
a>0

sup
m≥1,n≥1

1

kmn

um
∑

i=1

vn
∑

j=1

aP{‖Vij‖ > g(a)}



→ 0 as m ∨ n → ∞.

On the other hand, it follows by (3.11), (3.13) and the Toeplitz lemma (see, e.g.,
Loève, 1977, p. 250) that

kmn

ap
mn

kmn−1
∑

l=1

(gp(l + 1) − gp(l))

l





1

kmn

um
∑

i=1

vn
∑

j=1

lP{‖Vij‖ > g(l)}



→ 0 as m∨n → ∞.

Thus, the expression Nmn → 0 as m ∨ n → ∞.
Applying Theorems 3.1 and 3.4 we obtain the conclusions (3.14) and (3.15)

respectively. �

Remark 3.6. Note that condition (3.11) can be difficult to check. It is analogous
to Proposition 1 of D. H. Hong et al. [5], a sufficient condition for (3.11) is given
as follows:

(3.16)
g(kmn)

amn
= O(1) and

kmn
∑

l=1

gp(l)

l2
= O(

ap
mn

kmn
).

Corollary 3.7. Let 0 < r < p ≤ 2. When 1 ≤ p ≤ 2 we assume further that the

underlying Banach space is of martingale type p. Suppose that {Vmn;m ≥ 1, n ≥
1} is stochastically dominated by a random element V . If

lim
a→∞

aP{‖V ‖r > a} = 0,

then

max
1≤k≤m

1≤l≤n

1

(mn)1/r

∥

∥

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(Vij − cmnij)

∥

∥

∥

∥

∥

∥

P
−→ 0 as m ∨ n → ∞,

where cmnij = 0 if 0 < p ≤ 1 and cmnij = E(VijI(‖Vij‖
r ≤ mn)|Fij) if 1 < p ≤ 2.
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Proof. Let g(t) = t1/r, un = vn = n, kmn = mn and amn = (mn)1/r. Then
conditions (3.9), (3.10), (3.12) and (3.13) are clearly satisfied. On the other

hand, by the inequality
kmn
∑

l=1

l
p

r
−2 ≤ C.k

p

r
−1

mn , it follows that (3.16) holds. Thus,

condition (3.11) holds. �

The following corollary is stronger than the sufficient condition of Feller’s weak
law of large numbers (see, e.g., [3], Section VII.7.).

Corollary 3.8. Let 0 < r < 2. Suppose that {Xn;n ≥ 1} is a sequence of random

variables which is stochastically dominated by a random variable X. If

lim
a→∞

aP{|X|r > a} = 0,

then

1

n1/r
max
1≤l≤n

∣

∣

∣

∣

∣

∣

l
∑

j=1

(Xj − E(XjI(|Xj |
r ≤ n)|Fj))

∣

∣

∣

∣

∣

∣

P
−→ 0 as n → ∞,

where Fj = σ(Xi; 1 ≤ i < j).
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