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SOME FRIEDRICHS TYPE INEQUALITIES IN THE FULL
EUCLIDEAN SPACE

JU. A. DUBINSKII

Dedicated to Tran Duc Van on the occasion of his siztieth birthday

ABSTRACT. In this paper we prove the inequality

/ uR<|x|>|u<x>|de<MU |w<x>|Pw<|x|>dx+\ [ utwas

R™ R

]
where w(|z]) > 0 and pr(|Jz|) > 0 are the weight functions, R > 0 is an

arbitrary number. In doing so, we first show some ”two-sides” Hardy type
inequalities.

|z|=R

1. PROBLEM A

Let w(r) > 0 be a given function on Ry = (0,00), R > 0 and p > 1. It is
necessary to find a function pg(r) > 0, such that

(1) 7#1%(7’) /Tf(t) dt
R

0
where M > 0 is independent of R. We have proved the following result.

p o
dr < M [|F)Pw(r)dr,
/

Theorem A. Let w™* € L'°*(R,), where s =1/(p —1). Then
(1) The inequality (1) holds if

T

/ ws(t) dt

R

—-Pp

pr(r) = (p— 1) w™¥(r).

Moreover, M = pP.
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(2) Ifw™* is summable at the point r = 0, then as R — 0 we obtain the direct
Hardy type inequality

(p— 1) / ( / w™(t) dt s (r) / F(t) dt

0 0 0

(3) If w™° is summable at the point r = +oo, then as R — +o0o we obtain
the inverse Hardy type inequality

P o
ar < [11Pur)dr
0

(p—1)7 7<7w‘5(t) dt) s () /oof(t) dt pdr <pf 7|f(r)|pw(r) dr.
0o r T 0

The proof of this theorem can be found in [2]-[4] (in [5] the final result is
given).

Example 1. Let w(r) = rP~!. Then pg(r) = (p — 1)Pr~![In %|77 and

T 1
(p— 1)”/ -
] 7‘|1H }_f|p

T

/ (1) di

R

p o0
dr < pP |f(7‘)|p7‘p_1d7‘.
/

2. PROBLEM B

Let u(r) > 0 be a given function. It is necessary to find a function wg(r) > 0,

such that
/ oL
R

@ [ o)
where as before R > 0 and M > 0 is independent of R.

p o
dr < M/\f(r)\pr(r) dr,
0 0

Theorem B. Let p(r) > 0, and u(r) be locally summable on the real half-line
[0, +00], excluding (may be) the point r = R. Then

/ F(t)dt
R

(0} u(t) dt)p,u_(p_l)(r), forr € (0, R);

(J u(tydt) w=e00). forr € (Ro0),

and f € Ly ,(0,00) is an arbitrary function.

o0

/u(r)
0

P o
dr < pp/\f(r)\pr(r) dr,
0

where

wp(r) =

The proof of this theorem is similar to that of Theorem A.

Example 2. Let pu(r) = (p — 1)Pr~!In%|™P. Then wg(r) = rP~! and we
obtain the same inequality as in Example 1.
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3. CONNECTIONS BETWEEN (w, pg) AND (i, wg)

Theorem A;. Let w(r) and pg(r) be the functions in the inequality (1) such
that

R o0
/w_s(r) dr = o0, /w_s(r) dr = o0
0 R

Then

Theorem B;i. Let u(r) and wr(r) be the functions in the inequality (2) such
that

/R,u(r) dr = oo, jo,u(r) dr = o0
0 R

Then
R —
u(r) = =17 [wityat) "), 1 e (0.R)
(r) = = o7 ( [ wgtte)ar)”
R

pw}}s(r), r € (R, 00).

The proof of these theorems is based on the following lemmas.

Lemma 1. Forany 0 <ry <r9 < R

9 R R
1 —p+1 1 —p+1
_1\-DP - - —s - —s
(p—1) /,uR(r)dr p_1</w (r)dr) p—l(/w (r)dr) .
T1 T2 T1
Lemma 2. For any 0 <r; <rs < R
T2 1 T1 /+1 1 T2 /+1
s _ A —p
/wR (r)dr—p/_1<0/,u(7‘)dr> p/_1<0/,u(r)dr) .
T1

Analogous inequalities take place for the interval (R, 00).
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Remark. It is obvious that for functions u(r) with w(R) = 0 the inequalities
(1) and (2) can be written in the form

(3) / () u(r) Pdr < P / ! () Pao ) dir,
0 0

(4) / u() u(r)Pdr < pP / () Pwn(r) dr.
0 0

4. FRIEDRICHS TYPE INEQUALITY

Let u € L(R") (n > 1, z = (1, ...,y,)) be such that Vu € L, ,(R"), i.e.

/]Vu(x)\w(]a;\)da: < 0.
s

Introduce the weight function wy,(r) = w(r)r"~!, where r = |z|. We suppose
that w= € L{(0,00). Further, let

Cw ()

) =| / wit(t) dt
R

be the ”canonical” weight function defined in Theorem A.

Theorem A,. Let

(5) / u(s)ds = 0.

|z|=R

Then the following inequality

/ vrn(2)u(z)Pde < M / V() P[] de
J

Rn
holds. Here

n+1

vRn(r) = r~ " min{w, (r)r 7P, pra(r)} = min{w(r)r ™", ppa(r)r ",

Proof. Let us consider the integral

[e.e]

/ Vi (2] [u(z)Pdz = / Vi ()1 / (u(r, )P ds dr.

Rn 0 |z]=1
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Using Poincaré’s inequality on the unit sphere ST, we obtain that

i P
/VRW(\:U])]u(m)\pda: < M[/ VR (r)r" / u(r, s)ds| dr
Rn 0 |zj=1
+ /VRW(T)Tn_l / |Vsu(r, s)Pds dr} = M(L + 1),
0 |z|=1
where Vgu(r, s) is the tangent gradient.
Firstly, we estimate the integral
b= [ vra() s opar,
0
where f(r) = [ wu(r,s)ds. Let us note that f(R) =0 and

|z|=1

VRn(r)r" ™ < g (r).
Then due to inequality (3)

o0

ns [unalrorar < (L) /Ooy £ P =
0 0

(p—1>p/w(r)rn_l / %:S)d‘g
0

|z|=1
< M/w(r)r"_l / |Vu(r, s)[Pds dr = M/]Vu(m)\pw(]a:\)da:.
0 |z|=1 R™

P
dr <

<

We turn to the integral

o
I, = /yRm(r)r"_l / |Vsu(r,s)[Pds dr.
Since the coordinates x1,...,z, are linear with respect to r, we have |Vsu| <

Mr|Vu|. Bearing in mind the inequality vg,(r) < w(r)r~? we find that

)

I, < M/VRn(r)r"_1+p / |Vu(r, s)[Pdsdr <
0

|lz|=1

< M/oow(r)rn_l / |Vu(r,s)[Pdsdr = M/]Vu(m)\pw(]a:\)da:.
0

|z|=1 R
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Summing these calculations we obtain the initial inequality of the theorem. [
Corollary. (Friedrichs type inequality)
[ vralisliute) = CPds < [1Vu(o)Pue])da.

R R

1
O—m/U(S)dS

Sk

is the mean value of w(x) on S} = {x € R" : |z| = R}, or, that is the same,

/VR,n(|:g|)|u(<p)|de < M[/|Vu(m)|pw(|x|) d + /u(:n) ds p].
a s,

R" R n
Example 3. Let n > 2, w(|z|) = |z[P~™. Then for any function u(z) with the
condition (5)

where

/VR’"(lﬂf\)\U(x)!pdx < M/\Vu(a:)!p!x\p_"da:,
Rn Rn
where
VR,n(T) = min{r‘"‘ln }Lﬂ_p’?«—n}'
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