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ATTRACTORS FOR NON-AUTONOMOUS SEMILINEAR
PARABOLIC EQUATIONS WITH DELAYS

CUNG THE ANH AND LE VAN HIEU

Abstract. We study the asymptotic behavior of solutions to a class of re-
tarded non-autonomous semilinear parabolic equations with nonlinearities of
polynomial type, general delays and time-dependent external forces. The ex-
istence of weak solutions for the equations is proved by using the Galerkin
method. We then prove the existence of a pullback attractor without restric-
tion on the growth order of polynomial type nonlinearity and on exponential
growth of the external force. When the time-dependent external force is a
translation bounded function, the existence of a uniform attractor is proved.
Finally, we give a relationship between the pullback attractor and the uniform
attractor.

1. Introduction

The understanding of the asymptotic behavior of dynamical systems is one
of the most important problems of modern mathematical physics and biology.
One way to treat this problem for a system having some dissipativity properties
is to analysis the existence and structure of its attractor. The existence of the
attractor has been derived for a large class of PDEs without delays and ODEs
with delays (see e.g. [3, 12, 14, 23] and the references therein). However, to
the best of our knowledge, little seems to be known about the existence of the
attractor for PDEs with delays in the non-autonomous case.

PDEs with delays are often considered in the model such as maturation time
for population dynamics in mathematical biology and other fields. Such equations
are naturally more difficult since they are infinite dimensional both in time and
space variables. We refer to the monograph [24] for a theory of PDEs with delays.
Recently, the long-time behavior of PDEs with delays, including the stability of
solutions and the existence of attractors, has attracted the attention of many
researchers (see e.g. [1, 2, 4-10, 13, 15-16, 19-22]).
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In this paper we study the long-time behavior for the following non-autonomous
equation:

∂

∂t
u(t, x) +Au(t, x) + f(u(t, x)) = F (ut)(x) + g(t, x), x ∈ Ω, t > τ,

u(τ, x) = u0(x), x ∈ Ω,

u(τ + θ, x) = ϕ(θ, x), θ ∈ (−r, 0), x ∈ Ω.

(1.1)

Here Ω is a bounded domain in RN , and other symbols satisfy the following
conditions, c.f. [15, 22]:

(H1) The initial data u0 ∈ L2(Ω) and ϕ ∈ L2(−r, 0;L2(Ω)) are given;
(H2) A is a densely-defined self-adjoint positive linear operator with domain

D(A) ⊂ L2(Ω) and with compact resolvent (for example, −∆ with the
homogeneous Dirichlet condition);

(H3) f : R→ R is a C1 function such that

C1|u|p − C0 ≤ f(u)u ≤ C2|u|p + C0, p > 2,(1.2)

f ′(u) ≥ −C3 for all u ∈ R,(1.3)

where C0, C1, C2 and C3 are positive constants;
(H4) F : L2(−r, 0;L2(Ω))→ L2(Ω) is locally Lipschitz continuous for the initial

data, i.e., for any M > 0, there exists LF,M > 0 such that for u, v ∈
L2(−r, 0;L2(Ω)) satisfying (u(0), u), (v(0), v) ∈ B(0,M), the closed ball
in L2(Ω)× L2(−r, 0;L2(Ω)) centered at 0 with radius M , one has

(1.4) ‖F (u)− F (v)‖ ≤ LF,M
(
‖u(0)− v(0)‖2 + ‖u− v‖2L2(−r,0;L2(Ω))

)1/2
,

and there exist k1, k2, k3 ≥ 0, such that for all ξ ∈ L2(−r, 0;L2(Ω)),
η ∈ L2(Ω), one has

(1.5) |〈F (ξ), η〉| ≤ k1‖η‖2 + k2

∫ 0

−r
‖ξ(θ)‖2dθ + k3;

hereafter we denote by 〈·, ·〉 and ‖.‖ the inner product and norm in L2(Ω);
(H5) The external force g ∈ L2

loc(R;L2(Ω)) satisfies∫ 0

−∞
ecs‖g(s)‖2ds < +∞ and

∫ 0

−∞

∫ s

−∞
ecy‖g(y)‖2dyds < +∞,

where c is a fixed positive constant.
Let us give some comments about the conditions of g in the paper. The

assumption (H5) is used to prove the existence of a weak solution to problem
(1.1) and of a pullback attractor for the process associated to Problem (1.1).
When proving the existence of a uniform attractor, we need a stronger condition
(H5bis) (see Sect. 4) of g, that is, g is translation bounded in L2

loc(R;L2(Ω)).
This assumption ensures that the symbol space Σ = Hw(g), the closure of the set
{g(s + ·)|s ∈ R} in L2,w

loc (R;L2(Ω)) with the weak topology, is weakly compact,
and this enables us to use the abstract theorem of Lu et al. in [18] to prove the
existence and structure of the uniform attractor.
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Given T > τ and u : (τ−r, T )→ L2(Ω), as in [14], for each t ∈ [τ, T ] we denote
by ut the function defined on (−r, 0) by the relation ut(θ) = u(t + θ), for all
θ ∈ (−r, 0). In this paper, we first construct the process associated to (1.1) in the
space L2(Ω)×L2(−r, 0;L2(Ω)), so the pair (u(t), ut) ∈ L2(Ω)×L2(−r, 0;L2(Ω))
presents the state of the system. Then we investigate the long-time behavior of
the process by showing the existence of a pullback/uniform attractor. It is noticed
that the obtained results improve and extend some existing ones in [1, 15, 22].

Since A : D(A) → L2(Ω) is a densely-defined self-adjoint positive linear oper-
ator with domain D(A) ⊂ L2(Ω) and with compact resolvent, A has a discrete
spectrum that only contains positive eigenvalues {λk}∞k=1 satisfying

0 < λ1 6 λ2 6 . . . ., λk →∞ as k →∞,

and the corresponding eigenfunctions {ek}∞k=1 compose an orthonormal basis of
the Hilbert space L2(Ω) such that

(ej , ek) = δjk and Aek = λkek, k = 1, 2, . . .

Hence we can define the fractional power spaces and operators as

Xα = D(Aα) = {u =
∞∑
k=1

ckek ∈ H :
∞∑
k=1

c2
kλ

2α
k <∞},

Aαu =
∞∑
k=1

ckλ
α
k ek, where u =

∞∑
k=1

ckek.

It is known (see e.g. [12]) that if α > β then the space D(Aα) is compactly
embedded into D(Aβ). In particular,

D(A
1
2 ) ↪→ L2(Ω) ↪→ D(A−

1
2 ),

where the injections are dense and compact.
Note that by the Riesz Representation Theorem, we have

(1.6) ‖F (ξ)‖ = ‖F (ξ)‖op = sup
‖η‖=1

|〈F (ξ), η〉| ≤ k1 + k2

∫ 0

−r
‖ξ(θ)‖2dθ + k3,

which implies that F is a bounded map from L2(−r, 0;L2(Ω)) to L2(Ω).
Now we introduce some notations which will be used in this paper:
• H = L2(Ω),
• V = D(A

1
2 ) with the associated product 〈u, v〉V = 〈A

1
2u,A

1
2 v〉H ,

• V ′ = D(A−
1
2 ) is the dual space of V ,

• L2
H = L2(−r, 0;H), L2

V = L2(−r, 0;V ) are Hilbert spaces with the norms

‖u‖2L2
X

=
∫ 0

−r
‖u(s)‖2Xds,

• M2
H = H × L2

H , M2
V = V × L2

V are Hilbert spaces with the norms

‖(u, ϕ)‖2M2
X

= ‖u‖2X + ‖ϕ‖2L2
X
,
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• W = L2(τ, T ;V )∩Lp(τ, T ;Lp(Ω)),W ∗ = L2(τ, T ;V ′) +Lp
′
(τ, T ;Lp

′
(Ω)),

where p′ is the conjugate of p.

The paper is organized as follows. In Section 2 we recall some results about
pullback attractors and uniform attractors which will be used in the paper. In
Section 3, we prove the existence of a pullback attractor in M2

H for the process
associated to Problem (1.1) when the external force has an exponential growth.
The existence of a uniform attractor in M2

H for the family of processes associated
to Problem (1.1) is discussed in Section 4 when the external force is a translation
bounded function. In the last section, we give a relationship between the pullback
attractor and the uniform attractor.

It is noticed that the restriction p > 2 in (1.2) is made for the coherence of the
presentation only; some comments about results in the case p = 2 are given in
Remarks 3.1 and 4.1.

2. Preliminaries

For the convenience of readers, in this section we recall some results about
pullback attractors and uniform attractors which will be used in the paper.

2.1. Pullback attractors. Let X be a complete metric space and BX(a, r) be
the ball in X centered at a with radius r. A process on X is a two parameters
process U(t, τ) : X → X satisfying the following properties:

U(t, r)U(r, τ) = U(t, τ) for all t ≥ r ≥ τ,
U(τ, τ) = Id for all τ ∈ R.

We usually use the Hausdorff semi-distance distX(., .) defined by

distX(A,B) := sup
a∈A

inf
b∈B

d(a, b) for A,B ⊂ X.

Definition 2.1. [9, Definition 2]. Let U(t, τ) be a process in the complete metric
space X. A family of compact sets {A(t)}t∈R is said to be a pullback attractor
in X for U(t, τ) if, for every τ ∈ R, it satisfies

(1) U(t, τ)A(τ) = A(t) for all t ≥ τ (invariance), and
(2) lim

s→+∞
distX(U(t, t− s)D,A(t)) = 0 for all bounded subsets D of X.

The pullback attracting property (2) considers the state of the system at time
t when the initial time t− s goes to −∞.

Definition 2.2. [9, Definition 4]. A family of sets {B(t)}t∈R is said to be pullback
absorbing in X with respect to the process U(t, τ) if for any bounded subset B
of X and any t ∈ R, there exists τ(t, B) ≤ t such that U(t, τ)B ⊂ B(t) for all
τ ≤ τ(t, B).

The following theorem shows the sufficient conditions for the existence of a
pullback attractor in X.
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Theorem 2.3. [9, Theorem 5]. Let U(t, τ) be a continuous two-parameter process
on X. If there exists a family of compact pullback absorbing sets {B(t)}t∈R in X
with respect to the process U(t, τ), then there exists a pullback attractor {A(t)}t∈R
in X, and A(t) ⊂ B(t) for all t ∈ R. Furthermore,

A(t) =
⋃
D⊂X

bounded

ΛD(t), where ΛD(t) =
⋂
n∈N

⋃
s≥n

U(t, t− s)D.

2.2. Uniform attractors. Consider a family of processes {Uσ(t, τ) | σ ∈ Σ} on
a Banach space E depending on a parameter σ ∈ Σ. The parameter σ, chosen as
the collection of all time-dependent coefficients of the equation, is said to be the
symbol of the process {Uσ(t, τ)} and the set Σ is said to be the symbol space.
By B(E) we denote the collection of the bounded sets of E.

Definition 2.4. [11, Chapter 4, Definition 3.3]. A set B0 ⊂ E is said to be
uniformly (w.r.t. σ ∈ Σ) absorbing for the family of processes {Uσ(t, τ) | σ ∈ Σ},
if for any τ ∈ R and any B ∈ B(E) there exists t0 = t0(τ,B) ≥ τ such that⋃

σ∈Σ

Uσ(t, τ)B ⊂ B0,

for all t ≥ t0. A family of processes possessing a compact uniformly absorbing
set is called uniformly compact.

Definition 2.5. [11, Chapter 4, Definition 3.5]. A closed set AΣ ⊂ E is said to be
a uniform (w.r.t. σ ∈ Σ) attractor of the family of processes {Uσ(t, τ) | σ ∈ Σ}, if
it is uniformly (w.r.t. σ ∈ Σ) attracting (attracting property) and it is contained
in any closed uniformly (w.r.t. σ ∈ Σ) attracting set A′ of the family of processes
{Uσ(t, τ) | σ ∈ Σ} : AΣ ⊂ A′ (minimality property).

The kernel Kσ of a process {Uσ(t, τ)} consists of all bounded complete trajec-
tories of the process {Uσ(t, τ)}:

Kσ = {u(.) | Uσ(t, τ)u(τ) = u(t),dist(u(t), u(0)) ≤ Cu, ∀t ≥ τ, τ ∈ R}.
The set Kσ(s) = {u(s) : u(.) ∈ Kσ} is said to be the kernel section at time
t = s, s ∈ R.

The following result, a direct consequence of Theorem 2.5 in [18], gives a
sufficient conditions on the existence and structure of the uniform attractor for
a family of (weakly continuous) processes.

Theorem 2.6. Let Σ be a weakly compact set and the family of processes {Uσ(t, τ)
| σ ∈ Σ} is (E × Σ, E)-weakly continuous. If {Uσ(t, τ) | σ ∈ Σ} has a uniformly
(w.r.t. σ ∈ Σ) compact absorbing set B0, then it possesses a uniform compact
attractor AΣ in E. Moreover,

AΣ =
⋃
σ∈Σ

Kσ(s) ∀s ∈ R,

where Kσ(s) is the kernel section at t = s of the kernel Kσ of the process {Uσ(t, τ)}
with symbol σ ∈ Σ.
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A set Y is said to be uniformly (w.r.t. τ ∈ R) attracting for a process {U(t, τ)}
if

sup
τ∈R

distX(U(t+ τ, τ)B, Y )→ 0 as t→ +∞

for any bounded set B. In particular, a closed set A0 is said to be a uniform
(w.r.t. τ ∈ R) attractor for {U(t, τ)}, if it is contained in any closed uniformly
attracting set. Given a symbol σ0, let Σ0 = {σ0(· + h)|h ∈ R} be a subset of
some Banach space. If the process {Uσ0(t, τ)} satisfies the following translation
identity:

(2.1) Uσ0(t+ h, τ + h) = UT (h)σ0
(t, τ), ∀t ≥ τ, τ ∈ R, h ≥ 0,

then obviously, the uniformly (w.r.t. τ ∈ R) attracting property of {Uσ0(t, τ)} is
equivalent to the uniformly (w.r.t. σ ∈ Σ0) attracting property of {Uσ(t, τ)}, σ ∈
Σ0. It is easy to see that the uniform (w.r.t. τ ∈ R) attractor A0 of {Uσ0(t, τ)}
coincides with the uniform (w.r.t. σ ∈ Σ0) attractorAΣ0 of the family of processes
{Uσ(t, τ) | σ ∈ Σ0}.

3. Existence of a pullback attractor

Definition 3.1. A function u is called a weak solution of Problem (1.1) on the

interval (τ, T ) if u ∈ L2(τ − r, T ;H) ∩W ,
∂u

∂t
∈ W ∗, u(τ) = u0, u(τ + θ) = ϕ(θ)

for θ ∈ (−r, 0), and∫ T

τ

(
〈∂u
∂t
, ϕ〉+ 〈A

1
2u,A

1
2ϕ〉+ 〈f(u), ϕ〉

)
dt =

∫ T

τ

(
〈F (ut), ϕ〉+ 〈g, ϕ〉

)
dt,

for all test functions ϕ ∈W .

Repeating the arguments used in the autonomous case [1], we get the following.

Theorem 3.2. Under conditions (H1) − (H5), for any τ ∈ R, T > τ given,
Problem (1.1) has a unique weak solution u on (τ, T ) which satisfies

u(t) ∈ C([τ, T ];H).

Moreover, the solution is defined over the interval [τ,∞).

Due to the result of Theorem 3.2, we can define the process U(t, τ) : M2
H →M2

H
associated to Problem (1.1) as follows.

U(t, τ)(u0, ϕ) = (u(t; τ, (u0, ϕ)), ut(.; τ, (u0, ϕ))) for (u0, ϕ) ∈M2
H , t ≥ τ,

where u(t) = u(t; τ, u0, ϕ) is the unique weak solution of Problem (1.1) with
initial datum (u0, ϕ) ∈M2

H .

Lemma 3.3. Under assumptions (H1)−(H5), the operator U(., .) is a continuous
process on M2

H .
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Proof. The composition properties for the process U(., .) follows from the unique-
ness of solutions to Problem (1.1).

To prove the continuity of U(t, τ), let us consider two initial data (u0, ϕ),
(v0, ψ) ∈ M2

H and their corresponding solutions u(.), v(.). Then w = u − v
satisfies

∂w

∂t
+Aw + f(u)− f(v) = F (ut)− F (vt) in W ∗ for a.e. t ∈ [τ,∞).

Multiplying this equation by w and integrating over Ω, we obtain

1
2
d

dt
‖w(t)‖2+‖w(t)‖2V +

∫
Ω

[f(u(t))−f(v(t))][u(t)−v(t)]dx = 〈F (ut)−F (vt), w(t)〉.

Using condition (1.3), we have∫
Ω

[f(u(t))− f(v(t))][u(t)− v(t)]dx ≥ −C3

∫
Ω

[u(t)− v(t)]2dx = −C3‖w(t)‖2.

By the Cauchy inequality, we get

〈F (ut)−F (vt), w(t)〉 ≤ ‖F (ut)−F (vt)‖.‖w(t)‖ ≤ 1
4λ1
‖F (ut)−F (vt)‖2+λ1‖w(t)‖2.

Using condition (1.4) and noting that λ1‖w(t)‖2 ≤ ‖w(t)‖2V , we get

〈F (ut)− F (vt), w(t)〉 ≤
L2
F,M

4λ1

(
‖ut(0)− vt(0)‖2 + ‖ut − vt‖2L2

H

)
+ ‖w(t)‖2V

=
L2
F,M

4λ1

(
‖w(t)‖2 + ‖wt‖2L2

H

)
+ ‖w(t)‖2V ,

where ut(0)− vt(0) = u(t)− v(t) = w(t). Hence

d

dt
‖w(t)‖2 ≤

L2
F,M

2λ1

(
‖w(t)‖2 + ‖wt‖2L2

H

)
+ 2C3‖w(t)‖2

= C4‖w(t)‖2 + C5

∫ 0

−r
‖wt(s)‖2ds.

Integrating this inequality from τ to t, we obtain

‖w(t)‖2 − ‖w(τ)‖2 ≤ C4

∫ t

τ
‖w(s)‖2ds+ C5

∫ t

τ

∫ 0

−r
‖w(s+ θ)‖2dθds

≤ C4

∫ t

τ
‖w(s)‖2ds+ C5

∫ 0

−r

∫ t

τ−r
‖w(s)‖2dsdθ

≤ (C4 + C5r)
∫ t

τ
‖w(s)‖2ds+ C5r

∫ τ

τ−r
‖w(s)‖2ds.

The Gronwall lemma implies that

‖w(t)‖2 ≤
(
‖w(τ)‖2 + C5r

∫ τ

τ−r
‖w(s)‖2ds

)
e(C4+C5r)(t−τ), t ∈ [τ, T ].
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We rewrite the last inequality as

(3.1) ‖u(t)− v(t)‖2 ≤
(
‖u0 − v0‖2 + C5r‖ϕ− ψ‖2L2

H

)
e(C4+C5r)(t−τ).

Note that if t ≥ τ + r, then we obtain from (3.1) that

‖ut − vt‖2L2
H

=
∫ 0

−r
‖u(t+ θ)− v(t+ θ)‖2dθ

≤
∫ 0

−r
sup

s∈[−r,0]
‖u(t+ s)− v(t+ s)‖2dθ

≤ r
(
‖u0 − v0‖2 + C5r‖ϕ− ψ‖2L2

H

)
e(C4+C5r)(t−τ).

Next, if τ ≤ t < τ + r, we deduce immediately that

‖ut − vt‖2L2
H

=
∫ 0

−r
‖u(t+ θ)− v(t+ θ)‖2dθ

≤
∫ τ

τ−r
‖u(s)− v(s)‖2ds+

∫ τ+r

τ
‖u(s)− v(s)‖2ds

≤
(
r‖u0 − v0‖2 + (C5r

2 + 1)‖ϕ− ψ‖2L2
H

)
e(C4+C5r)(t−τ).

Thus, we have for all t ≥ τ ,

‖ut − vt‖2L2
H
≤
(
r‖u0 − v0‖2 + (C5r

2 + 1)‖ϕ− ψ‖2L2
H

)
e(C4+C5r)(t−τ),

which joints with (3.1) imply the continuity of U(t, τ). �

Lemma 3.4. Let u ∈ Lp(Ω), p > 2. Then for any ξ > 0, there exists a positive
constant C(ξ, p) > 0 such that

‖u‖pLp(Ω) ≥ ξ‖u‖
2
L2(Ω) − C(ξ, p).(3.2)

Proof. Using Young’s inequality, we have

ξ‖u‖2 =
∫

Ω
ξ|u|2dx ≤

∫
Ω

(
2
p

(|u|2)
p
2 +

p− 2
p

ξ
p

p−2

)
dx

=
2
p
‖u‖pLp(Ω) +

p− 2
p

ξ
p

p−2 |Ω|.

Since p > 2,
2
p
< 1. Putting C(ξ, p) =

p− 2
p

ξ
p

p−2 |Ω|, we get (3.2). �

Lemma 3.5. Under assumptions (H1)− (H5), the solution u of (1.1) satisfies
(3.3)

‖u(t)‖2 ≤ e−c(t−τ)‖u0‖2 + 2k2re
−c(t−τ−r)‖ϕ‖2L2

H
+M2 + e−ct

∫ t

−∞
ecs‖g(s)‖2ds,

where M2 is a positive constant independent of t, τ .
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Proof. From (1.1), in view of (1.5), (1.2) and the Cauchy inequality, we have

d

dt
‖u(t)‖2 + 2λ1‖u(t)‖2 + 2C1‖u(t)‖pLp(Ω)

≤ 2C0|Ω|+ 2k3 + (2k1 + 1)‖u(t)‖2 + 2k2

∫ 0

−r
‖ut(θ)‖2dθ + ‖g(t)‖2.(3.4)

Now for any ξ > 0, by Lemma 3.4, there exists a number C(ξ, p) > 0 such that

2C1‖u(t)‖pLp(Ω) ≥ ξ‖u(t)‖2 − C(ξ, p).

Therefore,

d

dt
‖u(t)‖2 ≤ (2k1 + 1− 2λ1 − ξ)‖u(t)‖2 + 2k2

∫ 0

−r
‖ut(θ)‖2dθ + ‖g(t)‖2 +M1,

where M1 = C(p, ξ) + 2C0|Ω|+ 2k3. We have

d

dt

(
ect‖u(t)‖2

)
= cect‖u(t)‖2 + ect

d

dt
‖u(t)‖2

≤ (2k1 + 1 + c− 2λ1 − ξ)ect‖u(t)‖2 +M1e
ct

+ 2k2

∫ 0

−r
ect‖ut(θ)‖2dθ + ect‖g(t)‖2.

Integrating from τ to t (t ≥ τ), we have

ect‖u(t)‖2 − ecτ‖u(τ)‖2 ≤ (2k1 + 1 + c− 2λ1 − ξ)
∫ t

τ
ecs‖u(s)‖2ds+

M1

c
ect

+ 2k2

∫ t

τ

∫ 0

−r
ecs‖us(θ)‖2dθds+

∫ t

τ
ecs‖g(s)‖2ds.

Notice that∫ t

τ

∫ 0

−r

(
ecs‖us(θ)‖2dθ

)
ds ≤ ecr

∫ t

τ

∫ 0

−r
ec(s+θ)‖u(s+ θ)‖2dθds

≤ ecr
∫ 0

−r

∫ t

τ−r
ecs‖u(s)‖2dsdθ

≤ rec(r+τ)‖ϕ‖2L2
H

+ recr
∫ t

τ
ecs‖u(s)‖2ds,(3.5)

thus,

ect‖u(t)‖2 ≤ecτ‖u0‖2 + 2k2re
c(τ+r)‖ϕ‖2L2

H

+ (2k1 + 1 + c+ 2k2re
cr − 2λ1 − ξ)

∫ t

τ
ecs‖u(s)‖2ds

+
M1

c
ect +

∫ t

−∞
ecs‖g(s)‖2ds.

Now we choose ξ large enough such that 2k1 + 1 + c + 2k2re
cr − 2λ1 − ξ < 0 to

obtain (3.3). �



366 C. T. ANH AND L. V. HIEU

As a consequence of Lemma 3.5, we obtain the following result.

Lemma 3.6. Assume that (H1)−(H5) hold. Then there exists a family {BH(t)}t∈R
of bounded pullback absorbing sets in M2

H for the process U(t, τ) associated to
Problem (1.1).

Proof. One can see that, there exists τ̂ = τ̂(t, u0, ϕ) such that, for all τ ≤ τ̂ , the
following inequality holds:

e−c(t−τ)‖u0‖2 + 2k2re
−c(t−τ−r)‖ϕ‖2L2

H
≤ e−ct

∫ t

−∞
ecs‖g(s)‖2ds.

Therefore, by Lemma 3.5, we have

‖u(t)‖2 ≤ 2e−ct
∫ t

−∞
ecs‖g(s)‖2ds+M2 < +∞,

for all t ≥ τ̂ . Now, taking t ≥ τ̂ + r, we have for θ ∈ (−r, 0),

‖u(t+ θ)‖2 ≤ 2e−c(t+θ)
∫ t+θ

−∞
ecs‖g(s)‖2ds+M2

≤ 2ecre−ct
∫ t

−∞
ecs‖g(s)‖2ds+M2.

It follows that∫ 0

−r
‖ut(θ)‖2dθ ≤ 2recre−ct

∫ t

−∞
ecs‖g(s)‖2ds+M2r.

Hence, it is obvious that

‖U(t, τ)(u0, ϕ)‖2M2
H

= ‖u(t)‖2 +
∫ 0

−r
‖ut(θ)‖2dθ

≤ 2(1 + recr)e−ct
∫ t

−∞
ecs‖g(s)‖2ds+ (1 + r)M2 = R2

H(t).

Then, for any bounded set D ⊂M2
H , one easily deduces that

U(t, τ)D ⊂ BH(t) = BM2
H

(0, RH(t)),

for all τ ≤ τ̂(t,D)− r. Thus U(t, τ) has a family of bounded pullback absorbing
sets in M2

H . �
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Lemma 3.7. Assume that (H1)−(H5) hold. Then the solution of (1.1) satisfies

‖u(t)‖2 + ‖u(t)‖2V + 2
∫

Ω
F(u(t))dx

≤M20

((
1 + (t− τ) +

1
t− τ

)
e−c(t−τ)‖u0‖2

+
(

1 + (t− τ) +
1

t− τ

)
e−c(t−r−τ)‖ϕ‖2L2

H

+
(

1 +
1

t− τ

)
+
(

1 +
1

t− τ

)
e−ct

∫ t

−∞
ecs‖g(s)‖2ds

+
(

1 +
1

t− τ

)
e−ct

∫ t

−∞

∫ s

−∞
ecy‖g(y)‖2dyds

)
,

for all t ≥ τ , where F(u) =
∫ u

0 f(ξ)dξ is the primitive of f .

Proof. Multiplying (1.1) by u(t) + u̇(t) then integrating over Ω, we get

d

dt

(
1
2
‖u(t)‖2V +

1
2
‖u(t)‖2 +

∫
Ω
F(u(t))dx

)
+ ‖u(t)‖2V +

∫
Ω
f(u(t))u(t)dx

= 〈F (ut), u(t)〉+ 〈F (ut), u̇(t)〉+ 〈g(t), u̇(t)〉+ 〈g(t), u(t)〉 − ‖u̇(t)‖2.
We have

‖u(t)‖2V ≥
1
2
‖u(t)‖2V +

λ1

2
‖u(t)‖2.

From condition (1.2), there exist M3,M4 > 0 such that

(3.6) M3(|u|p − 1) ≤ F(u) ≤M4(|u|p + 1),

and using (1.2) once again, we have∫
Ω
f(u(t))u(t)dx ≥ C1

M4

∫
Ω
F(u(t))dx− (C0 + C1)|Ω|.

Using condition (1.5), we get

〈F (ut), u(t)〉 =
4k1

λ1
〈F (ut),

λ1

4k1
u(t)〉

≤ 4k1

λ1

(
k1

λ2
1

16k2
1

‖u(t)‖2 + k2

∫ 0

−r
‖u(t+ θ)‖2dθ + k3

)
≤ λ1

4
‖u(t)‖2 +

4k1k2

λ1

∫ 0

−r
‖u(t+ θ)‖2dθ +

4k1k3

λ1
.

Similarly,

〈F (ut), u̇(t)〉 ≤ 1
2
‖u̇(t)‖2 + 2k1k2

∫ 0

−r
‖u(t+ θ)‖2dθ + 2k1k3.

Using the Cauchy inequality, we get

• 〈g(t), u̇(t)〉 ≤ 1
2
‖g(t)‖2 +

1
2
‖u̇(t)‖2;
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• 〈g(t), u(t)〉 ≤ 1
λ1
‖g(t)‖2 +

λ1

4
‖u(t)‖2 ≤ 1

λ1
‖g(t)‖2 +

1
4
‖u(t)‖2V .

Put

Ψ(t) = ‖u(t)‖2 + ‖u(t)‖2V + 2
∫

Ω
F(u(t))dx,

γ = min
{
λ1

2
,
1
2
,
C1

M4

}
,

M5 = 2(C0 + C1)|Ω|+ 8k1k3

λ1
+ 4k1k3,

M6 =
8k1k2

λ1
+ 4k1k2,

M7 = 1 +
2
λ1
,

from the above estimates we get

d

dt
Ψ(t) + γΨ(t) ≤M5 +M6

∫ 0

−r
‖ut(θ)‖2dθ +M7‖g(t)‖2.

Hence
d

dt

(
(t− τ)ectΨ(t)

)
≤ [1 + (c− γ)(t− τ)]ectΨ(t) +M5(t− τ)ect

+M6(t− τ)
∫ 0

−r
ect‖ut(θ)‖2dθ +M7(t− τ)ect‖g(t)‖2.

Integrating from τ to t and using (3.5), we get

(t− τ)ectΨ(t) ≤ [1 + (c− γ)(t− τ)]
∫ t

τ
ecsΨ(s)ds+

M5

c
(t− τ)ect

+M6(t− τ)recr
∫ t

τ
ecs‖u(s)‖2ds+M6(t− τ)rec(τ+r)‖ϕ‖2L2

H

+M7(t− τ)
∫ t

τ
ecs‖g(s)‖2ds.

(3.7)

Now, we will derive some estimates on
∫ t
τ e

cs‖u(s)‖2ds and
∫ t
τ e

csΨ(s)ds. Mul-
tiplying (3.3) by ect, we get

ect‖u(t)‖2 ≤ ecτ‖u0‖2 + 2k2re
c(τ+r))‖ϕ‖2L2

H
+M2e

ct +
∫ t

−∞
ecs‖g(s)‖ds.

and integrating from τ to t, we obtain∫ t

τ
ecs‖u(s)‖2ds ≤ (t− τ)ecτ

(
‖u0‖2 + 2k2re

cr‖ϕ‖2L2
H

)
+
M2

c
ect

+
∫ t

−∞

∫ s

−∞
ecy‖g(y)‖2dyds.(3.8)
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Using (3.4) and the fact that λ1‖u(t)‖2 ≤ ‖u(t)‖2V , we have

d

dt
‖u(t)‖2 + ‖u(t)‖2V + 2C1‖u(t)‖pLp(Ω)

≤ 2C0|Ω|+ 2k1‖u(t)‖2 + 2k2

∫ 0

−r
‖ut(θ)‖2dθ + 2k3 +

1
λ1
‖g(t)‖2.

Thus,

d

dt

(
ect‖u(t)‖2

)
+ ect

(
‖u(t)‖2V + 2C1‖u(t)‖pLp(Ω)

)
≤ 2(C0|Ω|+ k3)ect + (c+ 2k1)ect‖u(t)‖2 + 2k2

∫ 0

−r
ect‖ut(θ)‖2dθ +

1
λ1
ect‖g(t)‖2.

Integrating from τ to t, we have

ect‖u(t)‖2 − ecτ‖u(τ)‖2 +
∫ t

τ
ecs
(
‖u(s)‖2V + 2C1‖u(s)‖pLp(Ω)

)
ds

≤M8e
ct + (M9 − 1)

∫ t

τ
ecs‖u(s)‖2ds+ 2k2re

c(r+τ)‖ϕ‖2L2
H

+
1
λ1

∫ t

−∞
ecs‖g(s)‖2ds,

where M8 =
2(C0|Ω|+ k3)

c
, M9 = c+ 2k1 + 2k2re

cr + 1.

Using (3.8), we have∫ t

τ
ecs
(
‖u(s)‖2 + ‖u(s)‖2V + 2C1‖u(s)‖pLp(Ω)

)
ds

≤ ecτ‖u0‖2 +M8e
ct + 2k2re

c(r+τ)‖ϕ‖2L2
H

+
1
λ1

∫ t

−∞
ecs‖g(s)‖2ds+M9

∫ t

τ
ecs‖u(s)‖2ds

≤ [1 +M9(t− τ)]
(
ecτ‖u0‖2 + 2k2re

c(r+τ)‖ϕ‖2L2
H

)
+
(
M8 +

M2M9

c

)
ect

+
1
λ1

∫ t

−∞
ecs‖g(s)‖2ds+M9

∫ t

−∞

∫ s

−∞
ecy‖g(y)‖2dyds.

Since
‖u(t)‖2 + ‖u(t)‖2V + 2C1‖u(t)‖pLp(Ω) ≥ γΨ(t)− 2C1|Ω|,

we have∫ t

τ
ecsΨ(s)ds

≤ 1 +M9(t− τ)
γ

(
ecτ‖u0‖2 + 2k2re

c(r+τ)‖ϕ‖2L2
H

)
+
(
M8

γ
+
M2M9 + 2C1|Ω|

cγ

)
ect

+
1
γλ1

∫ t

−∞
ecs‖g(s)‖2ds+

M9

γ

∫ t

−∞

∫ s

−∞
ecy‖g(y)‖2dyds.

(3.9)
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Combine (3.8) and (3.9) with (3.7), we get

(t− τ)ectΨ(t) ≤
[

1
γ

+
M9 + c− γ

γ
(t− τ) +

(
M9(c− γ)

γ
+M6re

cr

)
(t− τ)2

]
× ecτ‖u0‖2 +

[
2k2r

γ
+

2k2r(c+M9 − γ) +M6rγ

γ
(t− τ)

+
2k2r(M6γre

cr +M9(c− γ))
γ

(t− τ)2

]
ec(τ+r)‖ϕ‖2L2

H

+
[

2C1|Ω|+ cM8 +M2M9

cγ

+
(2C1|Ω|+ cM8 +M2M9)(c− γ) + γ(M5 +M2M6re

cr)
cγ

(t− τ)
]
ect

+
[

1
γλ1

+
(
c− γ
γλ1

+M7

)
(t− τ)

] ∫ t

−∞
ecs‖g(s)‖2ds

+
[
M9

γ
+
(

(c− γ)M9

γ
+M6re

cr

)
(t− τ)

] ∫ t

−∞

∫ s

−∞
ecy‖g(y)‖2dyds.

Thus,

Ψ(t) ≤
[

1
γ(t− τ)

+
M9 + c− γ

γ
+M10(t− τ)

]
e−c(t−τ)‖u0‖2

+
[
M11

t− τ
+M12 +M13(t− τ)

]
e−c(t−τ−r)‖ϕ‖2L2

H
+
[
M14

t− τ
+M15

]
+
[
M16

t− τ
+M17

]
e−ct

∫ t

−∞
ecs‖g(s)‖2ds

+
[
M18

t− τ
+M19

]
e−ct

∫ t

−∞

∫ s

−∞
ecy‖g(y)‖2dyds.

This completes the proof. �

Lemma 3.8. Assume that (H1)−(H5) hold. Then the process U(t, τ) associated
to (1.1) has a family of pullback absorbing sets {BV (t)}t∈R in the space M2

V .

Proof. Let

R2(t) = 2M20

(
1 + e−ct

∫ t

−∞
ecs‖g(s)‖2ds+ e−ct

∫ t

−∞

∫ s

−∞
ecy‖g(y)‖2dyds

)
< +∞,

then from Lemma 3.7, there exists τ̂ = τ̂(t, u0, ϕ) ≤ t such that

‖u(t)‖2V ≤ R2(t),(3.10)

‖ut(θ)‖2V ≤ ecrR2(t),(3.11)

‖ut(θ)‖2V + 2M3‖u(t)‖pLp(Ω) ≤ 2M3|Ω|+ ecrR2(t),(3.12)
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for all τ ≤ τ̂ − r and θ ∈ (−r, 0). So, we have

‖U(t, τ)(u0, ϕ)‖2M2
V

= ‖u(t)‖2V +
∫ 0

−r
‖ut(θ)‖2V dθ ≤ (1 + recr)R2(t) = R2

V (t).

Then, for any bounded set D ⊂M2
V , one easily deduces that

U(t, τ)D ⊂ BV (t) = BM2
V

(0, RV (t)),

for all τ ≤ τ̂(t,D)− r. This completes the proof. �

Theorem 3.9. Under assumptions (H1) − (H5), the process U(t, τ) associated
to (1.1) has a pullback attractor Â = {A(t)}t∈R in the space M2

H .

Proof. Due to the result of Lemma 3.3, U(t, τ) is a continuous process on M2
H .

Therefore, by Theorem 2.3, we need to prove that there exists a family of compact
pullback absorbing sets in M2

H . From Lemma 3.7, U(t, τ) has a family of pullback
absorbing sets {BV (t)} in M2

V . Let

B(t) =
⋃

τ≤τ̂(t,BV )−r

U(t, τ)BV (t).

It is easy to see that {B(t)} is a pullback absorbing in M2
H for U(t, τ). We now

show that B(t) is precompact in M2
H . Let Π1 and Π2 are canonical projectors on

M2
H , i.e. Π1 : (u0, ϕ) 7→ u0 and Π2 : (u0, ϕ) 7→ ϕ. One observes that Π1B(t) is

bounded in V and then it is precompact in H. It remains to prove that Π2B(t)
is precompact in L2

H .
Let {unt }∞n=1 ⊂ Π2B(t). For a given t > τ + r, (3.12) ensures that un(t + θ),

θ ∈ (−r, 0) belongs to a bounded set in V ∩ Lp(Ω). It follows that un belongs to
a bounded set in L2(t− r, t;V ∩ Lp(Ω)).

By rewriting the equation in (1.1) as

u̇n(t) = F (unt ) + g(t)−Aun(t)− f(un(t)),

we obtain that u̇n belongs to a bounded set in

L2(t− r, t;V ′) + Lp
′
(t− r, t;Lp′(Ω)) ⊂ Lp′(t− r, t;V ′ + Lp

′
(Ω)).

Using the Aubin-Lions lemma [17], we conclude that un belongs to a compact set
in L2(t − r, t;L2(Ω)), or equivalently, {ut ∈ Π2B(t)} is precompact in L2

H . The
proof is complete. �

Remark 3.10. In the case p = 2, i.e., f(u) = du (d > 0) as in [15], since we no
longer have Lemma 3.1, the conditions of the external force g should be changed
as follows:∫ 0

−∞
eλ1s‖g(s)‖2ds < +∞ and

∫ 0

−∞

∫ s

−∞
eλ1y‖g(y)‖2dyds < +∞,

where λ1 > 0 is the first eigenvalue of the operator A. Using the above arguments,
one can show that if g satisfies the above conditions and λ1 + d > k1 + k2r, then
there exists a pullback attractor in the space M2

H for the process U(t, τ).
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4. Existence of a uniform attractor

In this section, instead of (H5), we assume that the external force g satisfies
• (H5bis) g is a translation bounded function in L2

loc(R;H), that is, g ∈
L2
loc(R;H) such that

‖g‖2L2
b

= ‖g‖2L2
b(R;H) = sup

t∈R

∫ t+1

t
‖g(s)‖2ds < +∞.

Denote by L2
b(R;H) the space of all translation bounded functions and by Hw(g)

the closure of the set {g(s + ·) | s ∈ R} in L2,w
loc (R;H) with the weak topology.

It is well-known [11, 18] that Hw(g) is weakly compact, and if g0 ∈ Hw(g) then
g0 ∈ L2

b(R;H) and ‖g0‖2L2
b
≤ ‖g‖2

L2
b
. Therefore, for any g0 ∈ Hw(g),

e−ct
∫ t

−∞
ecs‖g0(s)‖2ds =

∫ t

−∞
e−c(t−s)‖g0(s)‖2ds

=
∞∑
k=0

∫ t−k

t−k−1
e−c(t−s)‖g0(s)‖2ds

≤
∞∑
k=0

e−ck
∫ t−k

t−k−1
‖g0(s)‖2ds

≤‖g0‖2L2
b

∞∑
k=0

e−ck =
1

1− e−c
‖g0‖2L2

b

≤ 1
1− e−c

‖g‖2L2
b
.

It is evident that (H5bis) implies (H5), so we can use all the results obtained in
Section 3.

Consider the corresponding family of equations:

(4.1)

{
d

dt
u(t) +Au(t) + f(u(t)) = F (ut) + g0(t),

u(τ) = u0, u(τ + θ) = ϕ(θ), θ ∈ (−r, 0).

Assume conditions (H2)−(H4) hold. Then for any g0 ∈ Hw(g) and (u0, ϕ) ∈M2
H ,

τ ∈ R are given, Theorem 3.2 implies that there exists a unique weak solution
u(.) = u(.; τ, (u0, ϕ), g0) of Problem (4.1).

We thus can define a process Ug0(., .) : M2
H →M2

H in the product space as

Ug0(t, τ)(u0, ϕ) = (u(t; τ, (u0, ϕ), g0), ut(., τ, (u0, ϕ), g0)), ∀(u0, ϕ) ∈M2
H , t ≥ τ,

and the corresponding family of processes as {Ug0(., .) | g0 ∈ Hw(g)}.

Lemma 4.1. Assume that (H1) − (H4) and (H5bis) hold. Then the family of
processes {Ug0(., .) | g0 ∈ Hw(g)} is (M2

H ×Hw(g),M2
H)-continuous.

proof The proof follows the same lines in the proof of Lemma 4.4 in [15], so it
is omitted here.
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Lemma 4.2. Assume that (H1) − (H4) and (H5bis) hold. Then there ex-
ists a bounded uniformly absorbing set B1 in M2

H for the family of processes
{Ug0(., .) | g0 ∈ Hw(g)}.

Proof. By Lemma 3.5, we have

‖u(t)‖2 ≤ e−c(t−τ)‖u0‖2 + 2k2re
−c(t−τ−r)‖ϕ‖2L2

H
+M2 + e−ct

∫ t

−∞
ecs‖g0(s)‖2ds

≤ e−c(t−τ)‖u0‖2 + 2k2re
−c(t−τ−r)‖ϕ‖2L2

H
+M2 +

1
1− e−c

‖g‖2L2
b
.

Denote ρ1 = ρ1(g) = 2M2 +
2

1− e−c
‖g‖2

L2
b
. Given D ∈ B(M2

H), there exists

τ̂ = τ̂(D) > τ such that for all t ≥ τ̂ + r, (u0, ϕ) ∈ D, g0 ∈ Hw(g), we have

‖u(t)‖2 ≤ ρ1(g),(4.2)

‖ut‖2L2
H

=
∫ 0

−r
‖u(t+ θ)‖2dθ ≤ rρ1(g).(4.3)

Hence, it is obvious that

‖Ug0(t, τ)(u0, ϕ)‖2M2
H

= ‖u(t)‖2 + ‖ut‖2L2
H
≤ (1 + r)ρ1(g) = ρ2

H(g).

This means that the closed ball B1 = BM2
H

(0, ρH(g)) forms a uniformly absorbing
set for the mappings {Ug0(., .) | g0 ∈ Hw(g)}. �

Lemma 4.3. Under the assumptions of Lemma 4.2, there exists a bounded uni-
formly absorbing set B2 in M2

V for the family of processes {Ug0(., .) | g0 ∈ Hw(g)}.

Proof. Let u(t) = Ug0(t, τ)(u0, ϕ). We will prove that

‖u(t)‖2V + 2
∫

Ω
F(u(t))dx ≤ ρ2 = ρ2(g),

for all t ≥ τ̂ + r + 1 by using the uniform Gronwall lemma.
First, multiplying the first equation in (4.1) by u̇(t), we get

‖u̇(t)‖2 +
1
2
d

dt

(
‖u(t)‖2V + 2

∫
Ω
F(u(t))dx

)
≤ 1

2
‖u̇(t)‖2 + 2k1k2‖ut‖2L2

H
+ 2k1k3 +

1
2
‖g0(t)‖2 +

1
2
‖u̇(t)‖2,

and therefore

(4.4)
d

dt

(
‖u(t)‖2V + 2

∫
Ω
F(u(t))dx

)
≤ 4k1k2‖ut‖2L2

H
+ 4k1k3 + ‖g0(t)‖2.
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From Equation (4.1), using (1.5), (1.2) and the Cauchy inequality, we get

d

dt
‖u(t)‖2 + ‖u(t)‖2V + 2C1‖u(t)‖pLp(Ω)

≤ 2C0|Ω|+ 2k1‖u(t)‖2 + 2k2

∫ 0

−r
‖ut(θ)‖2dθ + 2k3 +

1
λ1
‖g0(t)‖2

≤ 2C0|Ω|+ 2k1ρ1 + 2k2rρ1 + 2k3 +
1
λ1
‖g0(t)‖2.

Integrating from t to t+ 1 (with t ≥ τ̂ + r), we have

‖u(t+ 1)‖2 − ‖u(t)‖2 +
∫ t+1

t

(
‖u(s)‖2V +

2C1

M4

∫
Ω
F(u(s))dx

)
ds

≤ 2(C0 + C1)|Ω|+ 2k1ρ1 + 2k2rρ1 + 2k3 +
1
λ1
‖g0‖2L2

b

≤ 2(C0 + C1)|Ω|+ 2k1ρ1 + 2k2rρ1 + 2k3 +
1
λ1
‖g‖2L2

b
.

Since we can take M4 ≥ C1, it follows that

C1

M4

∫ t+1

t

(
‖u(s)‖2V + 2

∫
Ω
F(u(s))dx

)
ds

≤ 2(C0 + C1)|Ω|+ 2k1ρ1 + 2k2rρ1 + 2k3 +
1
λ1
‖g‖2L2

b
+ ‖u(t)‖2

≤ 2(C0 + C1)|Ω|+ (1 + 2k1 + 2k2r)ρ1 + 2k3 +
1
λ1
‖g‖2L2

b
.

Putting

IV =
M4

(
2(C0 + C1)|Ω|+ (1 + 2k1 + 2k2r)ρ1 + 2k3 +

1
λ1
‖g‖2

L2
b

)
C1

,

we have

(4.5)
∫ t+1

t

(
‖u(s)‖2V + 2

∫
Ω
F(u(s))dx

)
ds ≤ IV .

Therefore, we have

∫ t+1

t

(
4k1k2‖ut‖2L2

H
+ 4k1k3 + ‖g0(s)‖2

)
ds ≤ 4k1k2rρ1 + 4k1k3 + ‖g‖2L2

b
= Ih.

(4.6)

Now, from (4.4)-(4.6), we can apply the uniform Gronwall inequality to obtain

‖u(t)‖2V + 2
∫

Ω
F(u(t))dx ≤ IV + Ih = ρ2, for all t ≥ τ̂ + r + 1.
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Using (3.6), we obtain

‖u(t)‖2V + 2M3‖u(t)‖pLp(Ω) ≤ ρ2 + 2M3|Ω|,

‖ut(θ)‖2V + 2M3‖ut(θ)‖pLp(Ω) ≤ ρ2 + 2M3|Ω|,

‖ut‖2L2
V
≤ rρ2 + 2rM3|Ω|,

for all t ≥ τ̂ + 2r + 1 and θ ∈ (−r, 0). We arrive at the conclusion that, for any
bounded set D ⊂M2

V , we have

Ug0(t, τ)D ⊂ B2 = BM2
V

(
0,
√

(1 + r)(ρ2 + 2M3|Ω|)
)

for t large enough and for all g0 ∈ H(g). Thus, {Ug0(t, τ) | g0 ∈ H(g)} has the
uniform absorbing set B2 in M2

V . �

Theorem 4.4. Assume that (H1)− (H4) and (H5bis) hold. Then there exists a
uniform attractor AH(g) in M2

H for the family of processes {Ug0(., .) | g0 ∈ Hw(g)}.
Moreover, AH(g) is compact in M2

H , and

AHw(g) =
⋃

g0∈Hw(g)

Kg0(s) ∀s ∈ R,

where Kg0 is the kernel of the process Ug0(t, τ).

Proof. Let us consider the set B2. This is a bounded uniformly (w.r.t. g0 ∈
Hw(g)) absorbing set for {Ug0(., .) | g0 ∈ Hw(g)}.

As in the proof of Theorem 3.9, we can show that B is precompact in M2
H .

Since B is relatively compact in M2
H , hence B, where the closure is taken

in M2
H , is a compact uniformly (w.r.t. g0 ∈ Hw(g)) absorbing set in M2

H for
{Ug0(., .) | g0 ∈ Hw(g)}. By Theorem 2.6, this ensures the existence and structure
of the uniform attractor AHw(g) for the family of processes {Ug0(., .) | g0 ∈ Hw(g)}
as stated. �

Remark 4.5. In the case f(u) = du (d > 0) as in [15], using the above arguments
one can show that if λ1 +d > k1 +k2r, then there exists a uniform attractor in the
space M2

H for the family of processes {Ug0(., .) | g0 ∈ Hw(g)}. Thus, in particular,
this result improves the recent one in [15]. It is noticed that our approach is
different from the one used in [15], and we only require that g is translation
bounded, while in [15] the authors assumed that g is translation compact.

5. A relationship between the pullback attractor and the uniform
attractor

In this section we assume that the external force g is a translation bounded
function. It is proved in Theorem 3.9 that for any g0 ∈ Hw(g), the process
Ug0(t, τ) has a pullback attractor Âg0 = {Ag0(t) : t ∈ R}. Moreover, we have
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Theorem 5.1. Under conditions (H1)− (H4) and (H5bis), for any g0 ∈ Hw(g),
the process {Ug0(t, τ)} has a pullback attractor Âg0 = {Ag0(t) : t ∈ R}, and

Ag0(s) = Kg0(s),
⋃

g0∈Hw(g)

Ag0(s) = AHw(g), ∀s ∈ R,

where AHw(g) is the uniform attractor of Problem (1.1), Kg0 is the kernel of the
process Ug0(t, τ).

Proof. Since Âg0 is pullback attracting, and Ag0(s) is compact, we have

Kg0(s) ⊂ Ag0(s) for any s ∈ R.

On the other hand, by the definition of Kg0(s) and the invariance of Âg0 , we have

Ag0(s) ⊂ Kg0(s) for any s ∈ R.
So, we have

(5.1) Ag0(s) = Kg0(s) for any s ∈ R.
Next, by (5.1) and Theorem 4.4,

AHw(g) =
⋃

g0∈Hw(g)

Kg0(s) =
⋃

g0∈Hw(g)

Ag0(s), ∀s ∈ R.

The proof is complete. �
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