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FOURIER AND HERZ ALGEBRAS OF

A COMPACT TENSOR HYPERGROUP

MASSOUD AMINI AND ALI REZA MEDGHALCHI

Abstract. We study the basic properties of the Fourier and Herz spaces
A(K) and Ap(K) of a compact hypergroup K and associate them with sub-
spaces of the Cartesian product of matrix algebras on the dual hypergroup.
When K is a tensor hypergroup we show that A(K) is a regular Banach al-
gebra whose spectrum is K. We also compute some of the corresponding
multiplier algebras.

1. Introduction

Fourier algebra of a locally compact group is defined in 60’s by Pier Eymard
[Ey] and since then, it plays a crucial role in harmonic analysis of topological
groups [HR],[Pi]. Fourier algebra is a generalization of the algebra of all Fourier
transforms of absolutely integrable functions on a locally compact abelian group.
In the non-abelian case, positive definite functions are used to define this alge-
bra. Positive definite functions are introduced and studied much earlier (see for
instance [Go]).

Topological hypergroups are generalizations of topological groups, motivated
by Physical applications [BK]. The harmonic analysis of these structures (and
in particular, positive definite functions on them) is widely studied [BH], [La1],
[La2], [Vo]. These functions show a pathological behavior on hypergroups. In
contrast with the group case [Ey], the product of positive definite functions on
a topological hypergroup need not be positive definite. Hence, for hypergroups
(even in the compact case) we only have a Fourier space [Vr]. Indeed, there
is a finite hypergroup with three elements on which the Banach algebra norm
condition fails even for characters [Vr].

The hypergroups with property (P) are defined as the class of hypergroups for
which the product of two positive definite functions is again positive definite (see
for instance [Vo]). If this is the case, there is an equivalent norm which makes
the Fourier space a Banach algebra [AM].
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The authors introduced and studied the (n-)tensor hypergroups in [AM] and
showed that hypergroups with property (P) are exactly 2-tensor hypergroups.
The Fourier space of tensor hypergroups are Banach algebras and share some of
important properties of group Fourier algebras.

In this paper, we further study Fourier algebras of compact tensor hypergroups
and show that they are natural, regular Banach function algebras. We also cal-
culate the linear conjugate of these algebras. Similar results are obtained for the
Herz algebra of a compact hypergroup. Finally, multipliers of function algebras
on a compact hypergroup are studied along the lines of [HR] and in particular,
the conjugate spaces of Fourier and Herz algebras of a compact hypergroup is
calculated as a multiplier algebra.

2. fourier and herz spaces

Let K be a compact hypergroup and K̂ denote the set of equivalence classes
of all continuous irreducible representations of K. For π ∈ K̂, let {ξπ

i }
dπ

i=1 be an
orthonormal basis for the corresponding (finite dimensional) Hilbert space Hπ

and put
πi,j(x) = 〈π(x)ξπ

i , ξ
π
j 〉 (1 ≤ i, j ≤ dπ).

Define the conjugation operator Dπ on Hπ by

Dπ(

dπ
∑

i=1

αiξ
π
i ) =

dπ
∑

i=1

ᾱiξ
π
i ,

and put π̄ = DππDπ. Let Trigπ(K) = span{πi,j : 1 ≤ i, j ≤ dπ} and Trig(K) =

span{πi,j : π ∈ K̂, 1 ≤ i, j ≤ dπ}. Then dimTrigπ(K) = d2
π and there is kπ ≥ dπ

such that
∫

K

πi,jσ̄r,sdm = k−1
π δπ,σδi,rδj,s (π, σ ∈ K̂) [Vr, 2.6].

Also {k
1

2
π πi,j : π ∈ K̂, 1 ≤ i, j ≤ dπ} is an orthonormal basis of L2(K) and

Trig(K) = ⊕
π∈K̂

Trigπ(K) [Vr, 2.7].

In particular, Trig(K) is norm dense in both C(K) and L2(K) [Vr, 2.13, 2.9].
For each f ∈ L2(K) we have the Fourier series expansion

f =
∑

π∈K̂

dπ
∑

i,j=1

kπ〈f, πi,j〉πi,j

where the series converges in L2-norm.
Consider the ∗-algebra

E(K̂) :=
∏

π∈K̂

B(Hπ)

with coordinatewise operations. For f = (fπ) ∈E(K̂) and 1 ≤ p <∞ put

‖f‖p :=
(

∑

π∈K̂

kπ‖fπ‖
p
p

)
1

p , ‖f‖∞ := sup
π∈K̂

‖fπ‖∞,
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where the right hand side norms are operator norms as in [HR, D.37, 36(e)].

Define Ep(K̂), E∞(K̂), and E0(K̂) as in [HR, 28.24]. These are Banach spaces

with isometric involution [HR, 28.25], [BH]. Also E(K̂) is a C∗-algebra [HR,

28.26]. For each µ ∈ M(K), define µ̂ ∈ E∞(K̂) by µ̂(π) = π̄(µ), then µ 7→ µ̂ is a

norm-decreasing ∗-isomorphism of M(K) into E∞(K̂). Similarly one can define

a norm-decreasing ∗-isomorphism f 7→ f̂ of L1(K) onto a dense subalgebra of

E0(K̂) [Vr, 3.2, 3.3]. Also there is an isometric isomorphism g 7→ ĝ of L2(K) onto

E2(K̂). Each g ∈ L2(K) has a Fourier expansion

g =
∑

π∈K̂

dπ
∑

i,j=1

kπ〈ĝ(π)ξπ
i , ξ

π
j 〉πi,j ,

where the series converges in L2-norm [Vr, 3.4].

For µ ∈M(K) and π ∈ K̂, we set aπ = π̄(µ)∗, and write

µ ≈
∑

π∈K̂

kπtr(aππ).

If µ = fdm, where f ∈ L1(K), then we write

f ≈
∑

π∈K̂

kπtr(aππ).

If moreover
∑

π∈K̂
kπ‖aπ‖1 <∞, we write f ∈ A(K) and put

‖f‖A =
∑

π∈K̂

kπ‖f̂(π)‖1.

A(K) is a Banach space with respect to this norm, and f 7→ f̂ is an iso-

metric isomorphism of A(K) onto E1(K̂). Also for each f ∈ A(K) with f '
∑

π∈K̂
kπtr(aππ) we have

f(x) =
∑

π∈K̂

kπtr(aππ(x)),

m-a.e. [Vr, 4.2]. If moreover f is positive definite, we have

f(e) = ‖f‖u :=
∑

π∈K̂

kπtr(f̂(π)),

where the series converges absolutely [Vr, 4.4]. If we denote the set of all
continuous positive definite functions on K by P (K), then f ∈ P (K) if and

only if f ∈ A(K) and each operator f̂(π) is positive definite [Vr, 4.6] and
A(K) = span(P (K)) = L2(K) ∗ L2(K) [Vr, 4.8, 4.9].
A(K) is a regular Banach algebra with convolution product and if K is a tensor

hypergroup (a hypergroup with property (P)) then A(K) is also a Banach algebra
with pointwise product (under an equivalent norm) [AM].

For each π ∈ K̂, let Mπ denote the algebra of all complex dπ×dπ matrices with
norm ‖T‖ = kπ‖T‖1, where the norm on the right hand side is the trace class
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norm ‖T‖1 = trace(T ∗T )
1

2 . Consider the map j : A(K)⊗̂A(K) → A(K × K)
defined by norm-decreasing injective maps jπρ : Mπ⊗̂Mρ → Mπρ. Then j is

injective (but not an isometry). We are guessing that if {kπ : π ∈ K̂} is bounded
above, then j is surjective (compare with [Jo, 2.4]).

Next consider the convolution product γ : A(K)⊗̂A(K) → A(K) and the
quotient map q : A(K)⊗̂A(K) → A(K)⊗̂A(K)/ker(γ) and put Aγ(K) = Im(γ)
endowed with the norm

‖γ(F )‖γ := ‖q(F )‖
(

F ∈ A(K)⊗̂A(K)
)

,

where the right hand side is in the quotient norm.

Lemma 2.1. For each f ∈ L1(K),

(i)f ∈ Aγ(K) if and only if
∑

π∈K̂
k2

π‖f̂(π)‖1 <∞.

(ii) If f ∈ Aγ(K), ‖f‖γ =
∑

π∈K̂
k2

π‖f̂(π)‖1.

(iii) If φ : K̂ → ∪
π∈K̂

Mπ and φ(π) ∈Mπ, for each π ∈ K̂ and
∑

π∈K̂
k2

π‖f̂(π)‖1

<∞, then there is f ∈ Aγ(K) such that f̂ = φ.

Proof. Consider the product map γπ : Mπ⊗̂Mπ → Mπ and let qπ : Mπ⊗̂Mπ →
Mπ⊗̂Mπ/ker(γπ) be the corresponding quotient map, then γπ = γ

′

π ◦ qπ, for some

surjective isometry γ
′

π : Mπ⊗̂Mπ/ker(γπ) → Mπ, with respect to the trace class
norm on Mπ [Jo, 2.5]. Now Aγ(K) = Im(γ) = ⊕Im(γπ) and the result follows

from [Jo, 2.3] and the fact that A(K) ∼= E1(K̂) ∼=
⊕

π∈K̂
Mπ, where the sum is

the `1-direct sum of Banach spaces. �

Lemma 2.2. Each norm-closed, translation and conjugation invariant subspace
I of L2(K) is a two-sided ideal with respect to convolution.

Proof. For each f, g, φ ∈ L2(K),
∫

K

(f ∗ g)φdm =

∫

K

g(f̄ ∗ φ)dm [Je, 6.2D].

If φ ∈ I⊥ then for each f ∈ I and x ∈ K, xf̄ ∈ I and so f ∗φ(x) =
∫

K xf̄φdm = 0.

Hence
∫

K
(f ∗ g)φdm = 0, and so f ∗ g ∈ (I⊥)⊥ = Ī = I. �

Proposition 2.3. If K is a tensor hypergroup (a hypergroup with property (P))
then A(K) and Aγ(K) are Banach algebras with pointwise product (under an
equivalent norm).

Proof. The first assertion is proved in [AM]. It is known that Aγ(K) is a regular
Banach algebra with convolution product [Vr]. A minimal two-sided ideal of
Aγ(K) is of the form

Jπ = {f ∈ Aγ(K) : f̂(ρ) = 0 (ρ 6= π)}.

For each f ∈ Aγ(K) we have

f̂ =
∑

π∈K̂

f̂(π)Iπ,
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where Iπ is the identity matrix in Mπ. Consider φ : K̂ → ∪
π∈K̂

Mπ defined by

φπ(ρ) = Iπδπρ. Then by Lemma 2.1 (iii), there is fπ ∈ Aγ(K) such that f̂π = φπ.
Then fπ ∈ Jπ and

f =
∑

π∈K̂

f̂(π)fπ =
∑

π∈K̂

λπf
′

π,

where λπ = k2
π‖f̂(π)‖1/‖f‖γ and f

′

π = λ−1
π f̂(π)fπ, if λπ 6= 0 and f

′

π = 0, other-

wise. Hence f
′

π ∈ J − π and f is a limit of convex combinations of elements of

Jπ’s. Therefore we only need to show that for each π, ρ ∈ K̂, f ∈ Jπ and g ∈ Jρ,
we have ‖fg‖γ ≤ ‖f‖γ‖g‖γ . Let γπρ : Jπ ⊗ Jρ → L2(K) be the convolution prod-
uct and I = Im(γπρ). Then dimI ≤ k2

πk
2
ρ and I is clearly conjugation closed (i.e.

f̄ ∈ I, whenever f ∈ I). Also I is translation invariant, since x(f ∗ g) = (xf) ∗ g

and (xf )̂ (ρ) = ρ(x̄)f̂(ρ), for each x ∈ K, ρ ∈ K̂, and f, g ∈ L2(K). There-
fore, by Lemma 2.2, I is a finite dimensional two-sided ideal of Aγ(K), and so

I = ⊕σ∈SJσ, for some finite subset S of K̂. Also
∑

σ∈S k
2
σ = dimI ≤ k2

πk
2
ρ.

Therefore

‖fg‖γ =
∑

σ∈S

k2
σ‖(fg)̂ (σ)‖1 ≤ kπkρ

∑

σ∈S

kσ‖(fg)̂ (σ)‖1

= kπkρ‖fg‖ ≤ kπkρ‖f‖‖g‖ = k2
πk

2
ρ‖f̂(π‖1‖ĝ(ρ)‖1 = ‖f‖γ‖g‖γ .

�

Theorem 2.4. If K is a tensor hypergroup, the spectrum of the commutative
Banach algebra A(K) is K. In particular, A(K) is a natural, regular Banach
function algebra.

Proof. Using notations of [Da], let x ∈ K and S be a closed subset of K and put

J(S) = {f ∈ A(K) : supp(f) ∩ S = ∅} I(S) = {f ∈ A(K) : f(S) ⊆ {0} },

and put Jx = J({x}) and Mx = I({x}). We follow the idea of [Da, Thm. 4.5.31].
Let 0 6= f ∈ Mx and choose 0 < ε < ‖f‖∞. Put fa(x) = f(x ∗ a), for a, x ∈ K
and

W = {a ∈ K : ‖fā − f‖2 ≤ ε}.

This is a compact neighborhood of e ∈ K. Choose K1 ⊆ K so that
∫

K\K1

|f(x ∗ t̄)|2dm(t) < ε

and put V1 = (K\K1) ∪ {0} and V = W ∩ W̄ ∩ V1, and define

g(t) = f(t)χV (x̄ ∗ t), u =
1

m(V )
χV (t ∈ K),

and h = (f − g) ∗ ǔ ∈ A(K), then

h(x) =

∫

K

(

f(t) − f(t)χV (x̄ ∗ t)
)

ǔ(x̄ ∗ t)dm(t)

=
1

m(V )

∫

K

(

f(t)χV (x̄ ∗ t) − f(t)χ2
V (x̄ ∗ t)dm(t) = 0,
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that is h ∈ Jx. On the other hand,

‖g‖2
2 =

∫

K

|f(t)|2χV (x̄ ∗ t)dm(t) =

∫

V

|f(x ∗ t̄)|2dm(t) < ε.

Next, ‖u‖2 = 1

m(V )
1
2

and

‖f − f ∗ ǔ‖2
2 =

∫

K

|f(t) − f ∗ ǔ(t)|2dm(t)

≤
1

m(V )2

∫

K

(

∫

V

|f(t) − f(t ∗ ȳ)|dm(y)
)2
dm(t)

=
1

m(V )

∫

K

∫

V

|f(t) − f(t ∗ ȳ)|2dm(y)dm(t)

=
1

m(V )

∫

V

‖fȳ − f‖dm(y) ≤ ε,

hence

‖f − h‖2 ≤ ‖f − f ∗ ǔ‖2 + ‖g‖2‖ǔ‖2

≤ ε(1 +
1

m(V )
1

2

).

Therefore Jx is dense in Mx and the result follows from [Da, 4.1.32]. �

For 1 ≤ p <∞, let 1
p

+ 1
q

= 1 and consider the vector space

Ap(K) = {h ∈ C0(K) : h =

∞
∑

k=1

fk ∗ gk, fk ∈ Lp, gk ∈ Lq,

∞
∑

k=1

‖fk‖p.‖gk‖q <∞}

with norm

‖h‖Ap
= inf{

∞
∑

k=1

‖fk‖p‖gk‖q : h =

∞
∑

k=1

fk ∗ gk}.

Note that if h =
∑∞

k=1 fk ∗ gk, then the sum converges uniformly on K and
‖h‖∞ ≤ ‖h‖Ap

.

Lemma 2.5. Ap(K) is a Banach space and Banach L1(K)-module.

Proof. Let {hn} be a Cauchy sequence in Ap, then hn → h in C0(K). Choose a

subsequence such that
∑

j ‖hnj+1
−hnj

‖Ap
<∞ and put hnj+1

−hnj
=

∑

k f
j
k ∗g

j
k

with
∑

k ‖f
j
k‖p‖g̃

j
k‖q < ‖hnj+1

−hnj
‖Ap

+ 2−j , then h = hn1
+

∑

j(hnj+1
−hnj

) =

hn1
+

∑

j

∑

k f
j
k ∗ gj

k ∈ Ap. Next let f ∈ L1 and h ∈ Ap. For ε > 0, write

h =
∑∞

k=1 fk∗gk with
∑

k ‖fk‖p‖gk‖q < ‖h‖Ap
+ε. Since ‖h−

∑n
k=1 fk∗gk‖∞ → 0,

we get ‖f ∗ h−
∑n

k=1 f ∗ fk ∗ gk‖∞ → 0, so f ∗ h =
∑∞

k=1 f ∗ fk ∗ gk. Also
∑

k

‖f ∗ fk‖p‖g̃k‖q ≤ ‖f‖1

∑

k

‖fk‖p‖gk‖q ≤ ‖f‖1(‖h‖Ap
+ ε),

hence f ∗ h ∈ Ap and ‖f ∗ h‖Ap
≤ ‖f‖1‖h‖Ap

. �
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Proposition 2.6. We have the isometric isomorphisms A1(K) ' C0(K) and
A2(K) ' A(K).

Proof. By definition, A1(K) ⊆ C0(K) and ‖h‖∞ ≤ ‖h‖Ap
, for each h ∈ A1.

Conversely, since C0(K) is a Banach left L1-module and L1(K) has a bounded
approximate identity [GM], it follows from Cohen Factorization Theorem [HR,
32.22] that for each h ∈ C0(K) and δ > 0, there are f ∈ L1(K) and g ∈ C0(K)
with ‖f‖1 ≤ 1, ‖g − h‖∞ ≤ δ, and h = f ∗ g. Hence h ∈ A1(K) and ‖h‖A1

≤
‖f‖1‖g‖∞ ≤ ‖g‖∞ ≤ ‖h‖∞ + δ.

Next let h ∈ A2(K) and ε > 0. Write h =
∑∞

k=1 fk ∗ gk with
∑

k ‖fk‖2‖gk‖2 <
‖h‖A2

+ ε. Then ‖fk ∗ gk‖A ≤ ‖fk‖2‖g‖2 and so {
∑n

k=1 fk ∗ gk} is a Cauchy
sequence in A(K) which converges to h (since ‖.‖∞ ≤ ‖.‖A). Hence h ∈ A(K)
and

‖h‖A ≤
∞
∑

k=1

‖fk ∗ gk‖A ≤
∞
∑

k=1

‖fk‖2‖gk‖2 < ‖h‖A2
+ ε.

Hence ‖h‖A ≤ ‖h‖A2
and A2(K) ⊆ A(K). Conversely, if h ∈ A(K) then h ∈

A2(K) and

‖h‖A2
≤ inf{‖f‖2‖g‖2 : f, g ∈ L2, h = f ∗ g} = ‖h‖A,

Hence A(K) ⊆ A2(K). �

For f, g : K → C define

Γ(f)(x, y) = f(x ∗ ȳ), f ⊗ g(x, y) = f(x)g(y) (x, y ∈ K).

Define Γ1 : L2(K)⊗̂L2(K) → A(K) by

Γ1(φ)(x) =

∫

K

φ(x ∗ y, y)dm(y) (φ ∈ L2(K)⊗̂L2(K)).

Then

Γ1(f ⊗ g)(x) =

∫

K

f(x ∗ y)g(y)dm(y) = f ∗ ǧ(x),

for each x ∈ K and f, g ∈ L2(K). On the other hand,

Γ(f ∗ ǧ)(x, y) = f ∗ ǧ(x ∗ ȳ) =

∫

K

∫

K

f(ū)ǧ(u ∗ t)dm(u)d(δx ∗ δȳ)(t)

=

∫

K

∫

K

f(ū)ǧu(t)dm(u)d(δx ∗ δȳ)(t) =

∫

K

f(ū)ūǧ(x ∗ ȳ)dm(u)

=

∫

K

f(ū)ūǧȳ(x)dm(u) =

∫

K

f(ū)ǧȳ(u ∗ x)dm(u)

=

∫

K

f(x ∗ u)ǧȳ(ū)dm(u) =

∫

K

f(x ∗ u)ǧ(ū ∗ ȳ)dm(u)

=

∫

K

f(x ∗ u)g(y ∗ u)dm(u) =

∫

K

fu(x)gu(y)dm(u),
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in particular,

Γ(f ∗ ǧ)(h⊗ k)(x, y) =

∫

K

(hfu)(x)(kgu)(y)dm(u)

=

∫

K

(hfu) ⊗ (kgu)(x, y)dm(u),

for each f, g, h, k ∈ L2(K). Hence Γ(f ∗ ǧ)(h⊗ k) ∈ L2(K)⊗̂L2(K)) with

‖Γ(f ∗ ǧ)(h⊗ k)‖γ ≤ ‖f‖2‖g‖2‖h‖2‖k‖2.

Next let φ ∈ L2(K)⊗̂L2(K), and, given ε > 0, find a presentation φ =
∑∞

n=1 hn⊗
kn with

∑∞
n=1 ‖hn‖2‖kn‖2 < ‖φ‖γ +ε. Then ψ =

∑∞
n=1 Γ(f ∗ ǧ)hn⊗kn converges

in L2(K)⊗̂L2(K) and ψ = Γ(f ∗ ǧ)φ and ‖ψ‖γ ≤ ‖f‖2‖g‖g‖2(‖φ‖γ + ε). Hence
‖Γ(f ∗ ǧ)φ‖γ ≤ ‖f‖2‖g‖2‖φ‖γ . Summing up

Proposition 2.7. A(K) ' (L2(K)⊗̂L2(K))/ker(Γ1), as Banach spaces.

Next let

M(L2(K)) = {T ∈ B(L2(K)) : T (f ∗ g) = Tf ∗ g}

and let PM(K) be the smallest ultra-weakly closed subspace of M(L2(K)) con-
taining all operators Lf : L2(K) → L2(K) defined by Lf (g) = f ∗ ǧ for f ∈ L1(K)
and g ∈ L2(K).

Lemma 2.8. To each F ∈ A(K)∗ there corresponds a unique F
′

∈ PM(K) with

〈F
′

(g), f〉 = 〈f ∗ ǧ, F 〉.

The mapping θ : (A(K)∗, w∗) → (PM(K), u-weak), F 7→ F
′

is an isometric
isomorphism.

Proof. We follow the argument of [Pi,10.B]. Given f, g ∈ L2(K), let θg(f) =
〈f ∗ ǧ, F 〉, then

|〈f ∗ ǧ, F 〉| ≤ ‖F‖‖f ∗ ǧ‖A ≤ ‖F‖‖f‖2‖g‖2,

so θg ∈ L2(K)∗ ' L2(K) with ‖θg‖ ≤ ‖F‖‖g‖2, and F
′

∈ B(L2(K)) is defined by

F
′

(g) = θg and ‖F
′

‖ ≤ ‖F‖. On the other hand, for the absolutely convergent
series u =

∑∞
n=1 fn ∗ ǧn we have

F (u) =

∞
∑

n=1

F (fn ∗ ǧn) =

∞
∑

n=1

〈F
′

(gn), fn〉.

Hence |F (u)| ≤ ‖F
′

‖
∑∞

n=1 ‖fn‖2‖gn‖2 and so |F (u)| ≤ ‖F
′

‖‖u‖A, for each u ∈

A(K). Hence ‖F‖ ≤ ‖F
′

‖. To show that θ is surjective, let us first note that
each µ ∈M(K) defines

Fµ(u) =

∫

K

udµ (u ∈ A(K)),
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and for f, g ∈ L2(K),

〈F
′

µ(g), f〉 = Fµ(f ∗ ǧ) =

∫

K

f ∗ ǧ(x)dµ(x)

=

∫

K

∫

K

f(y)g(x̄ ∗ y)dm(y)dµ(x) [Je, 5.5.A]

=

∫

K

f(y)

∫

K

g(x̄ ∗ y)dµ(x)dm(y)

= 〈Lµg, f〉 [Je, 4.2].

Hence F
′

µ = Lµ. In particular, range of θ includes all convolution operators Lf ,

with f ∈ L1(K). Now the corresponding set of functionals consisting of Ff , with
f ∈ L1(K) separates the points of A(K) and is dense in A(K)∗, so the map is
onto. �

Note that A(K)∗ is the double conjugate of the hypergroup C∗-algebra C∗(K)
and so it inherits the von Neumann algebra structure of C∗(K)∗∗. By the above
proposition, PM(K) could be considered as a von Neumann algebra. Also Γ1 :
L2(K)⊗̂L2(K) → L2(K) ∗L2(K) is an isometry, and so A(K) = L2(K) ∗L2(K),
as already shown in [Vr].

3. multipliers of fourier and herz spaces

Let A and B be subsets of E(K̂). An element f ∈ E(K̂) is called an (A,B)-

multiplier if fA ⊆ B [HR, 35.1]. For B ⊆ M(K), we have B̂ ⊆ E(K̂) and an

(A, B̂)-multiplier is simply called an (A,B)-multiplier. The set of all multipliers
in both cases is denoted by M(A,B). Same abbreviation is used when B is a
subset of function spaces such as Lp(K) or C0(K). To relate the new spaces

E2(K̂) to A(K) and Aγ(K) defined in the previous section, we refer the reader
to [HR, 28.32(v), 34.5-7] and [Vr, 4.2, 4.11].

Lemma 3.1. Let 1 ≤ p ≤ ∞, f ∈M(A,B), and T : A → B be defined as follows

(i) For A,B any of Ep(K̂) or E0(K̂), T (g) = fg, for g ∈ A,

(ii) For A any of Ep(K̂) or E0(K̂) and B and of Lp(K), C(K) or M(K),
T (g)̂ = fg, for g ∈ A,

(iii) For B any of Ep(K̂) or E0(K̂) and A and of Lp(K), C(K) or M(K),
T (g) = f ĝ, for g ∈ A,

(iv) For A,B any of Lp(K), C(K) or M(K), T (g)̂ = f ĝ, for g ∈ A, then T
is bounded.

Proof. In all cases the result follows from the closed graph theorem as in [HR,
35.2]. First note that T is well-defined in (i), (ii) by definition, and in (ii), (iv) by

the uniqueness of the Fourier-Stieltjes transform. When A = Ep(K̂) or E0(K̂),

then A ⊆ E∞(K̂), and for each f ∈ A, ‖f‖∞ ≤ ‖f‖A, and when A = Lp(K),
C(K) or M(K), then A ⊆M(K) and for each f ∈ A, ‖f‖∞ ≤ ‖f‖M(K) ≤ ‖f‖A.

Writing ‖f̂‖Â for ‖f‖A, we get ‖h‖∞ ≤ ‖h‖Â, for each h ∈ Â. Hence A could
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be regarded as a subspace of E∞(K̂). The same observations hold for B. This

shows that it is enough to consider only the case A,B ⊆ E∞(K̂) with complete
norms ‖.‖A and ‖.‖B, satisfying ‖f‖∞ ≤ ‖f‖A for each f ∈ A, and the same for
B; and T : A → B, defined by T (g) = fg, where g ∈ A and f ∈ M(A,B). Then
T is clearly linear and if g ∈ A, h ∈ B, and {gn} ⊆ A is a sequence such that
‖gn − g‖A → 0 and ‖T (gn) − h‖B → 0, then

‖fgn − h‖∞ ≤ ‖fgn − h‖B → 0,

hence ‖f − πgn
π − hπ‖∞ → 0. On the other hand,

‖fπg
n
π − fπgπ‖∞ ≤ ‖fgn − fg‖∞ ≤ ‖f‖∞‖gn − g‖A → 0,

for each π ∈ K̂. Hence fg = h, and T has a closed graph in A× B. �

Corollary 3.2. If A,B and their conjugate spaces are any of C(K), E0(K̂), or

M(K), Lp(K),Ep(K̂) (1 ≤ p ≤ ∞), then M(A,B∗) ∼= M(B,A∗).

Lemma 3.3. If µ ∈M(K), 1 < p ≤ ∞ and

sup{‖µ ∗ h‖p : h ∈ I(K), ‖h‖1 ≤ 1} <∞,

then dµ = gdm, for some g ∈ Lp(K).

Proof. Same as [HR, 35.11] with φ = kπχπ. �

Proposition 3.4. For 1 < p ≤ ∞, M(L1(K), Lp(K)) = Lp(K )̂ .

Proof. We clearly have (Lp)̂ ⊆M(L1, Lp). The reverse inclusion follows from the
above lemma as in [HR, 35.12]. �

Theorem 3.5. M(L1(K), E1(K̂))) = M(E0(K̂)), L∞(K)) = E1(K̂).

Proof. It is clear that E1 ⊆M(E0, L
∞). AlsoM(L1, E1) = M(L1, E∗

0 ) = M(E0, L
∞)∗.

Let E ∈M(L1, E1), then f 7→ Ef̂ is a bounded (by k) linear map from L1 into E1.
By the above proposition, E = ĝ for some g ∈ L2. Let {hα} be an approximate

identity for L1 as in [Vr] and Φ ⊆ K̂ be finite. Then

limαĝ(σ)ĥα(σ) = ĝ(σ) (σ ∈ Φ)

and so for large α,
∑

σ∈Φ

kσ‖Eσ‖1 =
∑

σ∈Φ

kσ‖ĝ(σ)‖1 ≤
∑

σ∈Φ

kσ‖ĝ(σ)ĥα(σ)‖1 + 1

≤ ‖Eĥα‖1 + 1 ≤ k‖hα‖1 + 1 = k + 1.

Hence ‖E‖1 ≤ k + 1 and E ∈ E1. �

The following lemma is proved similar by to [HR, 35.16(e)].

Lemma 3.6. Let F ∈ E(K̂) and define

Lf (h) =
∑

σ∈K̂

kσtr(Fσĥ(σ)) (h ∈ Trig(K)).
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This is a bounded linear functional on Trig(K) and each bounded linear functional
on Trig(K) has this form. Also if TF : Trig(K) → Trig(K) is defined by

TF (h)̂ = Fĥ, then the following are equivalent.
(i) There is k > 0 such that |LF (h)| ≤ k‖h‖Ap

, for each h ∈ Trig(K),
(ii) There is k > 0 such that ‖TF (h)‖p ≤ k‖h‖p, for each h ∈ Trig(K).

Proof. First note that h(e) =
∑

σ∈K̂
kσtr(ĥ(σ)), for h ∈ Trig(K). Hence

LF (h) =
∑

σ∈K̂

kσtr(TF (h)̂(σ)) = TF (h)(e).

Now if (ii) holds, then TF extends to a linear operator TF : Lp(K) → Lp(K) with
‖TF (f)‖p ≤ k‖f‖p, for each f ∈ Lp(K). Since Trig(K) ∗ Trig(K) = Trig(K),
we have Trig(K) ⊆ Ap(K), and given ε > 0, each h ∈ Trig(K) could be written

as h =
∑∞

i=1 fi ∗gi, such that
∑

i ‖fi‖p‖gi‖q < ‖h‖Ap
+ε, where 1

p
+ 1

q
= 1. Hence

TF (h) =
∑∞

i=1 TF (fk) ∗ gk and

|LF (h)| = |TF (h)(e)| = |
∞
∑

i=1

TF (fi) ∗ gi(e)|

≤
∞
∑

i=1

‖TF (fi)‖p‖gi‖q ≤
∞

∑

i=1

k‖fi‖p‖gi‖q

≤ k‖h‖Ap
+ kε,

and (i) follows.
Conversely, if (i) holds and h ∈ Trig(K), then for each g ∈ C(K), h∗g ∈ Ap(K)

and ‖h ∗ g‖Ap
≤ ‖h‖p‖g‖q , where 1

p
+ 1

q
= 1. Hence

|

∫

K

TF (h)g̃dm| = |TF (h) ∗ g(e)| = |TF (h ∗ g)(e)|

= |LF (h ∗ g)| ≤ k‖ ≤ k‖h ∗ g‖Ap
≤ k‖h‖p‖g‖q .

Changing g to g̃, we get

|

∫

K

TF (h)gdm| ≤ k‖h‖p‖g‖q

for each g ∈ C(K). This implies that ‖TF (h)‖p ≤ k‖h‖p, which is (ii). �

In the above lemma, if F ∈ M(Lp, Lp), then TF (respectively, LF ) extends
to a bounded linear operator (respectively, functional) on Lp (respectively, Ap)
with ‖lF ‖ = ‖TF ‖ and F 7→ LF is a surjective linear isometry from M(Lp, Lp) to

(Ap)
∗. Indeed, given L ∈ (Ap)

∗ and σ ∈ K̂, let {ξσ
1 , . . . , ξ

σ
dσ
} be an orthonormal

basis of Hσ and put fσ
jk = L(uσ

kj), where uσ
kj are coefficient functions of σ for

1 ≤ k, j ≤ dσ. Consider Fσ = [fjk]dσ×dσ
∈ B(Hσ), then (TFh)̂ (σ) = Fσĥ(σ)

and Fĥ ∈ (Lp)̂ , and so F ∈ M(Lp, Lp) and L = LF . Hence we have proved the
following result.



274 MASSOUD AMINI AND ALI REZA MEDGHALCHI

Proposition 3.7. With the above notations,
(i) M(Lp, Lp) = A∗

p,

(ii) M(L2, L2) = M(E2, E2) = A∗
2 = A∗ = PM = E∞,

(iii) M(L1, L1) = A∗
1 = C∗ = M.
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[Ey] P. Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France

92 (1964), 181-236.
[GM] F. Ghahramani, A.R. Medghalchi, Compact multipliers on weighted hypergroup algebras

I, II, Math. Proc. Camb. Phil. Soc. 98 (1985), 493-500; 100 (1986), 145-149.
[Go] R. Godement, Les fonctions de type positive et la theorie des groupes, Trans. Amer. Math.

Soc. 63 (1948), 1-84.
[HR] E. Hewitt, K. Ross, Abstract Harmonic Analysis, Vol. II, Springer-Verlag, Berlin, 1970.
[Je] R. I. Jewett, Spaces with an abstract convolution of measures, Advances Math. 18 (1975),

1-110.
[Jo] B. E. Johnson, Non-amenability of the Fourier algebra of a compact group, J. London

Math. Soc. (2) 50 (1994), 361-374.
[La1] R. Lasser, Fourier-Stieltjes transforms on hypergroups, Analysis 2 (1982), 1-4, 281-303.
[La2] R. Lasser, Bochner theorems for hypergroups and their applications to orthogonal poly-

nomial expansions, J. Approx. Theory 37 (4) (1983), 311-325.
[Pi] J. P. Pier, Amenable Locally Compact Groups, J. Wiley & Sons, New York, 1984.
[Vo] M. Voit, Positive and negative definite functions on the dual space of a commutative

hypergroup, Analysis 9 (4) (1989), 371-387.
[Vr] R. C. Vrem, Harmonic analysis on compact hypergroups, Pacific J. Math. 85 (1979), 239-

251.

Department of Mathematics

Tarbiat Modares University

P. O. Box 14115-175, Tehran, Iran

E-mail address: mamini@modares.ac.ir

Current address of the first author:
Institut Penyelidikan Matematik

Universiti Putra Malaysia, 43400 UPM Serdang

Selangor Darul Ehsan, Malaysia

E-mail address: massoud@putra.upm.edu.my

Department of Mathematics

Tarbiat Moallem University

599 Taleghani Avenue, Tehran 15614, Iran

E-mail address: a medghalchi@saba.tmu.ac.ir


