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HANOI LECTURES ON THE ARITHMETIC OF
HYPERELLIPTIC CURVES

BENEDICT H. GROSS

1. Introduction

Manjul Bhargava and I have recently proved a result on the average order of the
2-Selmer groups of the Jacobians of hyperelliptic curves of a fixed genus n ≥ 1
over Q, with a rational Weierstrass point [2, Thm 1]. A surprising fact which
emerges is that the average order of this finite group is equal to 3, independent
of the genus n. This gives us a uniform upper bound of 3

2 on the average rank
of the Mordell-Weil groups of their Jacobians over Q. As a consequence, we can
use Chabauty’s method to obtain a uniform bound on the number of points on a
majority of these curves, when the genus is at least 2.

We will state these results more precisely below, after some general material
on hyperelliptic curves with a rational Weierstrass point. We end with a short
discussion of hyperelliptic curves with two rational points at infinity. I want to
thank Manjul Bhargava, Ngô Bảo Châu, Brian Conrad, and Jerry Wang for their
comments.

2. Hyperelliptic curves with a marked Weierstrass point

For another treatment of this basic material, see [5]. Chevalley considers the
more general case of a double cover of a curve of genus 0 in [3, Ch IV,§9].

Let k be a field and let C be a complete, smooth, connected curve over k of
genus n ≥ 1. Let O be a k-rational point of C, and let U = C − {O} be the
corresponding affine curve. The k-algebra H0(U,OU ) of functions on C which
are regular outside of O is a Dedekind domain with unit group k∗. The subset
L(mO) of functions with a pole of order ≤ m at O and regular elsewhere is a
finite-dimensional k-vector space.

We henceforth assume that the vector space L(2O) has dimension equal to 2.
There cannot be a function having a simple pole at O and regular elsewhere, as
that would give an isomorphism of C with P1 (and we have assumed that the
genus of C is greater than 0). Hence L(2O) is spanned by the constant function 1
and a function x with a double pole at O. We normalize the function x by fixing
a non-zero tangent vector v to C at the point O and choosing a uniformizing

Received August 3, 2012.
2010 Mathematics Subject Classification. 11G30, 14H25.
Key words and phrases. Hyperelliptic curve, Weierstrass point, Selmer group, Mordell-Weil

group.



580 BENEDICT H. GROSS

parameter π in the completion of the function field at O with the property that
d
dv (π) = 1. We then scale x so that x = π−2 + · · · in the completion. This
depends only on the choice of tangent vector v, not on the choice of uniformizing
parameter π adapted to v. The other functions in L(2O) with this property all
have the form x+ c, where c is a constant in k. If we replace the tangent vector
v by v∗ = uv with u ∈ k∗, then x∗ = u2x+ c.

It follows that the space L((2n− 1)O) contains the vectors {1, x, x2, . . . xn−1}.
Since these functions have different orders of poles at O, they are linearly indepen-
dent. But the dimension of L((2n−1)O) is equal to (2n−1) + (1−n) = n by the
theorem of Riemann-Roch. Hence these powers of x give a basis for L((2n−1)O).
Since they all lie in the subspace L((2n − 2)O), they give a basis for that space
too. Hence the dimension of L((2n− 2)O) is equal to the genus n. It follows from
the Riemann-Roch theorem that the divisor (2n− 2)O is canonical.

The Riemann-Roch theorem also shows that the dimension of L((2n)O) is
equal to n+ 1, so a basis is given by the vectors {1, x, x2, . . . , xn}. Similarly, the
dimension of L((2n + 1)O) is equal to n + 2. Hence there is a function y with a
pole of exact order (2n+1) at O, which cannot be equal to a polynomial in x. We
use the uniformizing parameter π to normalize the function y by insisting that
y = π−(2n+1) + · · · in the completion. Again, this depends only on the tangent
vector v. The other functions in L((2n + 1)O) with this property all have the
form y + qn(x), where qn(x) is a polynomial of degree ≤ n with coefficients in k.
If we replace v by v∗ = uv with u ∈ k∗, then y∗ = u2n+1y + qn(u2x).

It is then easy to show that the algebra H0(U,OU ) is generated over k by
the two functions x and y, and that they satisfy a single polynomial relation
G(x, y) = 0 of the form

y2 + pn(x)y = x2n+1 + p2n(x) = F (x),

where pn and p2n are polynomials in x of degree ≤ n and ≤ 2n respectively. In-
deed, the (3n+ 4) vectors {y2, xny, xn−1y, . . . , xy, y, x2n+1, x2n, . . . , x, 1} all lie in
the vector space L((4n+2)O), which has dimension 3n+3. Hence they are linearly
dependent. Since there are no linear relations in the spaces with poles of lesser
order, this relation must involve a non-zero multiple of y2 and a non-zero multiple
of x2n+1. By our normalization, we can scale the relation so that the multiple is
1. Hence the k-algebra H0(U,OU ) is a quotient of the ring k[x, y]/(G(x, y) = 0).
Since the k-algebra k[x] + yk[x] gives the correct dimensions of L(mO) for all
m ≥ 0, there are no further relations, and the affine curve U = C − {O} is de-
fined by an equation of this form. The affine curve U is non-singular if and only
if a certain universal polynomial ∆ in the coefficients of pn(x) and p2n(x) takes a
non-zero value in k [5, Thm 1.7]. Of course, changing the choice of the functions
x and y in L(2O) and L((2n+ 1)O) changes the equation of the affine curve.

In the case when the genus of C is equal to 1, the pair (C,O) defines an elliptic
curve over the field k. The polynomial relation above is Tate’s affine equation for
U (see [8, §2])

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,
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and the condition for smoothness is the non-vanishing of the discriminant

∆(a1, a2, a3, a4, a6).

The closure of this affine curve defines a smooth cubic in P2. For n ≥ 2, the
closure of the affine equation of degree 2n + 1 in P2 is not smooth, but one has
a smooth model for C defined by gluing [6, Ch II, Ex 2.14].

All of this works over a general field k, but there are some important sim-
plifications when the characteristic of k does not divide 2(2n + 1). First, if the
characteristic of k is not equal to 2, we can uniquely choose y∗ = y − pn(x)/2 to
complete the square of the above equation and obtain one of the simpler form

y2 = x2n+1 + c1x
2n + c2x

2n−1 + · · ·+ c2nx+ c2n+1 = F (x).

The automorphism ι of C defined by ι(x, y) = (x,−y) is the unique involution
which fixes the rational point O, and y is the unique normalized element in
L((2n+ 1)O) which is taken to its negative. The automorphism ι acts as −1 on
the space of holomorphic differentials, which is spanned by

{dx/2y, xdx/2y, . . . , xn−1dx/2y}.

The differential dx/2y has divisor (2n − 2)O and the differential −xn−1dx/2y
is dual to the tangent vector v at O. In this case, the fact that U is smooth is
equivalent to the non-vanishing of the discriminant of the polynomial F (x), and
the polynomial ∆ is given by the formula ∆ = 42n disc(F ) (see [5, 1.6]).

Next, when the characteristic of k does not divide 2n+ 1, we can replace x by
x− c1/(2n+ 1) to obtain an equation of the form

y2 = x2n+1 + c2x
2n−1 + · · ·+ c2nx+ c2n+1 = F (x).

This equation is uniquely determined by the triple (C,O, v), where v is a non-
zero tangent vector at the point O. In particular, the moduli problem of triples
(C,O, v) is rigid, and represented by the complement of the discriminant hyper-
surface (∆ = 0) in affine space of dimension 2n. The automorphism ι of (C,O)
defines an isomorphism from (C,O, v) to (C,O,−v). If we replace v∗ = uv with
u ∈ k∗, then x∗ = u2x and y∗ = u2n+1y. The coefficients cm in the polynomial
F (x) are scaled by the factor u2m, and the discriminant ∆ of the model is scaled
by the factor u2(2n+1)(2n) in k∗.

3. The height of the pair (C,O)

We first assume that k = Q is the field of rational numbers. To each pair (C,O)
we will associate a positive real number H(C,O), its height. Choose a non-zero
tangent vector v at the point O so that the coefficients cm of the corresponding
equation of (C,O, v) are all integers with the property that no prime p has the
property that p2m divides cm for all m. We call such an equation minimal. Then
v is unique up to sign, and the integers cm which appear in this minimal equation
are uniquely determined by the pair (C,O). We then define

H(C,O) = Max{|cm|(2n+1)(2n)/m}.
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The factor (2n+ 1)(2n) is added in the exponent so that the height H(C,O) and
the discriminant ∆ have the same homogeneous degree. Clearly there are only
finitely many pairs (C,O) with H(C,O) < X for any positive real number X,
so the height gives a convenient way to enumerate hyperelliptic curves over Q
of a fixed genus n with a rational Weierstrass point. The number of pairs with
H(C,O) < X grows like a constant times X(2n+3)/(4n+2).

In the case when the genus of C is equal to 1, the minimal equation has the
form

y2 = x3 + c2x+ c3

with c2 and c3 both integers, not respectively divisible by p4 and p6 for any
prime p. We note that this is not necessarily a global minimal model at the
primes p = 2 and p = 3 (cf. [6, Ch VII]). The discriminant is given by the
formula ∆ = 24(−4c32 − 27c23) and the height is given by the formula H(C,O) =
Max{|c2|3, |c3|2}. The number of elliptic curves with height less than X grows
like a constant times X5/6.

More generally, suppose that k is a number field, and that (C,O) is a pair over
k. Choose a non-zero tangent vector v so that the equation determined by the
triple (C,O, v)

y2 = x2n+1 + c2x
2n−1 + · · ·+ c2n+1

has coefficients in the ring A of integers of k. We define the height H(C,O) by
modifying the naive height of the point (c2, c3, . . . , c2n+1) in weighted projective
space, using the notion of size defined in [4]. Namely, define the fractional ideal

I = {α ∈ k : α4c2, α
6c3, . . . , α

4n+2c2n+1 ∈ A}.

Then I contains A and I = A if and only if the coefficients cm are not all divisible
by P 2m, for every non-zero prime ideal P of A. We define the height of the pair
by

H(C,O) = (N(I))(2n+1)(2n)
∏
v|∞

Max{|cm|(2n+1)(2n)/m
v },

where the product is taken over all infinite places v of k. The product formula
shows that this definition is independent of the choice of non-zero tangent vec-
tor v. When k = Q, the choice of a minimal integral equation gives N(I) = 1
and we are reduced to the previous definition. In general, the number of pairs
with H(C,O) < X is finite, and again grows like a constant (depending on the
arithmetic of k) times X(2n+3)/(4n+2) (cf. [4, Thm A]).

Let S be a real-valued function on pairs (C,O) over k. We say that the average
value of S is equal to L if the ratios( ∑

H(C,O)<X

S(C,O)

)/( ∑
H(C,O)<X

1

)

tend to the limiting value L as X →∞. If R is a property of pairs (C,O) over Q,
we define the function SR on pairs by SR(C,O) = 1 if the pair satisfies property
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R and SR(C,O) = 0 otherwise. We say that the proportion of pairs satisfying
property R is equal to r if the ratios( ∑

H(C,O)<X

SR(C,O)

)/( ∑
H(C,O)<X

1

)

tend to the limiting value r as X →∞. If this limit exists, then clearly 0 ≤ r ≤ 1.
If the liminf is greater than r, we say the proportion is greater than r.

For example, let R be the property that O is the only k-rational point of the
curve C. When the genus of C satisfies n ≥ 2 we suspect that the proportion of
pairs (C,O) with this property is equal to 1. When the genus of C is equal to 1,
we suspect that this proportion is equal to 1

2 .

4. The 2-torsion subgroup and the 2-descent

Let (C,O) be a pair as above, defined over a field k whose characteristic is not
equal to 2. Let

y2 = F (x) = x2n+1 + c1x
2n + · · ·

be an affine equation for U = C − {O}. In this section we will use the separable
polynomial F (x) to describe the 2-torsion subgroup J [2] of the Jacobian J of
C as a finite group scheme over k. We will then explicitly calculate the map in
Galois cohomology involved in the 2-descent. For more details, see [7].

Since disc(F ) 6= 0, the k-algebra L = k[x]/(F (x)) is étale. Let λ be the image
of x in L, so L = k + kλ + · · · + kλ2n. Let ks denote a separable closure of k
and let G = Gal(ks/k). The set Hom(L, ks) of homomorphisms of k-algebras
has cardinality 2n + 1 and has a left action of G, so defines a homomorphism
G → S2n+1 up to conjugacy. We will see that the kernel of this homomorphism
fixes the subfield of ks generated by the 2-torsion points in the Jacobian.

Since C(k) is non-empty, the points of the Jacobian J(K) over any extension
field K of k are isomorphic to the quotient of the abelian group of divisors of
degree zero on C which are rational over K by the subgroup of principal divisors
div(f) with f in K(C)∗. For each root β of the polynomial F (x) in ks, we define
the point Pβ = (β, 0) on C and the divisor dβ = (Pβ) − (O) of degree zero. The
class of dβ has order 2 in the Jacobian, as 2dβ = div(x − β). It follows from
the Riemann-Roch theorem that the 2n+ 1 classes dβ in J [2](ks) satisfy a single
linear relation over Z/2Z: ∑

β

dβ = div(y).

They therefore span a finite subgroup of order 22n. Since this is the order of
the full group J [2](ks), we have found a presentation of the 2-torsion over the
separable closure. The Galois group acts on the 2n + 1 classes dβ through the
homomorphism G→ S2n+1, so we have an isomorphism of group schemes over k

J [2] ∼= ResL/k µ2/µ2 ∼= (ResL/kGm/Gm)[2],
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where Res denotes the restriction of scalars. Since 2n+1 is odd, we have a splitting

ResL/k µ2 = µ2 ⊕ (ResL/k µ2)N=1,

where the latter subgroup is the kernel of the norm map N : ResL/k µ2 → µ2.
Hence J [2] ∼= (ResL/k µ2)N=1. This splitting also allows us to compute the Galois
cohomology groups

H0(k, J [2]) = J [2](k) = {α ∈ L∗ : α2 = N(α) = 1}

H1(k, J [2]) = (L∗/L∗2)N≡1,

where the subscript N ≡ 1 means that the norm of a class in (L∗/L∗2) is a square
in k∗.

The homomorphism 2 : J → J is a separable isogeny, so is surjective on points
over ks. The kernel is the group scheme J [2], so taking the long exact sequence
in Galois cohomology, we obtain a short exact sequence

0→ J(k)/2J(k)
δ−→ H1(k, J [2])→ H1(k, J)[2]→ 0.

If P = (a, b) is a k-rational point on the curve C with b 6= 0, and d = (P )− (O)
is the class of the corresponding divisor of degree zero in J(k), then the image
δ(d) is the class of (a− λ) in H1(k, J [2]) = (L∗/L∗2)N≡1 [7, Thm 1.2]. Note that
(a− λ) is an element of L∗ with N(a− λ) = b2 in k∗.

We remark that the elementary nature of the 2-torsion is almost a defining
property of hyperelliptic curves with a marked Weierstrass point. For a general
curve of genus n ≥ 1 over the field k (of characteristic 6= 2), the 2-torsion on
the Jacobian is rational over ks and generates a finite Galois extension M =
k(J [2](ks)) of k. The Galois group of M/k acts Z/2Z-linearly on J [2](ks) ∼=
(Z/2Z)2n and preserves the Weil pairing 〈, 〉 : J [2]× J [2] → µ2, which is strictly
alternating and non-degenerate. Hence the group Gal(M/k) is isomorphic to a
subgroup of the finite symplectic group Sp2n(2). When the curve is hyperelliptic
with a k-rational Weierstrass point, the Weil pairing is given on the generators
of J [2] by

〈dβ, dβ〉 = +1

〈dβ, dβ′〉 = −1,

and the Galois group of M/k is isomorphic to the subgroup of S2n+1 ⊂ Sp2n(2)
which is determined by the étale algebra L.

We will see in the final section that the situation is similar (but a bit more
complicated) for a hyperelliptic curve of genus n ≥ 2 with a pair of k-rational
points {O,O′} which are switched by the hyperelliptic involution ι. In that case,
the Galois group of M/k is isomorphic to a subgroup of S2n+2 ⊂ Sp2n(2).

5. The 2-Selmer group

We henceforth assume that k = Q, although we expect that the results in
this section will extend to the case when k is a number field [9]. Let (C,O)
be a hyperelliptic curve of genus n ≥ 1 with a Q-rational Weierstrass point O.
The group H1(Q, J [2]) is infinite, but contains an important finite subgroup,
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the 2-Selmer group Sel(J, 2). This is the subgroup of cohomology classes whose
restriction to H1(Qv, J [2]) lies in the image δ(J(Qv)/2J(Qv)) of the local descent
map, for all places v [8, §7]. The assertion that the subgroup Sel(J, 2) defined in
this manner is finite is the first half of the Mordell-Weil theorem; the proof uses
the finiteness of the class group and the finite generation of the unit group for
number fields. Since the 2-Selmer group contains the image of J(Q)/2J(Q) under
the inclusion δ, an upper bound on its order gives an upper bound on the rank
of the finitely generated group J(Q).

Here is a simple example, which illustrates the partial computation of a 2-
Selmer group. Suppose that C is given by an integral equation y2 = F (x) =
x2n+1 + · · · . Assume further that the polynomial F (x) is irreducible and that
the discriminant of F (x) is square-free. Then the algebra L = k[x]/(F (x)) is a
number field with ring of integers AL = Z[x]/F (x). In this case, one can show that
the local image δ(J(Qp)/2J(Qp)) is contained in the unit subgroup of elements
with even valuation in (L∗p/L

∗2
p )N≡1 for all finite primes p. It is equal to the unit

subgroup when p is odd, and has index 2n in the unit subgroup when p = 2. Hence
the 2-Selmer group is a subgroup of the finite group (L∗(2)/L∗2)N≡1 consisting of
those elements in (L∗/L∗2)N≡1 which have even valuation at all finite primes. To
see that this group is finite, note that we have an exact sequence

1→ (A∗L/A
∗2
L )N=1 → (L∗(2)/L∗2)N≡1 → Pic(AL)[2]→ 1,

where the map to Pic(AL)[2] takes the class of α with (α) = a2 to the class of the
ideal a. The 2-Selmer group is the subgroup of this finite group which is defined
by the local descent conditions at the places v = 2 and v = ∞. If we assume
further that F (x) has only one real root, so that (A∗L/A

∗2
L )N=1 has order 2n by

the unit theorem, then the only local conditions remaining are at the place v = 2.
In general, the local conditions at a finite set of bad places for C, which always

include v = 2 and v =∞, can be difficult to compute. It is therefore much easier
to obtain an upper bound on the order of the Selmer group Sel(J, 2) than it is
to determine its exact order. For some explicit computations with elliptic curves,
see [6, Ch X]. The main result in [2, Th 1] gives the average order of this group,
when we consider all hyperelliptic curves with a marked Weierstrass point over
Q.

Proposition 1. When the pairs (C,O) of a fixed genus n ≥ 1 are ordered by
height, the average order of the group Sel(J, 2) is equal to 3.

Let m be the rank of the Mordell-Weil group J(Q). Since we have the inequal-
ities 2m ≤ 2m ≤ # Sel(J, 2) we obtain the following corollary.

Corollary 2. When the pairs (C,O) of a fixed genus n ≥ 1 are ordered by height,
the average rank of the Mordell-Weil group J(Q) is less than or equal to 3

2 .

More precisely, the limsup of the average rank is less than or equal to 3
2 , as we

do not know that the limit defining the average rank exists. We suspect that the
limit does exist, and is equal to 1

2 .
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The proof of Proposition 1 has an algebraic and an analytic part. The algebraic
part of the proof identifies the elements in the 2-Selmer group of J , for any pair
(C,O) of genus n over Q, with certain orbits in a fixed linear representation of
the split special odd orthogonal group SO(W ) = SO2n+1 over Q. Specifically,
we study the stable orbits of SO(W ) on the highest weight submodule V =
Sym2(W )0 in the symmetric square of the standard representation. The vectors
in this representation can be identified with self-adjoint operators T : W → W
of trace 0, and a vector is stable if its characteristic polynomial FT (x) has a non-
zero discriminant. Associated to a stable orbit, we obtain a pencil of quadrics
in projective space of dimension 2n + 1 with smooth base locus. The pencil is
spanned by the two quadrics q(w, a) = 〈w,w〉 and q′(w, a) = 〈w, Tw〉 + a2 on
W ⊕Q, where 〈, 〉 is the original bilinear form on W .

The Fano variety PT of maximal linear subspaces of the base locus is smooth
of dimension n over Q. It forms a principal homogeneous space of order 2 for
the Jacobian J of the hyperelliptic curve defined by the equation y2 = FT (x).
The orbits which correspond to classes in the Selmer group are those operators T
where the Fano variety PT has points over Qv for all places v; we call these orbits
locally solvable. When n = 1, the representation Sym2(W )0 of SO3 = PGL2 is
given by the action on the space of binary quartic forms q(x, y), a vector is stable
if the quartic form has a non-zero discriminant, and the Fano variety is the curve
of genus 1 defined by the equation z2 = q(x, y).

The involution τ(w, a) = (w,−a) of W ⊕ Q stabilizes the pencil spanned by
q and q′ and acts on the Fano variety PT . The fixed points PT (τ) form a finite
scheme of order 22n, whose points correspond to the maximal isotropic subspaces
X in W over the algebraic closure with T (W ) ⊂ W⊥. The fixed points form a
principal homogeneous space for the subgroup J [2], as well as for the stabilizer GT
of T in G. Using the principal homogeneous space PT (τ), one can show that the
two finite commutative group schemes J [2] and GT are canonically isomorphic.

Having identified classes in the Selmer group with locally solvable orbits on
V , the analytic part of the proof estimates the number of locally soluble integral
orbits of height less than X as X → ∞. The average value of the order of
the Selmer group actually appears as a sum 3 = 2 + 1, where 2 is equal to
the Tamagawa number of SO2n+1. This adèlic volume computation, together
with some delicate arguments from the geometry of numbers, gives the average
number of non-distinguished orbits (corresponding to the non-trivial classes in
the Selmer group). The distinguished orbits (which all appear near a cusp of the
fundamental domain) cannot be estimated by volume arguments. However, since
they correspond to the trivial class in each Selmer group, the average number of
these orbits is 1.

Since the average rank of J(Q) is less than or equal to 3
2 , and this upper bound

is less than the genus n of the curve C once n ≥ 2, one can use the method of
Chabauty (as refined by Coleman) to provide explicit bounds for the number of
rational points on a majority (= a proportion greater than 1

2) of the pairs (C,O).
Here is a sample result, which is due to B. Poonen and M. Stoll. A slightly weaker
result is obtained in [2, Cor 4].
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Corollary 3. If n ≥ 3, a majority of the pairs (C,O) have at most 7 rational
points, and a positive proportion of the pairs have only one rational point – the
Weierstrass point O.

To be more precise, we do not yet know that the limits defining these propor-
tions exist. What they show is that the liminf of the ratios is > 1

2 in the first
case, and is > 0 in the second.

6. Even hyperelliptic curves

The curves C with a marked Weierstrass point O are often referred to as odd
hyperelliptic curves, as (when the characteristic of k is not equal to 2) they have
an equation of the form

y2 = F (x) = x2n+1 + c1x
2n + · · ·

where the separable polynomial F (x) has odd degree. We now make some general
remarks on the “even" case, which is not treated in our paper but for which similar
results are expected to hold. For more details, we refer the reader to the PhD
thesis of X. Wang [9].

Let k be a field (not of characteristic 2) and let C be a complete, smooth,
connected curve over k of genus n ≥ 1. Let (O,O′) be a pair of distinct k-rational
points on C with L((O) + (O′)) of dimension equal to 2, and let U = C−{O,O′}
be the corresponding smooth affine curve. A similar analysis to the one we did
above shows that the k-algebra H0(U,OU ) is generated by functions x (with poles
at O and O′ of order 1) and y (with poles at O and O′ of order n + 1). These
functions can be normalized to satisfy a single equation of the form

y2 = F (x) = x2n+2 + c1x
2n+1 + · · · ,

where F (x) has 2n+ 2 distinct roots in ks. The automorphism ι of C defined by
ι(x, y) = (x,−y) is the unique involution which switches the two rational points
O and O′.

The function y is the unique normalized vector in L((n+1)(O)+(O′)) which lies
in the minus eigenspace for ι. When the characteristic of k does not divide 2n+2,
we can modify the function x in L((O)+(O′)) by a constant so that the the above
equation has c1 = 0. Then the equation depends only on the data (C, (O,O′)) and
the choice of a non-zero tangent vector v to C at O. If we replace v by v∗ = uv
with u ∈ k∗, the coefficients of the equation are scaled: c∗m = umcm. When k is
a global field we can define the height of a triple (C, (O,O′)) by considering the
coefficients (c2, c3, . . . , c2n+2) of this equation as a point in weighted projective
space and taking its size as above [4]. Since there are only finitely many triples
of a fixed genus n ≥ 1 having height less than any real number X, we can define
the average of a real-valued function S on triples (C, (O,O′)) as before.

The 2-torsion subgroup J [2] of the Jacobian is a bit more complicated to
describe. It is generated by the differences of the 2n+ 2 Weierstrass points on C
(none of which may be rational over k). Let L = k[x]/(F (x)), which is an étale
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k algebra of rank 2n+ 2. Then we have an isomorphism of finite group schemes
over k

J [2] ∼= ((ResL/k µ2)N=1)/µ2.

The cohomology groups of J [2] are also a bit more difficult to calculate. For ex-
ample, the abelian group {α ∈ L∗ : α2 = N(α) = 1}/{±1} maps into H0(k, J [2]),
but this map may not be surjective. This complicates matters somewhat in the
2-descent.

The class of the divisor d = (O) − (O′) of degree zero is well-defined in
J(k)/2J(k). It is usually a non-trivial element in this quotient of the Mordell-Weil
group, although there are some triples where d is divisible by 2. When the class
of d is non-trivial in J(k)/2J(k), it gives rise to a non-trivial class in the 2-Selmer
group. We should mention that Abel [1] found a beautiful criterion, in terms of
the continued fraction of the square root of F (x) in the completion k((1/x)), for
the class of d to be of finite order in the Jacobian J(k).

In the even case, we expect the average order of the 2-Selmer group of the
Jacobian to be equal to 6 = 4+2. The proof is similar in structure to the odd case.
First the classes in the Selmer group are identified with the locally solvable orbits
of the adjoint quotient PSO2n+2 = PSO(W ) of the split special even orthogonal
group SO2n+2 over Q on the representation V = Sym2(W )0 [9]. Then the average
number of these orbits will be determined using arguments from the geometry
of numbers. The contribution of 4 should come from the Tamagawa number of
PSO2n+2 over Q and the contribution of 2 from the distinguished classes in the
Selmer group whose orbits lie near the cusp. From the average order of the 2-
Selmer group, one can deduce that the average rank of the Mordell-Weil group
of the Jacobian is bounded above by 5

2 = 3
2 + 1.
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