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ON THE STABILITY OF SOLUTIONS

OF ITO DIFFERENTIAL EQUATIONS

NGUYEN THI THUY QUYNH

Abstract. In this paper, we discuss the relationship between different types
of stability of stochastic differential equations. We prove that for linear Ito
stochastic differential equations, stability in probability is equivalent to almost
sure stability. Almost sure stability does not depend on initial time. In the case
of 1-dimensional Ito stochastic differential equation with constant coefficients
satisfying nondegeneracy condition, we show that stability in probability is
equivalent to weak stability in probability.

1. Introduction

Most differential equations, deterministic or stochastic, can not be solved ex-
plicitly. Nevertheless we often can deduce a lot of useful information, usually
qualitative, about the behaviour of their solutions from the functional form of
their coefficients. Of particular interests in applications are the long term as-
ymptotic behaviour and sensitivity of the solutions to small changes, for exam-
ple, measurement errors in initial values. It is known that under some usual
conditions, the solutions of a differential equation depend continuously on their
initial values over a finite time interval. Extension of this idea to an infinite time
interval leads to the concept of stability. For ordinary differential equations, we
know concepts of stability, asymptotical stability, exponential stability, uniform
stability and global stability. In view of the variety of convergences for stochas-
tic processes, there are many different ways of defining stability for stochastic
differential equations (see Khasminskii [3]). In this paper, we aim to make a
clear relationship between some of these notions of stability. Let (Ω,F , P) be a
probability space. We consider a linear d-dimensional Ito stochastic differential
equation
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dXt = F0(t)Xtdt +
m

∑

j=1

Fj(t)XtdW
j
t ,(1.1)

X(t0) = x0,

where Fj(t) : R
+ → R

d×d(j = 0, ...,m) are continuous matrix-valued functions

bounded by a constant K, x0 is a non-random initial value, W
j
t (j = 1, ...,m) are

independent 1-dimensional standard Wiener processes.
It is known that with the above assumption, the Cauchy problem of (1) has a
unique solution (see Khasminskii [3]).

By Kunita [4], the linear Ito stochastic differential equation (1.1) generates
two-parameter stochastic flow Φs,t(ω) of linear operators of R

d. Each solution of
(1.1) satisfying initial value condition X(t0, ω) = x0, is a stochastic process given
by formula X(t, ω) = Φt0,t(ω)x0.

Recall from Kunita [4] that, a two-parameter stochastic flow of diffeomor-
phisms of R

d is a family of continuous maps (map-valued random variables)
{φs,t(ω) : ω ∈ Ω, s, t ∈R

+} which satisfies the following conditions for any ω from
a subset Ω′ ⊂ Ω of full P-measure:

(i) φs,t(ω) = φu,t(ω) ◦ φs,u(ω) holds for all s, t, u ∈ R
+, where ◦ denotes the

composition of maps;
(ii) φs,s(ω) is the identity map for all s ∈ R

+;

(iii) the map φs,t(ω) : R
d → R

d is an onto homeomorphism for all s, t ∈ R
+;

(iv) φs,t(ω)x is differentiable with respect to x ∈ R
d for all s, t ∈ R

+ and
derivative is continuous in s, t, x.

A family of continuous maps (map-valued random variables) Φs,t(ω) of R
d

is called two-parameter stochastic flow of linear operators of R
d, if it is a two-

parameter flow of diffeomorphisms and, additionally, Φs,t(ω) is a linear operator.

Note that fixing an ω ∈ Ω, the two-parameter flow Φs,t(ω) of linear operators

of R
d is an analogue of the Cauchy operator of a linear system of differential

equations.

The paper is organized as follows. In Sec. 2, we present the definitions of
stability of the trivial solution of linear Ito stochastic differential equations. It
is known that the investigation of stability of solutions of differential equations
can be reduced to the investigation of stability of the trivial solution by a change
of variables. Therefore, we will give only the definition of stability of the trivial
solution. In Sec. 3, we discuss the relationship between different kinds of sto-
chastic stability. In the theory of probability, a property being true almost surely
is also true in probability, but the inverse is not true. Here, for the linear Ito
stochastic differential equations, we prove that stability in probability is equiv-
alent to almost sure stability. It is well known that, for deterministic ordinary
differential equations stability does not depend on initial time, we prove that this
is also true for almost sure stability. From the definitions of stability, we see that
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stability in probability is stronger than weak stability. Finally, we show that for
1-dimensional linear Ito stochastic differential equation with constant coefficients
satisfying nondegeneracy condition, we have stability in probability equivalent to
the weak stability.

2. Definitions of stability of trivial solution of Ito stochastic

differential equations

Let us consider again equation (1.1) and the two-parameter flow Φt0,t(ω) gen-
erated by (1.1). It is easily seen that X(t, ω) ≡ 0 is the trival solution of (1.1).
Following Khasminskii [3], we give here different kinds of stability of the trival
solution X(t, ω) ≡ 0 of the Ito stochastic differential equations (1.1).

Definition 2.1 (Weak stability in probability). The trivial solution
X(t, ω) ≡ 0 of (1.1) is called weakly stable in probability (for t ≥ t0 or on
[t0,+∞)) if for every ε > 0 and δ > 0 there exists an r > 0 such that if t ≥ t0
and ‖x0‖ < r, then

P {ω : ‖Φt0,t (ω) x0 ‖ > ε} < δ.(2.1)

Definition 2.2 (Stability in probability for t ≥ 0). The trivial solution X(t, ω) ≡
0 of (1.1) is called stable in probability for t ≥ 0 if for any t0 ≥ 0 and ε > 0

lim
x0→0

P

{

ω : sup
t>t0

‖Φt0,t (ω)x0 ‖ > ε

}

= 0.(2.2)

Definition 2.3 (Almost sure stability for t ≥ t0). The trivial solution
X(t, ω) ≡ 0 of (1.1) is called stable almost surely for t ≥ t0 if the set Ω′ of
those ω ∈ Ω such that X(t, ω) ≡ 0 is stable for t ≥ t0 has probability 1.

Definition 2.4 (Asymptotical stability in probability). The trivial solution
X(t, ω) ≡ 0 of (1.1) is called asymptotically stable in probability if

X(t, ω) ≡ 0 is stable in probability, and(2.3)

lim
x0→0

P

{

lim
t→+∞

Φt0,t (ω) x0 = 0

}

= 1.(2.4)

Definition 2.5 (Asymptotic stability in probability in the large). The trivial
solution X(t, ω) ≡ 0 of (1.1) is called asymptotic stability in probability in the
large if

X(t, ω) ≡ 0 is weakly stable in probability and,(2.5)

for every ε > 0 and x0 we have lim
t→+∞

P {ω : ‖Φ0,t (ω)x0 ‖ > ε} = 0.(2.6)

The above definitions are applicable to nonlinear systems without modification.
The stability of non-trivial solutions can be defined similarly. For more details
on various kinds of stability of solutions of Ito stochastic differential equations
we refer to Khasminskii [3].



256 NGUYEN THI THUY QUYNH

3. Results

First of all, we recall an assertion which was stated by Khasminskii [3, p. 194]
but was not proved there. We give here a detailed proof of it.

Propotion 3.1. If the trivial solution X(t, ω) ≡ 0 of (1.1) is asymtotically stable
in probability, then it is asymptotically stable in probability in the large.

Proof. Suppose X(t) ≡ 0 of (1.1) is asymtotically stable in probability. Since
stability in probability clearly implies weak stability in probability, we only have
to prove that the condition (2.6) holds. Note that (2.6) is equivalent to the
following statement: For every ε > 0, δ > 0 and x0, there exists T (δ, ε, x0) such
that for t > T (δ, ε, x0) we have

P {ω : ‖Φ0,t (ω)x0 ‖ > ε} < δ.(3.1)

Given x0, T , for every t > T we have

{ω : ‖Φ0,t(ω)x0‖ > ε} ⊂ {ω : ‖Φ0,t(ω)x0‖ ≥ ε}

⊂

{

ω : sup
t>T

‖Φ0,t(ω)x0‖ ≥ ε

}

.

Since X(t) ≡ 0 of (1.1) is asymtotically stable in probability, for every ε > 0, δ > 0
there exists r(δ) > 0 such that for any x0 sastifying ‖x0‖ < r(δ) there exists
T (δ, ε, x0) such that for t > T (δ, ε, x0), we have

P {ω : ‖Φ0,t(ω)x0‖ > ε} ≤ P

{

ω : sup
t>T (δ,ε,x0)

‖Φ0,t(ω)x0‖ ≥ ε

}

< δ.(3.2)

Thus for every given ε, δ then (3.1) is true for every x0 satisfying ‖x0‖ < r(δ).

For arbitrary x1 satisfying ‖x1‖ ≥ r(δ), denote x∗ = r(δ).x1

‖x1‖+r(δ) . Then we have

‖x∗‖ = r(δ) ‖x1‖
‖x1‖+r(δ) < r(δ). For ε > 0 given, choose ε1 = ε.r

‖x1‖+r
> 0. Then by

(3.2) there exists 0 < T (ε, δ, x∗) =: T (ε1) such that

P

{

ω : sup
t>T (ε1)

‖Φ0,t (ω)x∗ ‖ ≥ ε1

}

< δ.

We have
{

ω : sup
t>T (ε1)

‖Φ0,t(ω)x∗‖ ≥ ε1

}

=

{

ω : sup
t>T (ε1)

∥

∥

∥

∥

Φ0,t(ω)
r(δ).x1

‖x1‖ + r(δ)

∥

∥

∥

∥

≥
ε.r(δ)

‖x1‖ + r(δ)

}

=

{

ω : sup
t>T (ε1)

r(δ)

‖x1‖ + r(δ)
‖Φ0,t(ω)x1‖ ≥

ε.r(δ)

‖x1‖ + r(δ)

}

=

{

ω : sup
t>T (ε1)

‖Φ0,t (ω) x1 ‖ ≥ ε

}

.
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So, for every ε > 0, δ > 0 any x1 sastifying ‖x1‖ ≥ r(δ), there exists T (δ, ε, x1) :=
T (ε1) such that for t > T (δ, ε, x1), we have

P {ω : ‖Φ0,t(ω)x1‖ > ε} ≤ P

{

ω : sup
t>(T (ε,δ,x1)

‖Φ0,t(ω)x1‖ ≥ ε

}

< δ.

�

Thus, we have proved (3.1), hence the proposition.

Theorem 3.2. Let t0, t
∗ ∈ R

+ be arbitrary fixed non-negative numbers. If the
trivial solution X(t, ω) ≡ 0 of (1.1) is almost surely stable for t ≥ t0 then it is
almost surely stable for t ≥ t∗.

Proof. Suppose the trivial solution X(t, ω) ≡ 0 of (1.1) is almost surely stable
for t ≥ t0 for some fixed t0 ∈ R

+. We show that for any fixed t∗ ≥ 0, the set
Ωt∗ of those ω ∈ Ω such that for every ε > 0, there exists r(ε,t∗,ω) > 0, which
depends measureably on ω, such that for any x0 satisfying ‖x0‖ < r(ε,t∗,ω) we have

sup
t>t∗

‖Φt∗,t(ω)x0‖ < ε has probility 1.

Since X(t, ω) ≡ 0 is almost surely stable for t ≥ t0, we found a set Ωt0 of full
measure P(Ωt0) = 1 which has the property that for any ε > 0 there is a function
r(ε,t0,.) : Ωt0 → R

+ such that for any x0 ∈ R
d satisfying ‖x0‖ < r(ε,t0,ω)

sup
t≥t0

‖Φt0,t(ω)x0‖ < ε .

Note that Φt∗,t(ω) = Φt0,t(ω) ◦Φt∗ ,t0(ω) for all t ∈ R
+. There are two cases: t∗ ≤

t0 or t∗ > t0. First, we consider the case t∗ ≤ t0. Put h(ω) := sup
t∗≤s≤t0

‖Φt∗,s(ω)‖ ,

r(ε,t∗,ω) := min
(

r(ε,t0,ω)

h(ω) , ε
h(ω)

)

. Take an ‖x1‖ < r(ε,t∗,ω) arbitrarily.

If t∗ ≤ t ≤ t0 then

‖Φt∗,t(ω)x1‖ ≤ ‖Φt∗,t(ω)‖ ‖x1‖ ≤ h(ω) ‖x1‖ ≤ h(ω) ×
ε

h(ω)
= ε.

If t > t0 then we have

Φt∗,t(ω)x1 = Φt0,t(ω) ◦ Φt∗,t0(ω)x1 = Φt0,t(ω) [Φt∗,t0(ω)x1] .

Note that

‖Φt∗,t0(ω)x1‖ ≤ ‖Φt∗,t0(ω)‖ ‖x1‖ ≤ h(ω) ‖x1‖ ≤ h(ω) × r(ε,t∗,ω) < r(ε,t0,ω).

Therefore ‖Φt∗,t(ω)x1‖ = ‖Φt0,t(ω) [Φt∗,t0(ω)x1]‖< ε. Thus, ‖Φt∗,t(ω)x1‖ < ε

for t ≥ t∗. Set Ωt∗ = Ωt0 we found the set Ωt∗ with the required property and
P(Ωt∗) = 1. The case t∗ > t0 can be treated similarly. The theorem is proved. �

Theorem 3.3. If the trivial solution X(t, ω) ≡ 0 of (1.1) is stable almost surely
for t ≥ 0 then it is stable in probability for t ≥ 0 and vice versa.
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Proof. (i) Suppose that X(t, ω) ≡ 0 is stable almost surely for t ≥ 0. By Theorem
3.2, for any t0, X(t, ω) ≡ 0 is stable almost surely for t ≥ t0. Fix t0 ≥ 0,
denote by Ω′ the set of those ω ∈ Ω such that for every ε > 0, there exists
a measurable r(ε,ω) > 0 such that for any x0 satisfying ‖x0‖ < r(ε,ω) we have
‖ Φt0,t(ω)x0 ‖< ε for all t > t0 has probability 1. Thus P(Ω′) = 1 and for ω ∈ Ω′

and x0 satisfying ‖x0‖ < r(ε,ω) we have

sup
t>t0

‖Φt0,t(ω)x0‖ < ε .(3.3)

We prove the first part of the theorem by arguing from contradiction. Supopse
that X(t, ω) ≡ 0 is not stable in probability for t ≥ 0, i.e. there exist ε1 > 0, t1 ≥ 0
and δ1 > 0 such that for any r > 0 the set A of those ω ∈ Ω such that there is
x(ε1,t1,δ1,ω) satisfying ‖ x(ε1,t1,δ1,ω) ‖< r and

sup
t>t1

∥

∥Φt1,t(ω)x(ε1,t1,δ1,ω)

∥

∥ > ε1 has probability P(A) ≥ δ1.(3.4)

In (3.3), choose ε = ε1, t0 = t1, then there exists a measureable r(ε,ω) > 0
such that for any x0 satisfying ‖x0‖ < r(ε,ω) then sup

t>t1

‖Φt1,t(ω)x0‖ < ε1. Since

r(ε,t0,ω) > 0, there exists r2 > 0, such that for the set

B :=
{

ω : r(ε,t1,ω) < r2

}

we have P(B) < δ1.(3.5)

In (3.4), we choose r = r2, from definition of Ω′ and (3.4), (3.5) we have P(Bc ∩
A ∩ Ω′) > 0, hence there exists ω0 ∈ Bc ∩ A ∩ Ω′. Since ω0 ∈ Bc

r(ε1,t0,ω0) ≥ r2.(3.6)

Since ω0 ∈ A there is x(ε1,t1,δ1,ω0) satisfying ‖ x(ε1,t1,δ1,ω0) ‖< r2 such that

sup
t>t1

∥

∥Φt1,t(ω
0)x(ε1,t1,δ1,ω0)

∥

∥ > ε1.(3.7)

Since ω0 ∈ Ω′, ε = ε1, t0 = t1 and since
∥

∥x(ε1,t1,δ1,ω0)

∥

∥ < r2 ≤ r(ε1,t1,ω0) we have

sup
t>t1

∥

∥Φt1,t(ω
0)x(ε1,t1,δ1,ω0)

∥

∥ < ε1,(3.8)

which contradicts (3.7). Thus, the first part of the theorem is proved.
(ii) Now we turn to the second part of the theorem. Suppose that the trivial
solution X(t, ω) ≡ 0 of (1.1) is stable in probability for t ≥ 0. We have to show
that it is stable almost surely. We again argue from contradiction.
Assume that X(t, ω) ≡ 0 is not stable almost surely. Then the set

C := {ω : X(t, ω) ≡ 0 is not stable for t ≥ 0}

has probability P(C) = δ∗ > 0. Since equation (1.1) is linear, by the same
argument as for deterministic linear differential equations (see Demidovich, §7
chap 2, p.81 [1]) we have

C =

{

ω : sup
t>0

‖Φ0,t(ω)‖ = +∞

}

.
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Let {e1, e2, ..., en} denote the standard basis in R
n. Let M be an arbitrary

linear operator in R
n, x ∈ R

n be an arbitrary unit vector then we can write
x = α1e1+α2e2+ ...+αnen , α1, α2, ..., αn are real numbers, α2

1+α2
2+ ...+α2

n = 1.
We have

‖Mx‖ =

∥

∥

∥

∥

∥

M(

n
∑

i=1

αiei)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n
∑

i=1

αiMei

∥

∥

∥

∥

∥

≤

n
∑

i=1

|αi| ‖Mei‖ ≤

n
∑

i=1

‖Mei‖ .

Let ω0 ∈ C be arbitrary. Then

sup
t>0

‖Φ0,t(ω0)‖ = +∞.

Therefore, sup
t>0

n
∑

i=1
‖Φ0,t(ω0)ei‖ = +∞. Hence there exists an index iω0 ∈ {1, 2, ..., n}

such that

sup
t>0

∥

∥Φ0,t(ω0)eiω0

∥

∥ = +∞.(3.9)

Now, since X(t, ω) ≡ 0 is stable in probability for t ≥ 0, for any ε > 0 and δ > 0
there exists r(δ,ε) > 0 such that for any x0 satisfying ‖x0‖ < r(δ,ε)

P

{

ω : sup
t>0

‖Φ0,t(ω)x0‖ > ε

}

< δ.

Put D(ε,δ,r(δ,ε),x0) =

{

ω : sup
t>0

‖Φ0,t(ω)x0‖ > ε

}

then P(D(ε,δ,r(δ,ε),x0)) < δ.

Fix ε > 0 and choose δ = δ∗

2n
, we find r( δ∗

2n
,ε) > 0 such that for any x0 satisfying

‖x0‖ < r( δ∗

2n
,ε) then D(ε, δ∗

2n
,r

( δ∗
2n

,ε)
,x0)

has probability less than δ∗

2n
.

Consider n vectors

xi =
r( δ∗

2n
,ε)

2
ei, i = 1, 2, ..., n.

Then ‖xi‖ =
r
( δ∗

2n
,ε)

2 < r
( δ∗

2n
,ε)

, hence D
(ε, δ∗

2n
,r

( δ∗

2n
,ε)

,xi)
has probability less than δ∗

2n

for all i = 1, 2, ..., n.
Let ω0 ∈ C be arbitrary. By (3.9) there is iω0 ∈ {1, 2, ..., n} such that

sup
t>0

∥

∥Φ0,t(ω0)xiω0

∥

∥ = sup
t>0

∥

∥

∥

∥

Φ0,t(ω0)
r( δ∗

2n
,ε)

2
eiω0

∥

∥

∥

∥

= +∞ > ε.

Therefore,

C ⊂

n
⋃

i=1

D(ε, δ∗

2n
,r

( δ∗

2n
,ε)

,xi)
,

which implies

P(C) ≤

n
∑

i=1

P(D(ε, δ∗

2n
,r

( δ∗
2n

,ε)
,xi)

) <
δ∗

2
.
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This contradicts the assumption that P(C) = δ∗ > 0. Thus the second part of
the theorem is proved, hence the theorem. �

Theorem 3.4. Let the 1-dimensional linear Ito stochastic differential equation
with constant coefficients

dXt = BXtdt +

m
∑

j=1

σjXtdW
j
t(3.10)

satisfy a nondegeneracy condition

(A(x)α,α) =

m
∑

j=1

(σjx, α)2 ≥ K ‖x‖2 ‖α‖2

where K is a positive constant. Then the stability in probability and the weak
stability in probability of its trivial solution X(t, ω) ≡ 0 are equivalent.

Proof. Since (3.10) is an 1-dimensional linear Ito stochastic differential equation
with constant coefficients we can solve it explicitly as follows (see Khasminskii [3]).
First note that (3.10) is equivalent to the following Stratonovich differential equa-
tion

dXt =



B −
1

2

m
∑

j=1

σ2
j



Xtdt +
m

∑

j=1

σjXt ◦ dW
j
t

or equivalent to

dXt

Xt

=



B −
1

2

m
∑

j=1

σ2
j



 dt +
m

∑

j=1

σj ◦ dW
j
t .

Therefore,

ln |Xt| − ln |Xt0 | =



B −
1

2

m
∑

j=1

σ2
j



 (t − t0) +
m

∑

j=1

σj

(

W
j
t − W

j
t0

)

.

Consequently,

ρ(t) := ln |Xt| = ln |Xt0 | +



B −
1

2

m
∑

j=1

σ2
j



 (t − t0) +
m

∑

j=1

σj

(

W
j
t − W

j
t0

)

.

Computing the variance of ρ(t) we have Dρ(t) =
m
∑

j=1
σ2

j (t − t0) hence

lim
t→+∞

Dρ(t) = +∞. Thus for the 1-dimensional linear Ito stochastic differen-

tial equation with constant coefficients (3.10), the condition Dρ(t) → +∞ when
t → +∞ is satisfied. Now, by Theorem 11.1 of Khasminskii [3, p. 243] the sta-
bility in probability of trivial solution of (3.10) is equivalent to the weak stability
in probability. �
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