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STRONG CONVERGENCE OF NOOR ITERATION FOR

GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE

MAPPINGS IN CAT(0) SPACES

G. S. SALUJA

Abstract. In this paper, we establish strong convergence theorems of the
Noor iteration for generalized asymptotically quasi-nonexpansive mappings in
CAT(0) spaces. Our results improve and extend the corresponding results
from the current literature.

1. Introduction

A metric space X is a CAT(0) space if it is geodesically connected and if
every geodesic triangle in X is at least as “thin” as its comparison triangle in the
Euclidean plane. The precise definition is given below. It is well known that any
complete, simply connected Riemannian manifold having nonpositive sectional
curvature is a CAT(0) space. Other examples include Pre-Hilbert spaces (see [2]),
R-trees (see [17]), Euclidean buildings (see [3]), the complex Hilbert ball with a
hyperbolic metric (see [9]), and many others. For a thorough discussion of these
spaces and of the fundamental role they play in geometry, we refer the reader to
Bridson and Haefliger [2].

Fixed point theory in CAT(0) spaces was first studied by Kirk (see [16,17]). He
showed that every nonexpansive (single-valued) mapping defined on a bounded
closed convex subset of a complete CAT(0) space always has a fixed point.
Since then, the fixed point theory for single-valued and multi-valued mappings in
CAT(0) spaces has been rapidly developed, and many papers have appeared (see,
e.g., [1, 5–8, 10, 13, 14, 18–22] and the references therein). It is worth mentioning
that the results in CAT(0) spaces can be applied to any CAT(k) space with k ≤ 0
since any CAT(k) space is a CAT(k′) space for every k′ ≥ k (see, e.g., [2]).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or,
more briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R
to X such that c(0) = x, c(l) = y and d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l]. In
particular, c is an isometry, and d(x, y) = l. The image α of c is called a geodesic
(or metric) segment joining x and y. We say X is (i) a geodesic space if any two
points of X are joined by a geodesic and (ii) uniquely geodesic if there is exactly
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one geodesic joining x and y for each x, y ∈ X, which we will denoted by [x, y],
called the segment joining x to y.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists
of three points in X (the vertices of 4) and a geodesic segment between each
pair of vertices (the edges of 4). A comparison triangle for geodesic triangle
4(x1, x2, x3) in (X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in R2 such that
dR2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always exists (see [2]).

A geodesic metric space is said to be a CAT (0) space if all geodesic triangles
of appropriate size satisfy the following CAT (0) comparison axiom.

Let 4 be a geodesic triangle in X, and let 4 ⊂ R2 be a comparison triangle
for 4. Then 4 is said to satisfy the CAT (0) inequality if for all x, y ∈ 4 and all
comparison points x, y ∈ 4,

d(x, y) ≤ d(x, y).(1.1)

Complete CAT (0) spaces are often called Hadamard spaces (see [12]). If
x, y1, y2 are points of a CAT (0) space and y0 is the mid point of the segment
[y1, y2] which we will be denoted by (y1 ⊕ y2)/2, then the CAT (0) inequality
implies

d2
(
x,
y1 ⊕ y2

2

)
≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)−

1

4
d2(y1, y2).(1.2)

The inequality (1.2) is the (CN) inequality of Bruhat and Titz [4]. The above
inequality has been extended in [7] as

d2(z, αx⊕ (1− α)y) ≤ αd2(z, x) + (1− α)d2(z, y)

−α(1− α)d2(x, y),(1.3)

for any α ∈ [0, 1] and x, y, z ∈ X.
Let us recall that a geodesic metric space is a CAT (0) space if and only if it

satisfies the (CN) inequality (see [2, page 163]). Moreover, if X is a CAT (0)
metric space and x, y ∈ X, then for any α ∈ [0, 1], there exists a unique point
αx⊕ (1− α)y ∈ [x, y] such that

d(z, αx⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y),(1.4)

for any z ∈ X and [x, y] = {αx⊕ (1− α)y : α ∈ [0, 1]}.
A subset C of a CAT (0) space X is convex if for any x, y ∈ C, we have

[x, y] ⊂ C.
Let T be a self map on a nonempty subset C of X. Denote the set of fixed

points of T by F (T ) = {x ∈ C : T (x) = x}. We say that T is:
(1) asymptotically nonexpansive if there exists a sequence {rn} ⊂ [0,∞) with

lim
n→∞

rn = 0 such that

d(Tnx, Tny) ≤ (1 + rn)d(x, y),(1.5)

for all x, y ∈ C and n ≥ 1.
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(2) asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists a sequence
{rn} ⊂ [0,∞) with lim

n→∞
rn = 0 such that

d(Tnx, p) ≤ (1 + rn)d(x, p),(1.6)

for all x ∈ C, p ∈ F (T ) and n ≥ 1.
(3) generalized asymptotically quasi-nonexpansive [11] if F (T ) 6= ∅ and there

exist two sequences of real numbers {rn} and {sn} with lim
n→∞

rn = 0 = lim
n→∞

sn

such that

d(Tnx, p) ≤ (1 + rn)d(x, p) + sn,(1.7)

for all x ∈ C, p ∈ F (T ) and n ≥ 1.
(4) uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(Tnx, Tny) ≤ L d(x, y),(1.8)

for all x, y ∈ C and n ≥ 1.
(5) semi-compact if for any bounded sequence {xn} in C with d(xn, Txn)→ 0

as n→∞, there is a convergent subsequence of {xn}.
If in Definition (3), sn = 0 for all n ≥ 1, then T becomes asymptotically

quasi-nonexpansive, and hence the class of generalized asymptotically quasi-
nonexpansive maps includes the class of asymptotically quasi-nonexpansive maps.

Let {xn} be a sequence in a metric space (X, d), and let C be a subset of X.
We say that {xn} is:

(6) of monotone type (A) with respect to C if for each p ∈ C, there exist two

sequences {an} and {bn} of nonnegative real numbers such that
∞∑
n=1

an < ∞,

∞∑
n=1

bn <∞ and

(1.9) d(xn+1, p) ≤ (1 + an)d(xn, p) + bn,

(7) of monotone type (B) with respect to C if for each p ∈ C, there exist two

sequences {an} and {bn} of nonnegative real numbers such that
∞∑
n=1

an < ∞,

∞∑
n=1

bn <∞ and

d(xn+1, C) ≤ (1 + an)d(xn, C) + bn,(1.10)

(see also [24]).
From of the above definitions, it is clear that a sequence of monotone type (A)

is a sequence of monotone type (B) but the converse does not hold, in general.
Recently, Y. Niwongsa and B. Panyanak [20] studied the Noor iteration scheme

in CAT(0) spaces and they proved some 4 and strong convergence theorems for
asymptotically nonexpansive mappings which extend and improve some recent
results from the literature.
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The aim of this paper is to extend the corresponding results of [20] and to
prove some convergence theorems of Noor iterations for generalized asymptoti-
cally quasi-nonexpansive mappings in CAT(0) spaces.

We need the following useful lemma to prove our convergence results.

Lemma 1.1 (see [23]). Let {pn}, {qn}, {rn} be three sequences of nonnegative
real numbers satisfying the following conditions:

pn+1 ≤ (1 + qn)pn + rn, n ≥ 0,

∞∑
n=0

qn <∞,
∞∑
n=0

rn <∞.

Then

(1) lim
n→∞

pn exists.

(2) In addition, if lim inf
n→∞

pn = 0, then lim
n→∞

pn = 0.

2. Strong convergence theorems in CAT(0) spaces

We establish some convergence results of Noor iterations to a fixed point for
generalized asymptotically quasi-nonexpansive self mappings in the general class
of CAT(0) spaces.

Theorem 2.1. Let (X, d) be a complete CAT(0) space, and let C be a nonempty
closed convex subset of X. Let T : C → C be a generalized asymptotically quasi-

nonexpansive mapping with {rn}, {sn} ⊂ [0,∞) such that
∞∑
n=1

rn <∞ and
∞∑
n=1

sn <

∞. Suppose that F (T ) is closed. Let {xn} be the Noor iteration sequence defined
as: For a given x1 ∈ C, define

zn = γnT
nxn ⊕ (1− γn)xn,

yn = βnT
nzn ⊕ (1− βn)xn, n ≥ 1,

xn+1 = αnT
nyn ⊕ (1− αn)xn,(2.1)

where {αn}, {βn}, {γn} are real sequences in [0,1]. Then the sequence {xn} is
of monotone type (A) and monotone type (B) with respect to F (T ). Moreover,
{xn} converges strongly to a fixed point p of the mapping T if and only if

lim inf
n→∞

d(xn, F (T )) = 0,

where d(x, F (T )) = infp∈F (T ){d(x, p)}.

Proof. The necessity is obvious and so it is omitted. Now, we prove the sufficiency.
For any p ∈ F (T ), from (1.4), (1.7) and (2.1), we have

d(zn, p) = d(γnT
nxn ⊕ (1− γn)xn, p)

≤ γnd(Tnxn, p) + (1− γn)d(xn, p)

≤ γn[(1 + rn)d(xn, p) + sn] + (1− γn)d(xn, p)

≤ (1 + rn)[γn + 1− γn]d(xn, p) + γnsn

= (1 + rn)d(xn, p) + γnsn,(2.2)
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and

d(yn, p) = d(βnT
nzn ⊕ (1− βn)xn, p)

≤ βnd(Tnzn, p) + (1− βn)d(xn, p)

≤ βn[(1 + rn)d(zn, p) + sn] + (1− βn)d(xn, p)

≤ βn(1 + rn)d(zn, p) + βnsn + (1− βn)d(xn, p).(2.3)

Substituting (2.2) into (2.3), we get

d(yn, p) ≤ βn(1 + rn)[(1 + rn)d(xn, p) + γnsn] + βnsn

+(1− βn)d(xn, p)

≤ (1 + rn)2[βn + 1− βn]d(xn, p)

+βn(1 + rn)sn(1 + γn)

≤ (1 + rn)2d(xn, p) + 2βn(1 + rn)sn,(2.4)

and

d(xn+1, p) = d(αnT
nyn ⊕ (1− αn)xn, p)

≤ αnd(Tnyn, p) + (1− αn)d(xn, p)

≤ αn[(1 + rn)d(yn, p) + sn] + (1− αn)d(xn, p)

≤ αn(1 + rn)d(yn, p) + αnsn + (1− αn)d(xn, p).(2.5)

Substituting (2.4) into (2.5), we get

d(xn+1, p) ≤ αn(1 + rn)[(1 + rn)2d(xn, p) + 2βn(1 + rn)sn]

+αnsn + (1− αn)d(xn, p)

≤ (1 + rn)3[αn + 1− αn]d(xn, p) + αnsn

+2αnβn(1 + rn)2sn

≤ (1 + rn)3d(xn, p) + (1 + rn)2αnsn(1 + 2βn)

≤ (1 + rn)3d(xn, p) + 3(1 + rn)2αnsn

= (1 +An)d(xn, p) +Bn,(2.6)

where An = 3rn + 3r2n + r3n and Bn = 3(1 + rn)2αnsn. Since by hypothesis,
∞∑
n=1

rn <∞ and
∞∑
n=1

sn <∞, it follows that
∞∑
n=1

An <∞ and
∞∑
n=1

Bn <∞. Now,

from (2.6), we get

d(xn+1, p) ≤ (1 +An)d(xn, p) +Bn,(2.7)

d(xn+1, F (T )) ≤ (1 +An)d(xn, F (T )) +Bn.(2.8)

These inequalities, respectively, prove that {xn} is a sequence of monotone type
(A) and monotone type (B) with respect to F (T ).

Now, we prove that {xn} converges strongly to a fixed point of the mapping
T if and only if lim inf

n→∞
d(xn, F (T )) = 0.

If xn → p ∈ F (T ), then lim
n→∞

d(xn, p) = 0. Since 0 ≤ d(xn, F (T )) ≤ d(xn, p),

we have lim inf
n→∞

d(xn, F (T )) = 0.
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Conversely, suppose that lim inf
n→∞

d(xn, F (T )) = 0. Applying Lemma 1.1 to

(2.8), we have that lim
n→∞

d(xn, F (T )) exists. Further, by hypothesis lim inf
n→∞

d(xn,

F (T )) = 0, we conclude that lim
n→∞

d(xn, F (T )) = 0. Next, we show that {xn} is

a Cauchy sequence.
Since 1 + x ≤ ex for x ≥ 0, therefore from (2.7), we have

d(xn+m, p) ≤ (1 +An+m−1)d(xn+m−1, p) +Bn+m−1

≤ eAn+m−1d(xn+m−1, p) +Bn+m−1

≤ eAn+m−1 [eAn+m−2d(xn+m−2, p) +Bn+m−2]

+Bn+m−1

≤ e(An+m−1+An+m−2)d(xn+m−2, p)

+eAn+m−1 [Bn+m−2 +Bn+m−1]

≤ . . .

≤ e

n+m−1∑
k=n

Ak

d(xn, p) + e

n+m−1∑
k=n+1

Ak
( n+m−1∑

k=n

Bk

)

≤ e

n+m−1∑
k=n

Ak

d(xn, p) + e

n+m−1∑
k=n

Ak
( n+m−1∑

k=n

Bk

)
.(2.9)

Let M = e

n+m−1∑
k=n

Ak

. Then 0 < M <∞ and

(2.10) d(xn+m, p) ≤Md(xn, p) +M
( n+m−1∑

k=n

Bk

)
,

for the natural numbersm,n and p ∈ F (T ). Since lim
n→∞

d(xn, F (T )) = 0, therefore

for any ε > 0, there exists a natural number n0 such that d(xn, F (T )) < ε/8M

and
n+m−1∑
k=n

Bk < ε/4M for all n ≥ n0. So, we can find p∗ ∈ F (T ) such that

d(xn0 , p
∗) < ε/4M . Hence, for all n ≥ n0 and m ≥ 1, we have

d(xn+m, xn) ≤ d(xn+m, p
∗) + d(xn, p

∗)

≤ Md(xn0 , p
∗) +M

∞∑
k=n0

Bk

+Md(xn0 , p
∗) +M

∞∑
k=n0

Bk

= 2M
(
d(xn0 , p

∗) +
∞∑

k=n0

Bk

)
≤ 2M

( ε

4M
+

ε

4M

)
= ε.(2.11)
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This proves that {xn} is a Cauchy sequence. Thus, the completeness of X im-
plies that {xn} must be convergent. Assume that lim

n→∞
xn = z. Since C is closed,

therefore z ∈ C. Next, we show that z ∈ F (T ). Now, the following two inequali-
ties:

d(z, p) ≤ d(z, xn) + d(xn, p) ∀p ∈ F (T ), n ≥ 1 and

d(z, xn) ≤ d(z, p) + d(xn, p) ∀p ∈ F (T ), n ≥ 1
(2.12)

give

(2.13) −d(z, xn) ≤ d(z, F (T ))− d(xn, F (T )) ≤ d(z, xn), n ≥ 1.

That is,

(2.14) |d(z, F (T ))− d(xn, F (T ))| ≤ d(z, xn), n ≥ 1.

As lim
n→∞

xn = z and lim
n→∞

d(xn, F (T )) = 0, we conclude that z ∈ F (T ). This

completes the proof. �

We deduce some results from Theorem 2.1 as follows.

Corollary 2.2. Let (X, d) be a complete CAT(0) space, and let C be a nonempty
closed convex subset of X. Let T : C → C be a generalized asymptotically quasi-

nonexpansive mapping with {rn}, {sn} ⊂ [0,∞) such that
∞∑
n=1

rn <∞ and
∞∑
n=1

sn <

∞. Suppose that F (T ) is closed. Let {xn} be the Noor iteration sequence defined
by (2.1). Then {xn} converges strongly to a fixed point p of the mapping T if and
only if there exists a subsequence {xnj} of {xn} which converges to p ∈ F (T ).

Corollary 2.3. Let (X, d) be a complete CAT(0) space, and C be a nonempty
closed convex subset of X. Let T : C → C be an asymptotically quasi-nonexpansive

mapping with {rn} ⊂ [0,∞) such that
∞∑
n=1

rn <∞. Suppose that F (T ) is closed.

Let {xn} be the Noor iteration sequence defined by (2.1). Then {xn} converges
strongly to a fixed point p of the mapping T if and only if

lim inf
n→∞

d(xn, F (T )) = 0.

Proof. Follows from Theorem 2.1 with sn = 0 for all n ≥ 1. �

Corollary 2.4. Let X be a Banach space, and let C be a nonempty closed convex
subset of X. Let T : C → C be an asymptotically quasi-nonexpansive mapping

with {rn} ⊂ [0,∞) such that
∞∑
n=1

rn < ∞. Suppose that F (T ) is closed. Let

{xn} be the Noor iteration sequence defined by (2.1). Then the sequence {xn} is
of monotone type (A) and monotone type (B) with respect to F (T ). Moreover,
{xn} converges strongly to a fixed point p of the mapping T if and only if

lim inf
n→∞

d(xn, F (T )) = 0.

Proof. Take λx⊕ (1− λ)y = λx+ (1− λ)y in Corollary 2.3. �
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Lemma 2.5. Let (X, d) be a complete CAT(0) space, and let C be a nonempty
closed convex subset of X. Let T : C → C be a uniformly continuous generalized
asymptotically quasi-nonexpansive mapping with {rn}, {sn} ⊂ [0,∞) such that
∞∑
n=1

rn < ∞ and
∞∑
n=1

sn < ∞. Suppose that F (T ) 6= ∅. Let {xn} be the Noor

iteration sequence defined by (2.1). Let {αn} and {βn} be real sequences in [δ, 1−
δ] for some δ ∈ (0, 1). Then

(a) lim
n→∞

d(Tnyn, xn) = 0;

(b) lim
n→∞

d(Tnzn, xn) = 0.

Proof. Let p ∈ F (T ). Then, by Theorem 2.1, we have lim
n→∞

d(xn, p) exists. Let

lim
n→∞

d(xn, p) = a. If a = 0, then by the continuity of T the conclusion follows.

Now suppose a > 0. We claim that

lim
n→∞

d(Tnyn, xn) = 0 = lim
n→∞

d(Tnzn, xn).(2.15)

Since {xn} is bounded, there exists R > 0 such that {xn}, {yn}, {zn} ⊂ BR(p)
for all n ≥ 1. Using (1.3) and (2.1), we have

d2(zn, p) = d2(γnT
nxn ⊕ (1− γn)xn, p)

≤ γnd
2(Tnxn, p) + (1− γn)d2(xn, p)

−γn(1− γn)d(Tnxn, xn)

≤ γn[(1 + rn)d(xn, p) + sn]2 + (1− γn)d2(xn, p)

−γn(1− γn)d(Tnxn, xn)

≤ γn[(1 + rn)2d2(xn, p) + ρn] + (1− γn)d2(xn, p)

−γn(1− γn)d(Tnxn, xn)

= γn[(1 + un)d2(xn, p) + ρn] + (1− γn)d2(xn, p)

−γn(1− γn)d(Tnxn, xn)

≤ (1 + un)[γn + 1− γn]d2(xn, p) + γnρn

−γn(1− γn)d(Tnxn, xn)

≤ (1 + un)d2(xn, p) + ρn,(2.16)

where ρn = 2(1 + rn)snd(xn, p) + s2n and un = 2rn + r2n. Since the assumptions
∞∑
n=1

rn <∞ and
∞∑
n=1

sn <∞, it follows that
∞∑
n=1

ρn <∞ and
∞∑
n=1

un <∞. Again

note that

d2(yn, p) = d2(βnT
nzn ⊕ (1− βn)xn, p)

≤ βnd
2(Tnzn, p) + (1− βn)d2(xn, p)

−βn(1− βn)d2(Tnzn, xn)
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≤ βn[(1 + rn)d(zn, p) + sn]2 + (1− βn)d2(xn, p)

−βn(1− βn)d2(Tnzn, xn)

≤ βn[(1 + rn)2d2(zn, p) + µn] + (1− βn)d2(xn, p)

−βn(1− βn)d2(Tnzn, xn)

= βn[(1 + un)d2(zn, p) + µn] + (1− βn)d2(xn, p)

−βn(1− βn)d2(Tnzn, xn)

≤ (1 + un)[βn + 1− βn]d2(zn, p) + βnµn

−βn(1− βn)d2(Tnzn, xn)

≤ (1 + un)d2(zn, p) + βnµn

−βn(1− βn)d2(Tnzn, xn),(2.17)

where µn = 2(1+rn)snd(zn, p)+s
2
n and un = 2rn+r2n. By assumptions

∞∑
n=1

rn <∞

and
∞∑
n=1

sn <∞, it follows that
∞∑
n=1

µn <∞ and
∞∑
n=1

un <∞. Now (2.17) implies

that

d2(yn, p) ≤ (1 + un)d2(zn, p) + βnµn.(2.18)

Substituting (2.16) into (2.18) we see that

d2(yn, p) ≤ (1 + un)[(1 + un)d2(xn, p) + ρn]

+βnµn

≤ (1 + un)2d2(xn, p) + (1 + un)[ρn + µn].(2.19)

Again note that

d2(xn+1, p) = d2(αnT
nyn ⊕ (1− αn)xn, p)

≤ αnd
2(Tnyn, p) + (1− αn)d2(xn, p)

−αn(1− αn)d2(Tnyn, xn)

≤ αn[(1 + rn)d(yn, p) + sn]2 + (1− αn)d2(xn, p)

−αn(1− αn)d2(Tnyn, xn)

≤ αn[(1 + rn)2d2(yn, p) + νn] + (1− αn)d2(xn, p)

−αn(1− αn)d2(Tnyn, xn)

= αn[(1 + un)d2(yn, p) + νn] + (1− αn)d2(xn, p)

−αn(1− αn)d(Tnyn, xn)

≤ (1 + un)d2(yn, p) + αnνn

−αn(1− αn)d2(Tnyn, xn)

≤ (1 + un)d2(yn, p) + νn

−αn(1− αn)d2(Tnyn, xn),(2.20)
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where νn = 2(1+rn)snd(yn, p)+s2n. By assumption
∞∑
n=1

rn <∞ and
∞∑
n=1

sn <∞,

it follows that
∞∑
n=1

νn <∞. Substituting (2.19) into (2.20) we get

d2(xn+1, p) ≤ (1 + un)[(1 + un)2d2(xn, p) + (1 + un)(ρn + µn)]

+νn − αn(1− αn)d(Tnyn, xn)

≤ (1 + un)3d2(xn, p) + (1 + un)2(ρn + µn + νn)

−αn(1− αn)d2(Tnyn, xn)

= (1 + vn)d2(xn, p) + (1 + tn)θn

−αn(1− αn)d2(Tnyn, xn),(2.21)

where θn = ρn+µn+νn, vn = 3un+3u2n+u3n and tn = u2n+2un. Since
∞∑
n=1

ρn <∞,

∞∑
n=1

µn <∞,
∞∑
n=1

νn <∞ and
∞∑
n=1

un <∞, it follows that
∞∑
n=1

θn <∞,
∞∑
n=1

vn <∞

and
∞∑
n=1

tn < ∞. Observe that αn(1 − αn) ≥ δ2 and
∞∑
n=1

θn < ∞. For m ≥ 1,

(2.21) implies

m∑
n=1

d2(Tnyn, xn) ≤ 1

δ2

[
d2(x1, p)− d2(xm+1, p) +

m∑
n=1

vnd
2(xn, p)

+
m∑

n=1

θn +
m∑

n=1

tnθn

]
≤ 1

δ2

[
d2(x1, p) +R2

m∑
n=1

vn +

m∑
n=1

θn

+
( m∑

n=1

θ2n

)1/2( m∑
n=1

t2n

)1/2]
.(2.22)

When m → ∞, we have
∞∑
n=1

d2(Tnyn, xn) < ∞, since
∞∑
n=1

vn < ∞,
∞∑
n=1

θn < ∞,

∞∑
n=1

tn <∞ and d(xn, p) ≤ R ∀ n.

Hence

lim
n→∞

d(Tnyn, xn) = 0.(2.23)

Thus assertion (a) of the lemma is proved.
Now, we have

d(xn, p) ≤ d(xn, T
nyn) + d(Tnyn, p)

≤ d(xn, T
nyn) + (1 + rn)d(yn, p) + sn,(2.24)
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from which we deduce that a ≤ lim inf
n→∞

d(yn, p). On the other hand, we have

d(yn, p) ≤ βnd(Tnzn, p) + (1− βn)d(xn, p)

≤ βn[(1 + rn)d(zn, p) + sn] + (1− βn)d(xn, p)

= βn(1 + rn)d(zn, p) + βnsn + (1− βn)d(xn, p),(2.25)

and

d(zn, p) ≤ γnd(Tnxn, p) + (1− γn)d(xn, p)

≤ γn[(1 + rn)d(xn, p) + sn] + (1− γn)d(xn, p)

= γn(1 + rn)d(xn, p) + γnsn + (1− γn)d(xn, p)

≤ (1 + rn)d(xn, p) + γnsn.(2.26)

From (2.25) and (2.26), we have

d(yn, p) ≤ βn(1 + rn)[(1 + rn)d(xn, p) + γnsn] + βnsn

+(1− βn)d(xn, p)

≤ (1 + rn)2d(xn, p) + βnsn(1 + rn)(1 + γn)

≤ (1 + rn)2d(xn, p) + 2βnsn(1 + rn),(2.27)

which implies lim sup
n→∞

d(yn, p) ≤ a. Therefore, lim
n→∞

d(yn, p) = a. Again consider

(2.17) and using (2.16), we have

d2(yn, p) ≤ (1 + un)d2(zn, p) + βnµn − βn(1− βn)d2(Tnzn, xn)

≤ (1 + un)[(1 + un)d2(xn, p) + ρn] + βnµn

−βn(1− βn)d2(Tnzn, xn)

≤ (1 + tn)d2(xn, p) + (1 + un)(ρn + βnµn)

−βn(1− βn)d2(Tnzn, xn)

≤ (1 + tn)d2(xn, p) + (1 + un)(ρn + µn)

−βn(1− βn)d2(Tnzn, xn)

= (1 + tn)d2(xn, p) + τn

−βn(1− βn)d2(Tnzn, xn),(2.28)

where tn = u2n + 2un and τn = (1 + un)(ρn + µn). Since
∞∑
n=1

un < ∞,
∞∑
n=1

ρn <

∞ and
∞∑
n=1

µn < ∞, it follows that
∞∑
n=1

tn < ∞ and
∞∑
n=1

τn < ∞. From the

assumption of the theorem, we have βn(1−βn) ≥ δ2,
∞∑
n=1

τn <∞ and
∞∑
n=1

tn <∞.
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For m ≥ 1, (2.28) implies
m∑

n=1

d2(Tnzn, xn) ≤ 1

δ2

[ m∑
n=1

tnd
2(xn, p) +

m∑
n=1

τn

]
≤ 1

δ2

[
R2

m∑
n=1

tn +
m∑

n=1

τn

]
.(2.29)

When m → ∞, we have
∞∑
n=1

d2(Tnzn, xn) < ∞, since
∞∑
n=1

tn < ∞,
∞∑
n=1

τn < ∞

and d(xn, p) ≤ R ∀ n.
Hence

(2.30) lim
n→∞

d(Tnzn, xn) = 0.

Thus assertion (b) of the lemma is proved.
This completes the proof. �

Lemma 2.6. Let (X, d) be a complete CAT(0) space, and C be a nonempty closed
convex subset of X. Let T : C → C be a uniformly 1-Lipschitzian generalized
asymptotically quasi-nonexpansive mapping with {rn}, {sn} ⊂ [0,∞) such that
∞∑
n=1

rn < ∞ and
∞∑
n=1

sn < ∞. Suppose that F (T ) 6= ∅. Let {xn} be the Noor

iteration sequence defined by (2.1). Let {αn} and {βn} be real sequences in [δ, 1−
δ] for some δ ∈ (0, 1). Then lim

n→∞
d(Txn, xn) = 0.

Proof. From Lemma 2.5, we have

lim
n→∞

d(Tnyn, xn) = 0 and lim
n→∞

d(Tnzn, xn) = 0.(2.31)

Thus

d(Tnxn, xn) ≤ d(Tnxn, T
nyn) + d(Tnyn, xn).(2.32)

Since T is uniformly 1-Lipschitzian and d(xn, yn)→ 0 as n→∞, it follows from
(2.32) that

lim
n→∞

d(Tnxn, xn) = 0.(2.33)

Again since T is uniformly 1-Lipschitzian and d(xn+1, xn) → 0 as n → ∞, we
have

d(xn+1, T
nxn+1) ≤ d(xn+1, xn) + d(Tnxn, xn) + d(Tnxn+1, T

nxn)

≤ d(xn+1, xn) + d(Tnxn, xn) + d(xn+1, xn)

= 2d(xn+1, xn) + d(Tnxn, xn)

→ 0 as n→∞.(2.34)

Since T is uniformly 1-Lipschitzian, from (2.33) and (2.34), we get

d(xn+1, Txn+1) ≤ d(xn+1, T
n+1xn+1) + d(Tn+1xn+1, Txn+1)

≤ d(xn+1, T
n+1xn+1) + d(Tnxn+1, xn+1)

→ 0 as n→∞,(2.35)
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which implies

lim
n→∞

d(Txn, xn) = 0.(2.36)

This completes the proof. �

Theorem 2.7. Let (X, d) be a complete CAT(0) space, and C be a nonempty
closed convex subset of X. Let T : C → C be a uniformly 1-Lipschitzian gener-
alized asymptotically quasi-nonexpansive mapping with {rn}, {sn} ⊂ [0,∞) such

that
∞∑
n=1

rn < ∞ and
∞∑
n=1

sn < ∞. Suppose that F (T ) 6= ∅. Let {xn} be the

Noor iteration sequence defined by (2.1). Let {αn} and {βn} be real sequences in
[δ, 1− δ] for some δ ∈ (0, 1). Assume, in addition that T is compact. Then {xn},
{yn} and {zn} converge strongly to a fixed point of T .

Proof. By Lemmas 2.5 and 2.6, we have

lim
n→∞

d(Tnyn, xn) = 0, lim
n→∞

d(Tnzn, xn) = 0,(2.37)

and

lim
n→∞

d(Txn, xn) = 0.(2.38)

Again by Theorem 2.1, {xn} is bounded. It follows by our assumption that T
is compact, then there exists a subsequence {Txnk

} of {Txn} such that Txnk
→

x∗ ∈ C as k →∞. Moreover, by (2.38), we have d(Txnk
, xnk

)→ 0 which implies
that xnk

→ x∗ as k →∞. By (2.38) again, we have

d(x∗, Tx∗) = lim
k→∞

d(Txnk
, xnk

) = 0.(2.39)

It shows that x∗ ∈ F (T ). Furthermore, since lim
n→∞

d(xn, x
∗) exists, therefore

lim
n→∞

d(xn, x
∗) = 0, that is, {xn} converges to some fixed point of T . Now, using

(2.33) and (2.37) we have

d(yn, xn) ≤ βnd(Tnzn, xn)→ 0, as n→∞,(2.40)

and

d(zn, xn) ≤ γnd(Tnxn, xn)→ 0, as n→∞.(2.41)

Therefore lim
n→∞

yn = x∗ = lim
n→∞

zn. Thus {xn}, {yn} and {zn} converge strongly

to a fixed point of T . This completes the proof. �

From Theorem 2.7, we obtain the following results.

Theorem 2.8. Let (X, d) be a complete CAT(0) space, and let C be a nonempty
closed convex subset of X. Let T : C → C be a uniformly 1-Lipschitzian gener-
alized asymptotically quasi-nonexpansive mapping with {rn}, {sn} ⊂ [0,∞) such

that
∞∑
n=1

rn <∞ and
∞∑
n=1

sn <∞. Suppose that F (T ) 6= ∅. Let {αn} and {βn} be
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real sequences in [δ, 1− δ] for some δ ∈ (0, 1). For a given x1 ∈ C, define

yn = βnT
nxn ⊕ (1− βn)xn,

xn+1 = αnT
nyn ⊕ (1− αn)xn, n ≥ 1.(2.42)

Assume, in addition that T is compact. Then {xn} converges strongly to a fixed
point of T .

Theorem 2.9. Let (X, d) be a complete CAT(0) space, and C be a nonempty
closed convex subset of X. Let T : C → C be a uniformly 1-Lipschitzian gener-
alized asymptotically quasi-nonexpansive mapping with {rn}, {sn} ⊂ [0,∞) such

that
∞∑
n=1

rn < ∞ and
∞∑
n=1

sn < ∞. Suppose that F (T ) 6= ∅. Let {αn} be a real

sequence in [δ, 1− δ] for some δ ∈ (0, 1). For a given x1 ∈ C, define

xn+1 = αnT
nxn ⊕ (1− αn)xn, n ≥ 1.(2.43)

Assume, in addition that T is compact. Then {xn} converges strongly to a fixed
point of T .

Remark 2.10. Our results extend and improve the corresponding results of
Niwongsa and Panyanak [20] to the case of more general class of asymptotically
nonexpansive mappings considered in this paper.
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