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REALISING UNSTABLE MODULES AS THE COHOMOLOGY
OF SPACES AND MAPPING SPACES

GERALD GAUDENS AND LIONEL SCHWARTZ

ABSTRACT. This report discusses the question whether or not a given unstable
module is the mod-p cohomology of a space. One first discusses shortly the
Hopf invariant 1 problem and the Kervaire invariant 1 problem and gives their
relations to homotopy theory and geometric topology. Then one describes
some more qualitative results, emphasizing the use of the space map(BZ/p, X)
and of the structure of the category of unstable modules.

1. INTRODUCTION

Let p be a prime number, in all the sequel H* X will denote the mod p singular
cohomology of the topological space X. All spaces X will be supposed p-complete
and connected.

The singular mod-p cohomology is endowed with various structures:

e it is a graded F,-algebra, commutative in the graded sense,
e it is naturally a module over the algebra of stable cohomology operations
which is known as the mod p Steenrod algebra and denoted by A,,.

The Steenrod algebra is generated by elements S¢° of degree i > 0 if p = 2, 8
and P’ of degree 1 and 2i(p — 1) > 0 if p > 2. These elements satisfy the Adem
relations.

In the mod-2 case the relations write

[“f b—t—1
Sanqb _ < )Sq“+b_t5’qt.
5 a—2t

There are two types of relations for p > 2

[a/p]
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for a,b > 0, and

[a/p]
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for a,b > 0.
An easy consequence of the relations is

Theorem 1.1. The elements Sq2i if p=2; and B and pr' if p > 2 form a
minimal set of multiplicative generators.

There is more structure. The cohomology is an unstable module, which means
that for any cohomology class z
o S¢'(x) =0if i > |z| if p=2,
o P (x)=01if e+ 2i > |z|, if p> 2.
One denotes by U the abelian category of unstable modules.
As an example consider H*BZ/2 = Fyul, |u| = 1; H*BZ/p = E(t) ® F,[z],
|t| =1 and |z| = 2.
One has Sq'(u) = u?; resp. B(t) = u and P!(z) = aP.
These relations, the Cartan formula that gives the action on products, the
restriction axiom which tells that
. Sqd:x2 if |[x| =d (p = 2);
o Py =zaPif |x|=2i (p>2)
and the instability completely determine the action.
The definition of the suspension of an unstable module is central in the theory.
This is motivated by the suspension theorem for the cohomology of ¥ X:

oYX 2YH*X
with XM defined by:
o (XM)" = ML
e for any 0 € A, 0(Xx) = X0(x)

or
SM = M @ SF,.

The category of algebras that are unstable modules, and such that the above
properties relating the two structures hold is called the category of unstable
algebras and denoted by K.

It is a very classical question in homotopy theory to ask whether or not a
certain unstable A,-algebra K is the mod p cohomology of a space. If K is
the cohomology of a space one also would like to read off the structure of the
cohomology some homotopical properties of the associated space. This could
be turned -using the Kan-Thurston theorem- into a (discrete) group theoretic
question, however very little can be said from this point of view.
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Characterising unstable modules or algebras that are the cohomology of a space
is out of reach in full generality. But there are interesting types of questions which
are accessible:

e Questions about specific modules. One gives two very classical examples
in the second section and another one later.

e Necessary conditions for a module to be possibly the cohomology of a
space, this will be done in the last sections.

There are two ways (at least) to get results on these questions. The first
one is to use deeper structure in singular cohomology, for example secondary
operations which give factorisations of primary operations, or to use extraordinary
cohomology theories.

A second approach is to consider mapping spaces. More precisely let K be
an unstable module, assume it is the reduced cohomology of a space X. Then
consider the mapping spaces map(S, X ), pointed or not, and get restrictions by
looking at the cohomology of the mapping space. One option for the source
space S is to choose S™. In this case one considers the space of pointed maps. If
n = 1, as tool to compute the cohomology of 2X, one has at hand the Eilenberg-
Moore spectral sequence. More generally for any n there is a generalisation of the
previous one induced by the Goodwillie-Arone tower. The first case is studied
in [25], the second one in [18]. A short description of results is given at the end
of the next section.

Another option for S is the classifying space BZ/p. In this case a theorem
of Jean Lannes computes the cohomology of the mapping space. This will be
described in more details in the last sections.

This talk was presented at the Vietnam Institute of Advanced Studies in Math-
ematics (VIASM) yearly meeting on August 2012. The second author thanks the
VIASM, and in particular Ngo Bao Chau and Le Tuan Hoa, as well as the staff
of the Institute, for their invitation and warm hospitality.

2. THE HOPF INVARIANT AND THE KERVAIRE INVARIANT

The Hopf invariant 1 problem is a very famous example of the following ques-
tion. Let f be a map S?"~! — S, consider the cone C (homotopy cofiber).
Here are two examples: the self-map of S', z — 2% whose cone is RP?, the Hopf
map S% — $3/81 =2 52 whose cone is CP?.

The reduced cohomology of Cy is of dimension 1 in degree n and 2n, trivial
elsewhere. Denote by g, (resp. go,) a generator in degree n (resp. 2n). The
Hopf invariant of f is defined (up to a sign) by the equation

92 = H(f)g2n-

One can work either with integral cohomology or with mod-p cohomology. If n
is odd one works with mod-2 cohomology.

The two examples above have both Hopf invariant 1. The question is to decide
for which values of n H(f) can take the value 1.
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Consider the case of mod-2 singular cohomology. The restriction axiom allows
to rewrite the equation as

Sq"gn = H(f)g2n-

So one can reformulate the Hopf invariant 1 question as follows. Let h be a
given integer, suspend the map h — n times. Does there exists a 2-cells space,
with one cell in degree h a second one in degree n + h related by the operation
Sq"

h n+h
Sq™
FQ ...0... FZ

Doing that one modifies the question by going to the stable homotopy world.
Because of 1.1 for such a complex to exist n must be a power of 2. So the
problem reduces to look at complexes as:

k
h o h+2
IFQ ...0... IF2

This is a non trivial element in the group Eazt}ék (Fq,F2) which is denoted by hy.
If one works with the Adams spectral sequence for spheres the question is which
elements hj of the first line of the Fs-term are infinite cycles.

The problem was solved by John Frank Adams using secondary operations in
mod 2 cohomology in a celebrated paper [1], the only values of k for which this
holds are 0,1,2,3. The case of an odd prime was done by Arunas Liulevicius.
Later Adams and Michael Atiyah gave an “unstable proof” based on Adams
operations in K-theory [2]. This proof works for p = 2 and also for p > 2 but is
slightly more difficult in this last case. Some interesting generalisations are to be
found in [13].

In fact Adams theorem is stronger, it applies (for example) to modules which
look like

quk

TN

M .. 0. Fy

where M in an unstable module which is possibly non trivial only between degrees
h and h + ¢, and ¢ is small compared to 2F. This shows that it cannot be the
cohomology of a space. But, there is a very important restriction: it is that the
operation Sq' acts trivially.

The Hopf invariant 1 problem is strongly linked to geometry: for which values
of k does there exist a Lie group structure (or a somewhat weaker structure, e.g.
H-space structure) on the sphere S*? Outside of S° the sphere needs to be of
odd dimension by elementary differential geometry. The answer is that the only
possible values are 1, 3, 7.
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The Kervaire invariant 1 problem is a case not covered by Adams’ theorem. It
is (roughly) equivalent to the existence of complexes as shown below. They are
not in the range of application of Adams’ theorem because of the action of Sq!

n n+1 n + 2k
Sqt
o Fy .0 .. F,
Squc
or
n n+1 w2k n+1+ 2%
Sqt Sq?
IFQ IFQ m FQ
5(12]C Sqt

The geometric question is the following. Given a stably framed manifold the
Kervaire invariant is an obstruction to do surgery and to make it cobordant
(as stably framed manifold) to a sphere with an exotic differentiable structure.
William Browder [3] shows this is equivalent to decide whether or not h? on
the second line of the Es-term of the Adams spectral sequence for spheres is an
infinite cycle.

Thus, such examples of manifolds can only occur in dimension 27 —2; examples
of stably framed manifolds that are not cobordant to exotic spheres are S x S*,
83 x 83, ST x ST with the framing induced by the Lie group structure, or the
octonions.

Such complexes are known to exist if £ = 0,1,2,3,4,5,6. They do not exist
if n > 7 after the recent (stable) work of Michael Hill, Michael Hopkins and
Douglas Ravenel [15]. Their proof depends on a Z/8Z-equivariant cohomology
theory linked to a Lubin-Tate formal Zs[(g]-module, Zy being the 2-adic integers,
(g a primitive 8-root of unity and m = (g — 1, whose logarithm writes:

Qk
logp(z) =z + T
W=t T5

The case n = 7 remains unsolved.

Let M7 and M5 be two unstable modules. Assume M; is the reduced cohomol-
ogy of a space X;, and that one is given a map f: ¥*X, — X that induces the
trivial map in cohomology. Then the long exact sequence splits and the coho-
mology of the cone of f is an element in Ext}, (M, ~*+1M5). The most famous
examples have been described above as H*RP? and H*CP2.

This construction can be generalised as follows. Suppose given a map f: Xo —
X, and assume it can be factored as a composition of n-maps ¢;, 1 < i < n,
inducing the trivial map in reduced cohomology. One says that f has Adams
filtration at least n. Splicing together the extensions obtained from the maps g;
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one gets an element in Eaztﬁ(ﬁ*Xl, X" H*X,). This is a way to construct the
Adams spectral sequence.

The preceding examples, as well as others, give evidences for the “Local Re-
alisation Conjecture” (LCR) done in a slightly more restricted form by Nick
Kuhn [17].

Conjecture 2.1. Let My and Ms be two finite unstable modules. Let k be an
integer that is large enough. Then, for any h, any non-trivial extension

E € Ext}, (X" My, 2" F M)
is not the cohomology of a space.

As such elements are common for h large enough this implies the existence
of differentials in the Adams spectral sequence computing homotopy classes of
stable maps from X, to Xj.

Consider a certain unstable module M, assume it is the reduced cohomology
of a space X, and then consider mapping spaces map(S, X ), may be pointed.
One can get restrictions on M by looking at the the cohomology of the mapping
space. One option for the space S is to choose S™. In this case one considers the
space of pointed maps. If n = 1 one uses the Eilenberg-Moore spectral sequence
to evaluate the cohomology of the space of pointed loops. More generally for
any n one uses the generalisation induced by the Goodwillie-Arone tower. The
first case is studied in [25], the second one in [18]. It is possible to use these
tools because of their nice behaviour with respect to the action of the Steenrod
algebra.

For example the Eilenberg-Moore spectral sequence has Fo-term

Tor 5 (Fp, Fy)

which as A,-module is well understood. One gets contradiction by showing that
certain Adem relations cannot be satisfied in the cohomology of the (iterated)-
loop space.

One will not describe the results in details here, but here are some:

Theorem 2.2. Let k be large enough. There does not exist a complex having as
reduced cohomology “looking like”

Sq*

n n+1 e n + 2k n+ 1+ 2k n 4 2k+1 n414 2k+1
sq?
sqt Sqt
Sq

More generally, one would like to have a result as described informally below
(at p = 2):

Conjecture 2.3. Let My, Ms, Ms be given finite modules. Let k be large enough.

As soon as there exists x € My such that SqQkHSqQkx % 0 there does not exist a
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complex which has as reduced cohomology “looking like” the following:

5q2"F1
My ...0... Z2RM2 ...0... E2k+2k+1ng

A lot of special cases are known, and the result looks to be within to reach.

One can also consider the space of all maps with S = BZ/p. In this case
the Bousfield-Kan spectral sequence for the cohomology of the mapping space
degenerates because of the properties of H*BZ/p as an object of the categories
U and K. This is what one is going to do, and show how information about the
algebraic structure of the category U allows to get substantial results.

The results obtained using this approach are of a more qualitative nature. As
an example the following was conjectured by Kuhn [17] .

Theorem 2.4 (G. Gaudens, L. Schwartz). Let X be a space such that H*X is
finitely generated as an A,-module. Then H*X is finite.

This result is also a consequence of 3.4 which is going to be given in the next
section.

In the next section one describes m-cones and discuss some results that mo-
tivates interest for spaces so that any element in H*X is nilpotent (one will say
by abuse that the cohomology is nilpotent). In section 4 one describes a first
filtration of the category U, a second one is described in section 5.

3. M-CONES AND FINITE POSTNIKOV SYSTEMS

This section is a short digression before the description of the algebraic struc-
ture of the category U. It also gives some motivations to consider spaces with
nilpotent cohomology. It shows that such spaces naturally occur in topology
as m-cones. In [10] Yves Félix, Stephen Halperin, Jean-Michel Lemaire, Jean-
Claude Thomas get some informations about the topological structure by looking
at the homology of the loop space. This uses rather different techniques than the
ones considered later in this report.

There are two, dual to some extent, ways to construct spaces in homotopy
theory. The first one is by attaching cells. One says that a space is 0-cone if
it is contractible, an m-cone, m > 1, is the homotopy cofiber (the cone) of any
continuous map from a space A to an (m—1)-cone, an m-cone has cup-length less
than m + 1. This means that any (m + 1)-fold product of cohomology classes of
positive degree is trivial. In particular any element of positive degree is nilpotent.
The following theorem [10] gives restrictions on the cohomology of an n-cone.

Theorem 3.1 (Y. Félix, S. Halperin, J.-M. Lemaire, J.-C.Claude Thomas). If
X s 1-connected and the homology is finite dimensional in each degree then

depth(H.(QX;Fp)) < cat(X).
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The depth of a graded connected k-algebra R (possibly infinity) is the largest n
such that Exth(k, R) = {0}, i < n, cat(X) denotes the Lusternick-Schnirelman
category of X. This is the minimum number of elements of covering of X by
contractible subspaces.

Here is the second way to construct spaces: a 1-Postnikov system or GEM
(generalized Eilenberg-Mac Lane space) is a product (may be infinite) of usual
Eilenberg-Mac Lane K (mw,n)-spaces. An m-Postnikov system is the homotopy
fiber of an (m — 1)-Postnikov system into a GEM. The m-th Postnikov tower
P,,(X) of a space X is a particular case of an m-system.

Corollary 3.2. Let X be a 1-connected m-cone, assume that the cohomology is
finite dimensional in any degree. Then the p-localisation of X is never a finite
p-local Postnikov system.

This is to be compared with [20]:

Theorem 3.3 (J. Lannes, L. Schwartz). Let P,(X) be a 1-connected n-Postnikov
tower such that H*P,(X) is non-trivial. Then the reduced cohomology H* P, X
contains a non nilpotent element.

A finite 1-connected Postnikov tower is never an m-cone, because the cup
length of an m-cone is bounded by m + 1. Nevertheless, Jiang Dong Hua [14] has
shown there exists a 3-stage Postnikov system with nilpotent cohomology.

The following result applies to m-cones and more generally to spaces with
nilpotent cohomogy. The proof uses the Krull filtration on the category U (see
section 4). Here Q(K) = Ker(¢)/Ker(¢)? denotes as usual the indecomposable
functor of an augmented unstable algebra e: K — [F,,.

Theorem 3.4 (G. Gaudens, Nguyen T. Cuong, L. Schwartz). Let X be an m-
cone, for some m. If QH*X € U, then QH*X € Uj.

The proof depends on the algebraic structure of the category U, and as said
above, on the cohomology of mapping spaces.

4. THE KRULL FILTRATION ON U

The category of unstable modules U, as any abelian category, has a natural
filtration: the Krull filtration, by thick subcategories stable under colimits

U()Cul ClUyC...CU.

Because of the degree filtration on any unstable module the simple objects in
U are the modules X"F,,.

The subcategory Uy is the largest thick sub-category generated by simple ob-
jects and stable under colimits. It is the subcategory of locally finite modules.
An unstable module is locally finite if the span over A, of any € M is finite.
Indeed this last condition is obviously satisfied when taking extensions and is
preserved by colimits.

Having defined by induction U, one defines U, 1 as follows. One first intro-
duces the quotient category U /U, whose objects are the same of those of U but
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where morphisms in U that have kernel and cokernel in U are formally inverted.
Then (U/U,,)o is defined as above and U, is the pre-image of this subcategory
in U wvia the canonical projection functor. As said above this construction works
for any abelian category. One refers to [11] for details. This induces a filtration
on any unstable module M, one has [24]:

Theorem 4.1. Let M € U and K,,(M) be the largest sub-object of M that is in
Uy, then
M = U, K (M).

As examples one has

e Y¥F(n) € U, \U,_1, the unstable modules F(n) are the canonical gener-
ators of U, generated in degree n by ¢,, and [F)-basis P14, I an admissible
multi-index of excess less than n;

e H*BZ/2 = Fslu], does not belong to U,, for any n but,

e H*BZ/2 is a Hopf algebra and the n-th step of the primitive filtration
P,H*BZ/2 is in U,,. The analogous result holds for H*Z/p.

There is a characterisation of the Krull filtration in terms of a functor intro-
duced by Lannes and denoted by 7.

Definition 4.2. The functor T: U — U is left adjoint to the functor M +—
H*BZ/p® M. As the unstable module splits up as the direct sum [, & ﬁ*BZ/p.
The functor T is isomorphic to the direct sum of the identity functor and of the
functor T left adjoint of M +— ﬁ*BZ/p ® M.

Direct computation shows that T'(X"F,) is isomorphic to X"IF,. The functor T'
has wonderful properties. It generalizes directly to a functor Ty, V' an elementary
abelian p-group, left adjoint to M — H*BV @ M, Ty, = T%™(V) Below are the
main properties of Ty, [19], [24].

Theorem 4.3 (J. Lannes). The functor Ty commutes with colimits (as a left
adjoint). It is exact. Moreover there is a canonical isomorphism

Ty (My @ M) = Ty (M) @ Ty (Ma).
A special case of the last property, if M; = X, writes as
Ty (M) =2 STy (M).
One gets [24]

Theorem 4.4. The following two conditions are equivalent:

o M el,,
o TMFY(M) = {0}.

It follows that
Corollary 4.5. If M € U, and N € U,, then M ® N € Uy

There is also a characterisation of objects in U, of combinatorial nature for
p =227
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Theorem 4.6. A finitely generated unstable Ao-module M is in U, if and only
if its Poincaré series Y,ant™ has the following property. There exists an integer
k so that the coefficient ag is possibly non trivial only for those values of d such
that if a(d — i) < n, for some 0 <1i < k.

In this statement a(k) is the number of 1 in the 2-adic expansion of k. This
holds in case of finite dimension in any degree. A similar statement holds for
p > 2.

Let F be the category of functors from finite dimensional F,-vector spaces
to all vector spaces. Define ( [16]), a functor f: U — F by (here V is a finite
dimensional Fy-vector space)

FM)(V) = Homy (M, H*(BV))* = Ty (M)".

Let F,, be the sub-category of polynomial functors of degree less than n. It is
defined as follows. Let F' € F, let A(F') € F defined by

A(F)(V) = Ker(F(V & F,) — F(V)).

Then by definition F' € F,, if and only if A" (F) = 0. As an example V +— V&
is in F,,. The followwing holds for any M :

A(f(M)) = f(T(M)).

Thus, the diagram commutes:

U~ U = Uy =Y
Jf lf lf Jf
Fo o Fax = Fn = F

One can now state a conjecture of Kuhn and give results. The first conjecture
is as follows.

Theorem 4.7 (Gaudens, Schwartz). Let X be a space such that H*X € U,, then
H*X € Uy.

As said above the following corollary was also conjectured by Kuhn.

Corollary 4.8. Let X be a space. If H*X has finitely many generators as un-
stable module it is finite.

Indeed, if an unstable module has finitely many generators it is in U, for some
n, because it is a quotient of a finite direct sum of F(k)’s. Then by 4.7 it is in
Upy. But a finitely generated locally finite unstable module is finite.

In [17] Kuhn proved the corollary under additional hypothesis, using the Hopf
invariant 1 theorem. One key step is a reduction depends on Lannes’ mapping
space theorem which is going to be described in section 6. In [25] the corollary
is proved for p = 2 using the Eilenberg-Moore spectral sequence, the argument
is claimed to extend to all primes. However it is observed that one has to take
care of a differential d,_; in the Eilenberg-Moore spectral sequence. As Gaudens
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observed the method of [25] does not work without some more hypothesis, alike
the triviality of the Bockstein homomorphism, see [28].

For p = 2 in [18] Kuhn gives a proof depending on the Goodwillie-Arone
spectral sequence. S. Bischer F. Hebestreit, O. Rondig, and M. Stelzer get
partial results for p > 2, [4].

The theorem is proved now using only the Bott-Samelson theorem and Lannes’
mapping space theorem [12].

5. THE NILPOTENT FILTRATION

Above one has considered spaces so that any element in H*X is nilpotent
and introduced the terminology “nilpotent” for the cohomology. The restriction
axiom allows to express this in terms of the action of the Steenrod algebra. More
precisely (for p = 2) it is equivalent to ask that the operation Sqy: © — Sqltly
is “nilpotent” on any element. It makes possible to extend this definition to any
unstable module.

Definition 5.1. One says that an unstable module M is nilpotent if for any
x € M there exists k such that ngac =0.

In particular a nilpotent module is 0-connected. A suspension is nilpotent. In
fact one has the following;:

Proposition 5.2. An unstable module M is nilpotent if and only if it is the
colimit of unstable modules which have a finite filtration whose quotients are sus-
PENSIONS.

This allows to extend the definition for p > 2.

More generally one can define a filtration on U. It is filtered by subcategories
Nilg, s > 0, Nil, is the smallest thick subcategory stable under colimits and
containing all s-suspensions.

u:NiloDNill DNilQ D... DNilS D...
By the very definition any M € Nils is (s — 1)-connected..

Proposition 5.3. Any M has a convergent decreasing filtration {Ms}s>o with
Mg /M1 = Y°Rg(M) where Rg(M) is a reduced unstable module, i.e. does not
contain a non trivial suspension.

Only the second part of the proposition needs a small argument see [24]. The
following results are easy consequences of the commutation of T" with suspension,
the definition, and of 4.3. Just the last part needs a small amount of additional
care because 1" does not commute with limits.

Proposition 5.4. One has

e if M € Nil,,, N € Nil, then M @ N € Nilyin;
e if M € Nily, then T(M) € Nil,y,
o M €U, if and only if for any s f(Rs(M)) € F,.
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Proposition 5.5. The indecomposable elements of an augmented unstable alge-
bra are in Nily.

This is a suspension if p = 2.
Following Kuhn, for an unstable module M, one defines a function wys: N —
Z U oo by:
wyy (1) = deg f(Ri(M)).
The following lemma is a consequence of Corollary 4.5 and Proposition 5.4:

Lemma 5.6. M € Nil, = T(M) € Nils.
Let M be such that wy (i) < i, wyr) the tensor algebra on M. Then the
function wyypy has the same property.

Below are two statements that imply Theorems 3.4 and 4.7
Let X be a space, define wy = wy+x and ¢x = won+x-

Theorem 5.7 (Gaudens, Nguyen T. Cuong, Schwartz). Let X be such that
H*X € Nily. The function qx either is equal to 0 or qx — Id takes at least
one positive (non zero) value.

Theorem 5.8 (Gaudens, Schwartz). Let X be such that H*X € Nily. The
function wx either is equal to 0 or wx — Id takes arbitrary large values.

One would like to reformulate Theorem 5.7 like Theorem 5.8 but there are
some (presumably small) difficulties.

. T T .
6. LANNES’ THEOREM AND KUHN’S REDUCTION, PROOF OF THEOREMS 5.7
AND 5.8

Given X p-complete, 1-connected, assume that TH*X is finite dimensional in
each degree. The following theorem of Lannes is the major geometrical applica-
tion of 4.3. The evaluation map:

BZ/p x map(BZ/p, X) — X

induces a map in cohomology:

H*X — H*BZ/p ® H*map(BZ/p, X)
and by adjunction
TH*X — H*map(BZ/p, X).

Theorem 6.1 (J. Lannes). Under the hypothesis mentioned above the natural
map TH*X — H*map(BZ/p, X) is an isomorphism of unstable algebras.

Following Francois Xavier Dehon and Gaudens these conditions could be re-
laxed using Morel’s machinery of pro-p spaces [23].

This theorem extends replacing BZ/p by BV, V an elementary abelian p-
group. It is linked to the Sullivan conjecture and has a lot of applications,
in particular in the theory of p-compact groups (William Dwyer and Clarence
Wilkerson [8]) and the one of p-local groups or Bob Oliver [5]. In particular it
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leads to a complete solution of Steenrod’s problem. The question is to determine
which polynomial algebras are the cohomology of a space. One famous example
is the algebra of modular invariants. Let V be an elementary abelian 2-group
and d = dim(V'). They are the elements invariant under the action of GL(V) in
S*(V*) = H*BV = Fg[l‘l, e ,l’d].
It is known (Dickson) to be polynomial in generators of degree 2¢—2¢-1 . 241,
This is the cohomology of a space if and only if d < 4, the case d = 4 is “exotic” [9],
all this would deserve other reports and one will not proceed further.
Kuhn considers the homotopy cofiber A(X) of the natural mapX —

map(BZ/p, X). Reduction is to consider the cofiber A(X) of X — map(BZ/p, X).
Then Theorem 6.1 immediately yields:

Proposition 6.2.
H*(AX))2TH*X,
wA(X) = wx — 1.
As a consequence, if H*X € U, \ Up—1, then H*A(X) € Up—1 \ Up—2.
Given an augmented unstable algebra K the indecomposable functor ) does
commute with 7"
| T(QIK)) = Q(TK)
but this is not true with 7. However if Z is an H-space, then [6].

Proposition 6.3. QH*map,(BZ/p"\",Z) = T"QH*Z.
This follows from the homotopy equivalence:
map(BZ/p, Z) = Z x map,(BZ/p, Z).
On the way one notes the beautiful result of these authors.

Theorem 6.4 (N. Castellana, C. Crespo, J. Scherer). Let X be an H-space such
that QH*X € Uy, then QH*QX € Uy,_1.

In order to prove 5.7 or 5.8 one shows a space cannot be such that H*X € Nil;
and such that ¢gx is not 0 and less or equal to Id. Kuhn’s reduction allows us
to suppose that the reduced mod-p cohomology is exactly s-nilpotent, s > 0 and
that Rs(H*X) € Uy \ Up.

Let Z be QXX, then H*Z = T(H*X), recall that T() denotes the tensor
algebra.

The first part of the proof consists of the following chain of implications:

e gx < Id = wx < Id, in fact this holds for any unstable algebra K so
that K>V is nilpotent;

e Kuhn’s reduction plus the collapse of a low dimensional skeleton allows to
suppose that the reduced mod-p cohomology is exactly s-nilpotent, s > 0
and that Rs(H*X) € Uy \ Up, and that wx(s+1i) <i+ 1.

e Let Z be QXX then H*Z = T(H*X), the condition above implies for
algebraic reasons that T"H*Z is (n + s — 2)-connected, it follows from
Proposition 6.3 that map.(B"", Z) is (n + s — 2)-connected.
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Proposition 6.5. H*Z ¢ Nil,, T"(H*Z) is (n + s — 2)-connected, thus
map, (B"", Z) is (n + s — 2)-connected.

Then, one gets a non trivial algebraic map of unstable algebras
Ot H*Z — Y$RH*Z — Y°F(1) C X*H*BZ/p .
It cannot factor through H*Y* 1K (Z/p,2), because there are no non trivial

map from an s-suspension (and thus from an unstable module in Nilg) to an
(s — 1)-suspension of a reduced module, and

Proposition 6.6. H*K(Z/p,2) is reduced.

Then comes the second part of the proof, the contradiction comes from the
fact that using obstruction theory one can construct a factorisation.

The existence of a map realising ¢¥ is a consequence (using Lannes’ theorem)
and of the Hurewicz theorem because map,(BZ/p, Z) is (s — 1)-connected.

K (Z/p,2) is built up, starting with X BZ/p, as follows (Milnor’s construction).
There are a filtration * = Cy C C; = XBZ/p C Cy C ... C U,C,, = K(Z/p,2), a
diagram

RN B*n+1 SN B*n+2 .

| | | l

- — Cn N Cn+1 _ s ...

and cofibrations, up to homotopy
Zn—lB/\n —Ch_1 — Cn
En72+sB/\n _)ESfICn_l N EsflCn.

The obstructions to extend o,: X*BZ/p — Z to X 'K (Z/p,2) are in the
groups
(S 2(BL/p)™, Z) = 7t s omap,(BL/p'", Z)
but they are trivial. It follows that one can do the extension, this is a contradic-
tion.
To prove 5.8 it is now enough to use again wa(x) = wx — 1.
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