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ON THE TOPOLOGY OF RATIONAL FUNCTIONS IN TWO

COMPLEX VARIABLES

NGUYEN TAT THANG

Dedicated to Professor Hà Huy Vui on the occasion of his sixtieth anniversary.

Abstract. We give some characterizations for the critical values at infinity
of a rational function in two complex variables in terms of the Euler charac-
teristic, the Malgrange condition and the M-tameness.

1. Introduction

Let F be a rational function in n complex variables. It is well-known that F is
a locally trivial fibration outside some finite subsets of C (see [T1]). The smallest
such subset is called the bifurcation value set of F and is denoted by B(F ). A
natural question is how to compute this set B(F ).

We recall the definition of the so-called critical values at infinity (or atypical
values) of a rational function.

Definition 1.1. A value t0 ∈ C is called a regular value at infinity of F if there
is a positive real number δ > 0 and a compact subset K ⊂ Cn such that the
restriction

F : F−1(Dδ(t0)) \ K → Dδ(t0)

is a C∞-trivial fibration, where Dδ(t0) := {t ∈ C : |t − t0| < δ}.
If t0 ∈ C is not a regular value at infinity, we call it a critical value at infinity

(or atypical value) of the rational function F . Denote the set of critical values at
infinity of F by B∞(F ).

Obviously B(F ) contains the set K0(F ) of the critical values and the set
B∞(F ), B(F ) ⊇ B∞(F ) ∪ K0(F ).

The aim of this article is to study the sets B(F ) and B∞(F ) of a rational
function F in two complex variables, that is, the case n = 2.

Let f, g ∈ C[x, y] be two non-zero polynomials without common factors and
set F = f/g. If deg(g) = 0, or equivalently F is a polynomial function, then one
can prove that B(F ) = B∞(F )∪K0(F ). Our first result is the following theorem.
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Theorem 1.2. Assume that deg(f) > deg(g). We have

B(F ) = B∞(F ) ∪ K0(F ) ∪ K1(F ).

Here K1(F ) is a subset of C which is defined in Section 2 by using the Milnor
number at indeterminant points of F .

Our second result is about the set of critical values at infinity B∞(F ). In the
case of polynomial functions, there have been several interesting characterizations
of this set. One of those via Euler characteristic is due to Suzuki [S] and Hà Huy
Vui-Lê Dũng Tráng [HL].

Theorem 1.3. ([S], [HL]) Let F be a polynomial function in two complex vari-

ables and t0 ∈ C be a regular value of F . Then t0 ∈ B∞(F ) if and only if the

Euler characteristic of the fiber F−1(t) is not a constant in every neighborhood

of t0.

Another characterization of the set B∞(F ) is by the Fedoryuk condition, Mal-
grange condition and the M-tameness. Recall that for a rational function F , we

denote by K̃∞(F ) the set of t ∈ C such that there exists a sequence {xk}k ⊂ C
n,

xk → ∞, such that F (xk) → t and ||gradF (xk)|| → 0. We say that F satisfies

Fedoryuk condition at a value t ∈ C if t 6∈ K̃∞(F ). If, in addition, we require that

||xk||.||gradF (xk)|| → 0, then we get a subset K∞(F ) ⊆ K̃∞(F ). We say that F
satisfies Malgrange condition at a value t ∈ C if t 6∈ K∞(F ).

Let M∞(F ) denote the set of values t ∈ C such that there are sequences
{λk}k ⊂ C and {xk}k ⊂ C

n with xk → ∞, F (xk) → t and gradF (xk) = λkxk for
all k = 0, 1, 2, . . .. We say that the rational function F is M-tame at a value t ∈ C

if t 6∈ M∞(F ). The notion of M-tame was introduced for polynomial functions by
A. Némethi and A. Zaharia (see [NZ1] and [NZ2]). In a recent paper [BP], the
authors showed that if f/g is a rational function in two variables then a non-zero
value t0 ∈ C belongs to M∞(f/g) if and only if outside a large compact set of
C

2, the topological type of the curve (f/g)−1(t) is constant for all t near t0.
For the case of polynomial functions in two variables, we have the following

characterizations of the set B∞(F ) due to Hà Huy Vui and Ishikawa.

Theorem 1.4. ([H], [I]) Let F : C
2 → C be a polynomial function and t ∈ C.

The following are equivalent:

(i) t ∈ B∞(F );

(ii) t ∈ K̃∞(F );
(iii) t ∈ K∞(F );
(iv) t ∈ M∞(F ).

Our second result in this article is a generalization of Theorems 1.3 and 1.4
to the case of rational functions. We will show that under some wild assump-
tions, the critical values at infinity of rational functions in two variables can be
determined in terms of the Euler characteristic, the Malgrange condition and the
M-tameness (Theorems 3.8, 3.9 and 3.16). Moreover, we give examples showing
that the Fedoryuk condition can not characterize the critical values at infinity of
those functions.
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The article consists of three sections. Theorem 1.2 is proved in Section 2.
Section 3 is devoted to a generalization of Theorems 1.3 and 1.4 for rational
functions in two complex variables as mentioned above. The main results of this
section are Theorems 3.8, 3.9 and 3.16.

2. The bifurcation set

In this section we give some descriptions for the set of bifurcation values of a
rational function in two complex variables.

Let F = f/g : C
2 \ {g = 0} → C be a rational function, where f, g ∈ C[x, y]

have no common factor. Let

A(F ) := {(x, y) ∈ C
2 : f(x, y) = g(x, y) = 0}.

For each t ∈ C set

dt := deg(f − tg),

Vt := {(x, y) ∈ C
2 : f(x, y) − tg(x, y) = 0},

G(x, y, z, t) := zdtf(x/z, y/z) − tzdtg(x/z, y/z)

and

Vt := {[x : y : z] ∈ CP 2 : G(x, y, z, t) = 0}.

Let V t
∞ = Vt ∩ H∞ be the set of points at infinity of Vt.

Remark 2.1. (i) A(F ) contains finitely many points.
(ii) For all t ∈ C we have A(F ) ⊂ {f − tg = 0}. Moreover, if t0 is a regular

value of F and t is near t0 enough then every point p ∈ A(F ) is either a regular
point or an isolated singular point of the curve Vt.

Definition 2.2. We denote by K1(F ) the set of t0 ∈ C \ K0(F ) such that there
exists p ∈ A(F ) with µp(f − t0g) 6= µp(f − tg) for all t 6= t0 near t0 enough, where
µp(f − tg) is the Milnor number of f − tg at p.

Remark 2.3. For each curve V ⊂ C
2 we denote by SingV the set of singular

points of V . Then t0 /∈ K1(F ) if Sing{f − t0g = 0} ∩ A(F ) = ∅.

Lemma 2.4. Let F := f
g : C

2 \ {g = 0} → C be a rational function, where

f, g ∈ C[x, y] have no common factor. Then

B(F ) ⊂ K0(F ) ∪ B∞(F ) ∪ K1(F ).

To prove the lemma, we need the following results.

Theorem 2.5. ([T2, LR]) Let gs : (Cn, 0) → (C, 0), n 6= 3, s ∈ R
m be a differential

family of holomorphic germs such that for all s, the origin 0 ∈ C
n is an isolated

singular point of gs. Assume that µ0(gs) = µ0(g0) for all s near 0 ∈ R
m enough.

Then, there exist a neighborhood D of 0 ∈ R
m, a small ball B centered at the

origin and a continuous family of homeomorphisms

Φs : g−1
s (0) ∩ B → g−1

0 (0) ∩ B, s ∈ D

such that Φs(0) = 0.
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Let h : X → Y be a continuous map. A homotopy of h is a continuous map
H : X × [0; 1] → Y such that H(x; 0) = h(x) for all x ∈ X.

Definition 2.6. A continuous map π : E → B is called a fibration, or equiva-
lently, has homotopy lifting property, if for all polytopes X and for any continuous
map h : X → E, every homotopy Φ of π ◦h can be lifted to a homotopy of h, i.e.
there exists a homotopy H of h such that the diagram

E

π

��
X × [0; 1]

H

::uuuuuuuuuu

Φ
// B

commutes.

Definition 2.7. ([M]) Let X,Y be topological spaces. Two homotopies

H,H
′

: X × [0, 1] → Y

are said to have the same germ if they coincide in a neighborhood of X × {0}.

Definition 2.8. ([M]) A continuous map π : E → B is called a homotopic

submersion, or equivalently say that it has the germ-of-homotopy lifting property,
if for every polytope X and every continuous map h : X → E every germ-of-
homotopy of π ◦ h lifts to a germ-of-homotopy for h.

Definition 2.9. ([M]) A continuous map π : E → B is called a local homotopic

submersion if for every x ∈ E there is a neighborhood U(x) ⊂ E such that the
restriction π|U(x) is a homotopic submersion from U(x) onto π(U(x)).

Lemma 2.10. ([M], Lemma 6) Let π : E → B be an open continuous map. As-

sume that π is a local homotopic submersion. Then π is a homotopic submersion.

It deduces from Lemma 2.10 that

Lemma 2.11. Let f : V1 → V2 be a differential map. Assume that f is a

submersion. Then f is a homotopic submersion.

Lemma 2.12. ([M]) In the following commutative diagram of continuous maps

E
π

  @
@

@
@

@@
@

@

h // E
′

π
′

��
B

assume that π and π
′

are surjective homotopic submersions. If π
′

is a fibration

and for every b ∈ B, the restriction hb := h|π−1(b) : π−1(b) → π
′−1(b) is a weak

homotopy equivalence, then π is a fibration.

Lemma 2.13. ([M], Corollary 32) Let π : E → B be a differential map such that

dimR E = dimR B + 2. Assume that the following are satisfied:

(i) π is surjective;
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(ii) π is a fibration;

(iii) π is a submersion.

Then π is a locally C∞−trivial fibration.

Proof of Lemma 2.4. Let t0 /∈ K0(F ) ∪ B∞(F ) ∪ K1(F ). Without loss of gener-
ality, we may assume that t0 = 0.

Since 0 /∈ K1(F ) there is a neighborhood D1 of 0 such that

µp(f − tg) = µp(f),∀t ∈ D1, p ∈ A(F ).

Hence, according to Theorem 2.5, there exists a small neighborhood D2 of 0
such that for every p ∈ A(F ), there is a ball B(p) centered at p and there is a
continuous family of homeomorphisms

Φp(s) : {f − sg = 0} ∩ B(p) → {f = 0} ∩ B(p), s ∈ D2

such that Φp(s)(p) = p. The family Φp(s), s ∈ D2, generates a homeomorphism
as follows:

Φp : F−1(D2) ∩ B(p) → (F−1(0) ∩ B(p)) × D2

Φp(x) = (Φp(F (x)), F (x)).

Thus, we have the following commutative diagram of continuous maps

F−1(D2) ∩ B(p)

F

**TTTTTTTTTTTTTTTTTTT

Φp
// (F−1(0) ∩ B(p)) × D2.

pr2

��
D2

Since 0 /∈ K0(F ), we can choose D2 small enough such that the restriction

F|F−1(D2)∩B(p) : F−1(D2) ∩ B(p) → D2

is a submersion, hence, is a homotopic submersion (according to Lemma 2.11).
Moreover, since Φp(s) is a homeomorphism, the restriction

(Φp)|F−1(s) : F−1(s) → pr−1
2 (s) = (F−1(0) ∩ B(p)) × {s}

is also a homeomorphism. Therefore, it is a weak homotopy equivalence. Thus,
by Lemma 2.12, the map

F|F−1(D2)∩B(p) : F−1(D2) ∩ B(p) → D2

is a fibration. It is easy to check that fibers of the map are two dimensional.
It follows from Lemma 2.13 that it is a C∞−trivial fibration. So there is a
diffeomorphism

Ψ1
p : F−1(D2) ∩ B(p) → (F−1(0) ∩ B(p)) × D2
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such that the following diagram

F−1(D2) ∩ B(p)

F

**TTTTTTTTTTTTTTTTTT

Ψ1
p
// (F−1(0) ∩ B(p)) × D2

pr2

��
D2

commutes.
On the other hand, since 0 /∈ B∞(F ), there exist a neighborhood D3 of 0, a

compact set B ⊂ C
2 and a homeomorphism

Ψ2 : F−1(D3) \ B → (F−1(0) \ B) × D3

such that the diagram

F−1(D3) \ B

F

))SSSSSSSSSSSSSSSS

Ψ2
// (F−1(0) \ B) × D3

pr2

��
D2

commutes.
Without loss of generality, we may assume that D2 = D3 = D. Since 0 is a

regular value of F , we can choose D small enough such that every t ∈ D is a
regular value of F .

Now, we construct a convenient vector field v(x) on F−1(D) trivializing the
restriction F|F−1(D). Let xα ∈ F−1(D) arbitrary, we consider the following cases.

a) Case 1: xα ∈ B(p) ∩ F−1(D), p ∈ A(F ). Let Uα := B(p) ∩ F−1(D) and

vα(x) :=
∂(Ψ1

p)−1

∂s (Ψ1
p(x)), where s is the coordinate on D.

It is easy to verify that

〈vα(x), grad F (x)〉 = 1, x ∈ Uα.

b) Case 2: xα ∈ F−1(D)\B. Let Uα = F−1(D)\B and vα(x) = ∂(Ψ2)−1

∂s (Ψ2(x)),
x ∈ Uα. Similarly, we have

〈vα(x), grad F (x)〉 = 1, x ∈ Uα.

c) Case 3: xα ∈ (F−1(D) ∩ intB) \ (∪p∈A(F )B(p)). Let

Uα := (F−1(D) ∩ intB) \ (∪p∈A(F )B(p)).

Since t ∈ D is a regular value of F then grad F (x) 6= 0 for all x ∈ F−1(D). Let

vα(x) =
grad F (x)

‖ grad F (x)‖
, x ∈ Uα.

Then

〈vα(x), grad F (x)〉 = 1, x ∈ Uα.
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d) Case 4: xα ∈ ∂B∪ (∪p∈A(F )∂B(p)∩F−1(D)). Since t ∈ D is a regular value
of F , then xα is a regular point of F . Hence there is a small neighborhood Uα of
xα such that grad F (x) 6= 0 for all x ∈ Uα. Similarly, let

vα(x) =
grad F (x)

‖ grad F (x)‖
, x ∈ Uα.

Let λα be a smooth unit partition on F−1(D) such that suppλα ⊂ Uα for all
α. The vector field v(x) on F−1(D) is defined by v(x) :=

∑
λα(x)vα(x). It is

clear that v(x) is smooth and satisfies

〈v(x), grad F (x)〉 = 1, x ∈ F−1(D).

By integrating the vector field v(x), we get the diffeomorphism trivializing the
map

F|F−1(D) : F−1(D) → D.

Thus 0 /∈ B(F ). �

Now, we assume that deg f > deg g. Then dt and V t
∞ do not depend on t, set

d := dt. The following is deduced from Corollary 4.4 in [D].

Proposition 2.14. For all t ∈ C, we have

χ(Vt) = χ(V ) + Σp∈Sing(Vt)µp(G(x, y, z, t)),

where V is a smooth projective curve of degree d and Vt is the projective closure

of the curve Vt ⊂ C
2.

Lemma 2.15. Let F = f/g : C
2 \ {g = 0} → C be a rational function and t0

be a regular value of F . Assume that deg f > deg g and χ(F−1(t)) = χ(F−1(t0))
for all t near t0 enough. Then t0 /∈ K1(F ) and there exists a neighborhood D of

t0 such that

µp(G(x, y, z, t)) = µp(G(x, y, z, t0)), p ∈ V∞, t ∈ D.

Proof. Let D be a neighborhood of t0 such that χ(Vt) = χ(Vt0) for all t ∈ D.
Since t0 /∈ K0(F ), we can choose D small enough such that F−1(t) is smooth for
all t ∈ D.

By using the Mayer-Vietoris exact sequence, we obtain

χ(F−1(t)) = χ(V̄t) − #V∞ − #A(F ).

Therefore, according to Proposition 2.14, we have

χ(F−1(t)) − χ(F−1(t0)) = Σµp(G(x, y, z, t)) − Σµq(G(x, y, z, t0))

= Σp∈A(F )(µp(f − tg) − Σµp(f − t0g)) + Σp∈V∞
(µp(G(x, y, z, t))−

− µp(G(x, y, z, t0))).

Since the Milnor number is a semi-continuous function in t, then χ(F−1(t)) −
χ(F−1(t0)) ≤ 0, the equality occurs if and only if

µp(G(x, y, z, t)) = µp(G(x, y, z, t0)),

for all p ∈ V∞, p ∈ A(F ). �
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Proof of Theorem 1.2. According to Lemma 2.4, it is enough to prove that

K0(F ) ∪ B∞(F ) ∪ K1(F ) ⊂ B(F ).

Let t0 /∈ B(F ) arbitrary. Then F defines a locally C∞−trivial fibration at t0.
Let D be the neighborhood of t0 such that the restriction

F|F−1(D) : F−1(D) → D

is a C∞−trivial fibration. That implies t0 /∈ B∞(F ).
According to the Sard’s Theorem, we can take a regular value t1 of F|F−1(D).

Therefore the fiber F−1(t1) is smooth. Since F|F−1(D) is trivial, it is also smooth.
Thus t0 /∈ K0(F ).

On the other hand, for all t ∈ D the fiber F−1(t0) is homeomorphic to F−1(t).
Therefore their Euler characteristics are equal, by Lemma 2.15, we get t0 /∈
K1(F ). The proof is complete. �

3. Critical values at infinity

Let F = f
g : C

2 \ {g = 0} → C be a rational function, where f, g ∈ C[x, y] have

no common factor. This section is to characterize the critical values at infinity
of F .

Let t0 ∈ C \ (K0(F ) ∪ K1(F )) such that

d := deg(f − t0g) = max{deg f,deg g}.(1)

Without loss of generality, we may assume that

d = degx(f − t0g).

Remark 3.1. The assumption (1) holds in the following situations:
1) deg f > deg g;
2) deg g > deg f and t0 6= 0;

3) deg f = deg g = d and t0 6= fd

gd
, where fd, gd are respectively the highest-

degree homogeneous components of f, g.

3.1. Geometrical and topological characterizations. We denote by L the
following linear function

C
2 → C, (x, y) 7→ y.

For each t ∈ C let

Lt := L|Vt
: Vt → C

and

lt := L|F−1(t) : F−1(t) → C,

where Vt = {(x, y) ∈ C
2 : f(x, y)− tg(x, y) = 0}. It is easy to prove the following.

Lemma 3.2. For all δ > 0 small enough and t ∈ Dδ(t0), the map

Lt : Vt → C

is proper and #L−1
t (c) = d, where c is a generic constant and Dδ(t0) = {t ∈ C :

|t − t0| < δ}.
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The following lemma follows from Lemma 3.2 and the argument in the proof
of Lemma 3.2 in [HT].

Lemma 3.3. Under the hypothesis in Lemma 3.2, for all δ > 0 small enough,

the restriction

Lδ := L|∪
t∈Dδ(t0)

Vt
: ∪

t∈Dδ(t0)
Vt → C

is proper.

Remark 3.4. 1) The critical points of lt : F−1(t) → C are exactly the critical
points of Lt : Vt → C not belonging to the set Vt.

2) The critical points of Lt : Vt → C are algebraic functions in t, we can divide
them into two types:

(i) The points which tend to critical points of Lt0 as t → t0. The number
of points in this type, counting with multiplicity, is equal to the number of critical
points, counting with multiplicity, of Lt0 .

(ii) The points that tend to infinity as t → t0 (the points in this type are
also critical points of Lt).

Lemma 3.5. For each a > 0 and δ > 0 let

U(a, δ) := {|L| 6 a} ∩ F−1(Dδ(t0)).

For a large enough and δ small enough we have

χ(Vt) − χ(Vt0) = χ(F−1(t0)) − χ(F−1(t))

= χ(F−1(t0) \ U(a, δ)) − χ(F−1(t) \ U(a, δ)),

where Vt = {(x, y) ∈ C
2 : f(x, y) − tg(x, y) = 0}.

Proof. According to Remark 3.4, for a sufficiently small δ and a sufficiently large
a, all critical points of Lt in U(a, δ) are in the first type. Let Qi, i = 1, . . . , s be
the critical points of Lt0 in U(a, δ). Let Dβi

be the disc centered at L(Qi), with
the radius sufficiently small βi, then for sufficiently small δ there is no critical
point of Lt in U(a, δ) \ ∪s

i=1L
−1(Dβi

).
For each i = 1, . . . , s and t ∈ C we denote

M i
t := (Vt ∩ U(a, δ)) \ L−1

δ (Dβi
), N i

t := (Vt ∩ U(a, δ)) ∩ L−1
δ (Dβi

)

and

Ci := {z ∈ C : |z| 6 a} \ Dβi
.

According to Lemma 3.2, for all t ∈ Dδ(t0) the restriction Lt = L|Vt
is proper,

then L(Vt) is closed and constructible. Hence L(Vt) = C and the restriction map
L|M i

t
: M i

t → Ci is surjective. Moreover, it is easy to check that L|M i
t

does not

have critical points. Thus, the map L|M i
t

is a d-sheeted unbranched covering.

Then

χ(M i
t ) = d · χ(Ci),∀t ∈ Dδ(t0).(2)
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On the other hand, the restriction map L|N i
t

: N i
t → Dβi

is a d-sheeted covering

branching over the critical points. By the same argument as in the proof of
Theorem 3.1 in [HT], we have

χ(N i
t ) = d − ρi(t),∀t ∈ Dδ(t0),(3)

where ρi(t) is the number of critical points in Dβi
, counting with multiplicity, of

Lt. By using the Mayer-Vietoris exact sequence, we get

χ(Vt) − χ(Vt0) = (χ(Vt \ U(a, δ)) − χ(Vt0 \ U(a, δ))) +

s∑

i=1

(ρi(t0) − ρi(t)).

Moreover, by Remark 3.4, the second term is equal to 0 and Vt \ U(a, δ) =
F−1(t) \ U(a, δ). Then

χ(Vt) − χ(Vt0) = χ(F−1(t) \ U(a, δ)) − χ(F−1(t0) \ U(a, δ)).

Similarly, since t0 /∈ K1(F ), by using the Mayer-Vietoris exact sequence again,
we can prove that

χ(Vt) − χ(Vt0) = χ(F−1(t)) − χ(F−1(t0)).

From the last two equalities, we get the conclusion of the lemma. �

Theorem 3.6. Let F = f/g : C
2 \ {g = 0} → C be a rational function, where

f, g ∈ C[x, y] have no common factor, and let t0 /∈ K0(F ) ∪ K1(F ) such that

deg(f − t0g) = degx(f − t0g) = max{deg f,deg g}.

Then the following are equivalent:

(i) t0 /∈ B∞(F ).
(ii) There are no critical points of lt = L|F−1(t) which tend to infinity as t → t0.

Proof. ii) =⇒ i): Assume that there is no critical point of lt going to infinity as
t → t0. It follows that if a number a is large enough, then the set

U(a) = {|L| 6 a} ∩ (F−1(Dδ(t0)))

contains all the critical points of the maps lt, t ∈ Dδ(t0). It follows from Lemma
3.3 that U(a) is bounded, hence, is a compact set. By the same argument as in
the proof of Theorem 3.1 in [HT], the restriction

F|F−1(Dδ(t0))\U(a) : F−1(Dδ(t0)) \ U(a) → Dδ(t0)

is a trivial fibration. Hence t0 /∈ B∞(F ).
i) =⇒ ii): By contradiction, assume that there exist critical points of lt going

to infinity as t → t0.
Let

K := U(a) = {|L| 6 a} ∩ F−1(Dδ(t0)),

where |a| � 1 such that all critical points of lt0 , all critical points in the first type
of Lt, t ∈ Dδ(t0) and the points of the set A(F ) are contained in K. It follows
from the assumption that for arbitrarily small δ, there exists t ∈ Dδ(t0) such that
lt has critical points P1(t), . . . , Pm(t) that do not belong to K.
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Let Dεi
, i = 1, . . . ,m, be the discs centered at αi := L(Pi(t)) with radii εi small

enough. We consider the following restrictions

L : (F−1(t0) \ K) \ ∪m
i=1l

−1
δ (Dεi

) → (C \ lδ(K)) \ ∪m
i=1Dεi

and
L : (F−1(t) \ K) \ ∪m

i=1l
−1
δ (Dεi

) → (C \ lδ(K)) \ ∪m
i=1Dεi

.

These maps are well-defined. By the similar arguments as in the proof of Lemma
3.5, we can prove that these maps are d−sheeted unbranched coverings. As a
consequence, we have the following

χ((F−1(t0) \ K) \ ∪m
i=1l

−1
δ (Dεi

)) = χ((F−1(t) \ K) \ ∪m
i=1l

−1
δ (Dεi

))

= dχ((C \ lδ(K)) \ ∪m
i=1Dεi

).

Now, for each i = 1, . . . ,m and t ∈ Dδ(t0) let us consider the restricted map

Li
t := L|F−1(t)∩L−1(Dεi

) : F−1(t) ∩ L−1(Dεi
) → Dεi

.

Since Vt = F−1(t)∪A(F ), we have C \L(K) ⊂ L(F−1(t)). Hence, we can choose
εi small enough such that Li

t is surjective. Moreover, for all t the map Li
t is

proper, for t 6= t0 the map Li
t has critical points Pi(t), and Li

t0 has no critical
points, then by using the same argument as in the proof of Theorem 3.1 in [HT],
we have

χ(F−1(t0) ∩ L−1(Dεi
)) = d,

and
χ(F−1(t) ∩ L−1(Dεi

)) = d − ri,

where ri is the multiplicity of the critical point Pi(t) of the map lt.
It follows from the Mayer-Vietoris sequence that

χ(F−1(t0) \ K) − χ(F−1(t) \ K) =
m∑

i=1

ri 6= 0,

since there are critical points of lt tending to infinity when t tends to t0. By
applying Lemma 3.5, we get χ(F−1(t)) 6= χ(F−1(t0)) for all t near t0. Thus
t0 ∈ B∞(F ). �

Let δ(y, t) = discx(f − tg) be the discriminant of f − tg with respect to x.
Then the critical points of lt are (x(t), y(t)) such that y(t) is a root of δ(y, t) = 0.
Those points go to infinity as t → t0 if and only if y(t) → ∞ when t → t0. We
can write

δ(y, t) = qk(t)y
k + qk−1y

k−1 + · · · .

Then δ(y, t) has a root tending to infinity when t → t0 if and only if qk(t0) = 0.
The following is an immediate corollary of Theorem 3.6.

Corollary 3.7. Let F = f/g : C
2 \ {g = 0} → C be a rational function, where

f, g ∈ C[x, y] have no common factor and t0 /∈ K0(F ) ∪ K1(F ) such that

deg(f − t0g) = degx(f − t0g) = max{deg f,deg g}.

Then, t0 ∈ B∞(F ) if and only if qk(t0) = 0.
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Theorem 3.8. Let F = f/g : C
2 \ {g = 0} → C be a rational function, where

f, g ∈ C[x, y] have no common factor, and let t0 /∈ K0(F ) ∪ K1(F ) such that

deg(f − t0g) = degx(f − t0g) = max{deg f,deg g}.

Then the following are equivalent:

(i) t0 /∈ B∞(F ).
(ii) There exists a compact subset K of C

2 such that

χ(F−1(t0) \ K) > χ(F−1(t) \ K),

for all t generic.

Proof. (i) =⇒ (ii): Let K := U(a, δ) = {|L| 6 a} ∩ F−1(Dδ(t0)). According to
the proof of Theorem 3.6, if a is large enough and δ is small enough then

χ(F−1(t0) \ K) − χ(F−1(t) \ K) = ρ,∀t ∈ Dδ(t0),

where ρ is the number of critical points P (t), counting with multiplicity, of the
map lt such that ‖P (t)‖ → ∞ as t → t0.

Since t0 ∈ B∞(F ) then according to Theorem 3.6, we have ρ 6= 0. Thus

χ(F−1(t0) \ K) > χ(F−1(t) \ K),

for all t different and near t0.
(ii) =⇒ (i): Let K be the compact set such that

χ(F−1(t0) \ K) > χ(F−1(t) \ K).

By contradiction, assume that t0 /∈ B∞(F ). Since t0 /∈ K0(F ) ∪ K1(F ) then F
defines a locally C∞−trivial fibration at t0. Let D be a neighborhood of t0 and
Φ : F−1(D) → F−1(t0) × D be the diffeomorphism trivializing F|F−1(D).

Hence, the restriction Φ|F−1(D)\K induces a diffeomorphism trivializing the
map

F|F−1(D)\K : F−1(D) \ K → D.

This implies that

χ(F−1(t) \ K) = χ(F−1(t0) \ K)

which contradicts the assumption. Thus t0 ∈ B∞(F ). �

Theorem 3.9. Let F = f/g : C
2 \ {g = 0} → C be a rational function, where

f, g ∈ C[x, y] have no common factor, and let t0 /∈ K0(F ) ∪ K1(F ) such that

deg(f − t0g) = degx(f − t0g) = max{deg f,deg g}.

Then the following are equivalent:

(i) t0 ∈ B∞(F );
(ii) χ({f − t0g = 0}) > χ({f − tg = 0}), for all t generic;

(iii) χ(F−1(t0)) > χ(F−1(t)), for all t generic.

Proof. The proof is straightforward from Lemma 3.5 and the proof of Theorem
3.6. �
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3.2. Analytic characterization. In this section, we will determine the critical
values at infinity of rational functions in two variables in terms of Malgrange
condition and M-tameness. Assume that d := deg f > deg g.

Definition 3.10. ([LS], [P]) Let H(t, x) : C
n+1 → C be an analytic function

such that for every t the point 0 ∈ C
n is an isolated singular point of H(t, x).

Then the following set

ΓH = {(t, x) ∈ Cn+1 : ∂H/∂t 6= 0, ∂H/∂x1 = . . . = ∂G/∂xn = 0}

is called the relative polar curve of the family of hypersurfaces {x ∈ C
n : H(t, x) =

0}.

Theorem 3.11. ([LS], [P]) Let H(t, x) : C
n+1 → C be an analytic function

such that for every t near t0 enough the origin is an isolated singular point of

Ht(x) := H(t, x). Then, the following are equivalent:

(i) |∂H/∂t(t, x)| � ‖(∂H/∂x1, . . . , ∂G/∂xn)(t, x)‖ for all (t, x) near (t0, 0)
enough.

(ii) µ0(H(t, x)) = µ0(H(t0, x)) for all t near t0 enough.

(iii) There exists a neighborhood B of (t0, 0) such that ΓH ∩ B = ∅.

Since deg f > deg g then deg(f − tg) = deg f for all t and the set V t
∞ of points

at infinity of Vt does not depend on t. Denote V∞ := V t
∞.

Consider a point p0 ∈ V∞. Without loss of generality, we may assume that
p0 = [1 : 0 : 0] ∈ CP 2. Then (y, z) forms a local system of coordinates near p0.
Let G(y, z, t) := G(1, y, z, t). Then (0, 0) is either a regular point or an isolated
singular point of G(y, z, t).

The following is a version of Lemma 3.1 in [P] for rational functions.

Lemma 3.12. Let F = f/g : C
2 \ {g = 0} → C be a rational function, where

f, g ∈ C[x, y] and deg f > deg g. Let t0 ∈ C \ (K0(F ) ∪ K1(F )) and p0 = [1 : 0 :
0] ∈ V∞. Assume that, either p0 is a regular point of Vt0 or p0 is a singular point

of Vt0 and µ(0,0)(G(y, z, t)) = µ(0,0)(G(y, z, t0)) for all t near t0 enough.

Then, for every positive integer N , the following holds

|∂G/∂t| � ‖(∂G/∂y, z(N−1)/N ∂G/∂z)(y, z, t)‖(4)

as (y, z, t) → (0, t0).

Proof. The case that p0 is nonsingular is easy. Now, we assume that for each t,
p0 is a singular point of V̄t and µ(0,0)(G(y, z, t)) = µ(0,0)(G(y, z, t0)) for all t near
t0 enough. For each N > 1, we consider the function

GN (y, z, t) = G(y, zN , t).

Then ∂GN

∂y = ∂G
∂y , ∂GN

∂z = NzN−1 ∂G
∂z and ∂GN

∂t = ∂G
∂t .

Since (0, 0) is a singular point of {G(y, z, t0) = 0}, it is easy to prove that (0, 0)
is also an isolated singular point of {GN (y, z, t) = 0} for all t.

According to Theorem 3.11, it suffices to show that the relative polar curve:

ΓGN
= {(y, z, t)|∂GN /∂t 6= 0, ∂GN/∂y = 0, ∂GN/∂z = 0}
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of the family {GN (y, z, t) = 0} is empty in some small neighborhood of (0, 0, t0).
By contradiction, we assume that there exists a sequence (yk, zk, tk) → (0, 0, t0)

such that
∂GN

∂t
(yk, zk, tk) 6= 0,

∂GN

∂y
(yk, zk, tk) =

∂GN

∂z
(yk, zk, tk) = 0,∀k.(5)

We have
∂GN

∂t
(yk, zk, tk) =

∂G

∂t
(yk, zk, tk) = −zd

kg(1/zk , yk/zk) 6= 0.

Since d > deg g then zk 6= 0. Hence, it follows from (5) that ∂G
∂z (yk, zk, tk) = 0.

That means the relative polar curve ΓG of the family {G(y, z, t) = 0} is not
empty in some neighborhood of (0, 0, t0). This contradicts the assumption. The
proof is complete. �

By the Curve Selection Lemma and by using the inequality in Lemma 3.12 for
all N , we obtain

|∂G/∂t| 6 C‖(∂G/∂y, z∂G/∂z)‖.(6)

By applying the same argument as in the proof of Lemma 3.2 in [P], we receive
the following.

Lemma 3.13. Under the hypothesis in Lemma 3.12, for all (y, z, t) ∈ {G(y, z, t) =
0} and (y, z, t) → (0, t0), we have

|z∂G/∂z| � |∂G/∂y|.(7)

Theorem 3.14. Let F = f/g : C
2 \ {g = 0} → C be a rational function, where

f, g ∈ C[x, y] and deg f > deg g. Let t0 ∈ C \ (K0(F ) ∪ K1(F ) ∪ B∞(F )). Then

F satisfies the Malgrange condition at t0.

Proof. Let D be the neighborhood of t0 such that

χ(F−1(t0)) = χ(F−1(t)),∀t ∈ D.

According to Lemma 2.15, for all p ∈ V∞ and t ∈ D, either p is a regular point
of V̄t0 or is a singular point and µp(G(x, y, z, t)) = µp(G(x, y, z, t0)).

Let p ∈ V∞ arbitrary. Without loss of generality, we may assume that p = [1 :
0 : 0]. It follows from inequalities (6) and (7) that

|∂G/∂t| 6 C|∂G/∂y(y, z, t)|

for all (y, z, t) ∈ {G(y, z, t) = 0} near (0, 0, t0) enough, where G(y, z, t)
= zd(f(1/z, y/z) − tg(1/z, y/z)). We have

|z · g(1/z, y/z)| 6 |
∂

∂Y
(f − tg)(1/z, y/z)|

for all (y, z, t) near (0, 0, t0) enough such that (f − tg)(1/z, y/z) = 0.
Now, set z = 1

X and y = Y
X , we obtain

0 < 1/C 6 ‖(X,Y )‖ · ‖ grad F (X,Y )‖

for all (X,Y ) → ∞ and F (X,Y ) → t0. Thus F satisfies the Malgrange condition
at t0. �
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Now we consider the M-tameness of F . Firstly, we prove the following.

Theorem 3.15. If F satisfies the Malgrange condition at a value t0, then F is

M-tame at t0.

Proof. Assume that F is not M-tame at t0, i.e. there are sequences {pk}k and
{λk}k such that

pk → ∞, F (pk) → t0 and grad F (pk) = λkpk.

We will show that F does not satisfy the Malgrange condition at t0.
Indeed, by the Curve Selection Lemma, there exist some real analytic curves

(x(τ), y(τ)) → ∞ and λ(τ), τ ∈ (0, ε) such that gradF (x(τ), y(τ)) = λ(τ)(x(τ), y(τ))
and F (x(τ), y(τ)) → t0 when τ → 0.

For each analytic curve φ(τ) = cτm+ higher powers (c 6= 0), we denote

deg(φ(τ)) = m. If φ(τ) and ρ(τ) are two analytic curves then we define deg(φ(τ)
ρ(τ) ) =

deg(φ(τ)) − deg(ρ(τ)).
Since F (x(τ), y(τ)) → t0, then deg(f(x(τ), y(τ))) = deg(g(x(τ), y(τ))). Hence

deg F
′

(x(τ), y(τ)) > −1. Thus

deg(〈(x(τ), y(τ)), gradF 〉) > 0 and ‖(x(τ), y(τ))‖ · ‖gradF‖ → 0.

Therefore F does not satisfy the Malgrange condition at t0. �

The main theorem in this section is the following.

Theorem 3.16. Let F = f/g : C
2 \ {g = 0} → C be a rational function, where

f, g ∈ C[x, y] and deg f > deg g. Let t0 ∈ C\(K0(F )∪K1(F )). Then the following

are equivalent:

(i) t0 ∈ B∞(F );
(ii) t0 ∈ K∞(F );
(iii) t0 ∈ M∞(F ).

Proof. (i) =⇒ (iii): Assume that F is M-tame at t0. Then for δ > 0 small enough
and R > 0 large enough, we can construct in F−1(Dδ(t0)) \ BR a smooth vector
field v(x) such that

〈v, x〉 = 0;

〈v, gradF 〉 = 1.

Here BR is the closed ball in C
2 with radius R centered at the origin.

Now, by integrating the vector field we get a diffeomorphism trivializing the
map

F : F−1(Dδ(t0)) \ BR → Dδ(t0).

(ii) =⇒ (i): By Theorem 3.14.
(iii) =⇒ (ii): By Theorem 3.15. �

Remark 3.17. Theorem 3.16 remains valid if deg f < deg g and t0 6= 0.
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3.3. Examples. To conclude we give some examples showing that the Fedoryuk
condition is not necessary for a value to be regular at infinity.

Example 3.18. Let F (x, y) = xy+1
x2+1

and L : C
2 → C, (x, y) 7→ y.

The critical points of lt are (x, y), where x =
√

(1 − 1/t), y = 2x/(1 − x2). It
is easy to check that these points do not go to infinity when t → i. According to
Theorem 3.6 we have i /∈ B∞(F ).

Now let (xk, yk) = (k, ik). We see that ‖(xk, yk)‖ → ∞, F ((xk, yk)) → i and

‖gradF (xk, yk)‖ → 0 as k → ∞. That means i ∈ K̃∞(F ). Thus K̃∞(F ) 6⊂
B∞(F ).

Example 3.19. Let F (x, y) = x3+1
xy+1 . It is easy to check that B∞(F ) = {0}.

Let pk := (k, 1
c k2) ∈ C

2, c 6= 0, k ≥ 1, we see that F (pk) → c as k → ∞, and

gradF (pk) → 0. Therefore K̃∞(F ) = C. In particular, B∞(F ) 6= K̃∞(F ).
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