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LYAPUNOV EXPONENTS AND CENTRAL EXPONENTS OF

LINEAR ITO STOCHATIC DIFFERENTIAL EQUATIONS

NGUYEN DINH CONG AND NGUYEN THI THUY QUYNH

Abstract. We study Lyapunov, central and auxiliary exponents of linear Ito
stochastic equations. We show that the central exponents are nonrandom like
Lyapunov exponents, the nonrandomness of which was proved in [8]. We prove
that under a nondegeneracy condition the central exponents Θk of a linear Ito
stochastic differential equation coincide with its auxiliary exponents γk, and,
moreover, all the first exponents coincide: Θ1 = λ1 = Ω1 = γ1.

1. Introduction

We consider a linear n-dimensional Ito stochastic differential equation

dX(t) = F0(t)X(t)dt +

m∑

k=1

Fk(t)X(t)dW k
t ,(1.1)

X(t0) = x0,

where Fk(t) =
(
f

j
ik

)
n×n

(k ∈ {0, 1, 2, ...,m}) are continuous matrix-valued func-

tions bounded by a constant K, x0 is a non-random initial value, W
j
t (j ∈

{1, 2, ...,m}) are independent 1-dimensional standard Wiener processes on a prob-
ability space (Ω,F , P). It is known that, with the above assumption, the Cauchy
problem of (1.1) has unique solution (see Khasminskii [11, Theorem 3.2 page 79]).
The linear Ito stochastic differential equation (1.1) generates a two-parameter
stochastic flow Φt0,t(ω) of linear operators of R

n (see Kunita [13, page 116 and
Theorem 4.5.1 page 155]). The solution of (1.1) satisfying initial value condition
X(t0) = x0, is a stochastic process given by the formula X(t) = Φt0,t(ω)x0. Note
that fixing an ω ∈ Ω the two-parameter flow Φt0,t(ω) is an analogue of the Cauchy
operator of a linear system of differential equations.

We denote by Gr the Grassmannian manifold of all r-dimentional subspaces in
R

n. For a linear subspace U of R
n, we denote by U∗ the subset of all nonvanishing
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vectors of U . For any nondegenerate n × n matrix X, let us denote by X∗ the
transposed matrix of X and by d1(X) ≥ d2(X) ≥ ... ≥ dn(X) the singular
numbers of X, i.e. they are the positive square roots of the eigenvalues of the
matrix X∗X. Clearly, for any k ∈ {1, 2, ..., n} we have

dk(X) = inf
U∈Gn−k+1

sup
x∈U∗

‖Xx‖
‖x‖ = sup

V ∈Gk

inf
x∈V∗

‖Xx‖
‖x‖ .

Definition 1.1. The random variables λk(ω), Ωk(ω), Θk(ω) (k ∈ {1, 2, ..., n})
defined by

λk(ω) := min
U∈Gn−k+1

max
x∈U

lim sup
t→+∞

1

t
ln ‖Φ0,t(ω)x‖ ,(1.2)

Θk(ω) := sup
V ∈Gk

sup
T∈R+

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)

∣∣
Φ0,(i+1)T (ω)V

∥∥∥
−1

,(1.3)

Ωk(ω) := inf
U∈Gn−k+1

inf
T∈R+

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥ΦiT,(i+1)T (ω)

∣∣
Φ0,iT (ω)U

∥∥∥ ,(1.4)

where Φ|S denotes the restriction of the operator Φ on S, are respectively called
Lyapunov exponents and central exponents of the equation (1.1).

It will be shown in the proof of Theorem 2.6 that for any V ∈ Gk and T ∈ R
+

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)

∣∣
Φ0,(i+1)T (ω)V

∥∥∥
−1

= lim sup
m→+∞

1

2mT

2m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)

∣∣
Φ0,(i+1)T (ω)V

∥∥∥
−1

and

1

2mT

2m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)

∣∣
Φ0,(i+1)T (ω)V

∥∥∥
−1

≤ 1

m(2T )

m−1∑

i=0

ln
∥∥∥Φ(i+1)2T,i2T (ω)

∣∣
Φ0,(i+1)2T (ω)V

∥∥∥
−1

.

Therefore, formula (1.3) is equivalent to the following formula which can serve as
a definition of Θk(ω) as well

Θk(ω) = sup
V ∈Gk

sup
T>1

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)

∣∣
Φ0,(i+1)T (ω)V

∥∥∥
−1

.(1.5)

By the same argument, we have the following equivalent definition of Ωk(ω)

Ωk(ω) = inf
U∈Gn−k+1

inf
T>1

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥ΦiT,(i+1)T (ω)

∣∣
Φ0,iT (ω)U

∥∥∥ .(1.6)
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Definition 1.2. The random variables γk(ω) defined by

γk(ω) := lim sup
T→+∞

lim sup
m→+∞

1

mT

m−1∑

i=0

ln dk

[
ΦiT,(i+1)T (ω)

]
, k ∈ {1, 2, ..., n} ,(1.7)

are called auxiliary exponents of the equation (1.1).
The function γk(T ) defined by

γk(T ) := lim sup
m→+∞

1

mT

m−1∑

i=0

E ln dk

[
ΦiT,(i+1)T (ω)

]
, k ∈ {1, 2, ..., n} , T ∈ R

+,

(1.8)

where Eξ(ω) denotes the expectation of a random variable ξ(ω), are called aux-

iliary functions of the equation (1.1).

The above definitions of Lyapunov exponents, central exponents and auxil-
iary exponents for the stochastic differential equations have been introduced by
Millionshchikov (see [14, 15]). Millionshchikov considered equation u̇ = [B(t) +
C(t, ω)]u, where B(t) is a bounded continuous matrix-valued function and C(t, ω)
is a piecewise-constant random matrix-valued process with independent values.
Using Kolmogorov one-zero law Millionshchikov proved that Lyapunov exponents
of such an equation do not depend on ω. Note that the equations Millionshchikov
considered can be solved pathwisely, without the need of the Ito calculus. For
the linear Ito stochastic differential equation

dX(t) = F0(t)X(t)dt + σ

m∑

k=1

FkX(t)dW k
t ,(1.9)

where Fk, (k ∈ {1, 2, ...,m}) are constant matrix and F0(t) is continuous matrix-
valued function bounded by a constant K, N. D. Cong [7] noticed that Lyapunov
exponents, central exponents, auxiliary exponents do not depend on ω. He gave
in [8] a proof of independence of Lyapunov exponents of (1.1) (which is an equa-
tion of a more general type than (1.9)) on ω, i.e. the Lyapunov exponents are
nonrandom.

For deriving the main results of the paper presented in Section 3 we will need
the following nondegeneracy condition of the random part of the equation (1.1):
There are positive numbers µ1, µ2 such that for any x, y ∈ R

n and t ∈ R
+

µ1 ‖x‖2 ‖y‖2 ≤
〈
D(t, x)y, y

〉
≤ µ2 ‖x‖2 ‖y‖2 ,(1.10)

where
〈
y1, y2

〉
denotes the scalar product of two vectors y1, y2 ∈ R

n,

D(t, x) =
(
dij(t, x)

)
n×n

with dij(t, x) =
m∑

k=1

( n∑

r,l=1

f r
ik(t)f

l
jk(t)xrxl

)
.

The central exponents of deterministic linear differential equations were ini-
tially introduced to give lower and upper estimates for Lyapunov exponents and
are different from Lyapunov exponents in general, as shown by Example 13.5.1
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in Bylov et al. [3, page 187]. Beside giving estimates for Lyapunov exponents,
the central exponents also serve as qualitative and quantitive characteristics of
the equations under considerations. The auxiliary exponents γk are interesting
from computational point of view: for their computation we do not have to follow
trajectories of solutions on the whole time axis, but only compute the Cauchy
matrix on each compact time interval.

In this paper, under the nondegeneracy condition specified above we will show
that the central exponents Θk of the linear Ito stochastic differential equation
(1.1) coincide with its auxiliary exponents γk, and, moreover, the first exponents
coincide: Θ1 = λ1 = Ω1 = γ1. The observation on equality of exponents was made
by one of the authors in 1993 (see [7]) for the case of equations (1.9). However,
the proof given there is incomplete since the technique of changing from series
of random variables forming a Markov chain to a series of independent random
variables is not completely verified. Here in this paper, we overcome this problem
for the case of Θk and the first exponents by using another technique, namely, we
use the law of large numbers and inequalities provided by Rosenblatt-Roth [17]
for a series of random variables depending on a Markov chain. Moreover, we are
able to prove the results for a more general equation (1.1).

The paper is organized as follows. In Section 2, we prove some properties of
central and auxiliary exponents of (1.1). Namely, using standard techniques in
the theory of Lyapunov exponents, we show that central exponents are nonran-
dom and make upper and lower estimates for Lyapunov exponents; the auxiliary
exponents are also nonrandom, and the biggest auxiliary exponent γ1 is larger
than the biggest central exponent Ω1, the least auxiliary exponent γn equals the
least central exponent Θn. Section 3 presents the main result of the paper with
assumption of the nondegeneracy condition, Θk = γk and Θ1 = λ1 = Ω1 = γ1.

2. Properties of central and auxiliary exponents

Theorem 2.1. For any k ∈ {1, 2, ..., n} the exponent γk(ω) is nonrandom and

γk(ω) = lim sup
T→+∞

γk(T ).

Proof. First of all, we will prove the random variables 1
T

ln
∥∥ΦiT,(i+1)T (ω)

∥∥ have
second moments, bounded by a constant independent of T > 1 and i ∈ {0, 1, 2, ...}.
For any N ∈ N, put η(ω) = 1

N
ln ‖Φ0,N (ω)‖. Since

‖Φ0,N (ω)‖ ≤ ‖ΦN−1,N (ω)‖ . . . ‖Φ1,2(ω)‖ ‖Φ0,1(ω)‖ ,

and ‖A‖ ≥ 1
‖A−1‖ for any inverse matrix A then

‖Φ0,N (ω)‖≥ 1

‖ΦN,0(ω)‖ ≥
1

‖Φ1,0(ω)‖ ... ‖ΦN,N−1(ω)‖ ≥
1∥∥∥Φ−1

0,1(ω)
∥∥∥ ...

∥∥∥Φ−1
N−1,N(ω)

∥∥∥
.
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Therefore,

−
N−1∑

i=0

ln
∥∥∥Φ−1

i,i+1(ω)
∥∥∥ ≤ ln ‖Φ0,N (ω)‖ ≤

N−1∑

i=0

ln ‖Φi,i+1(ω)‖ .

It follows that for any ω ∈ Ω, we have

∣∣ 1

N
‖ln Φ0,N (ω)‖

∣∣ ≤
∣∣ 1

N

N−1∑

i=0

ln
∥∥∥Φ−1

i,i+1(ω)
∥∥∥

∣∣ +
∣∣ 1

N

N−1∑

i=0

ln ‖Φi,i+1(ω)‖
∣∣.

Put η1(ω) = 1
N

N−1∑
i=0

ln
∥∥∥Φ−1

i,i+1(ω)
∥∥∥, η2 = 1

N

N−1∑
i=0

ln ‖Φi,i+1(ω)‖ then

(2.1) Eη2(ω) ≤ 2[Eη2
1(ω) + Eη2

2(ω)].

Using Minkowski’s Inequality for p = 2 (see Shiryaev [18, page 194]), we have

(2.2)
(
E|η1(ω)|2

) 1
2 ≤ 1

N

N−1∑

i=0

[
E

∣∣ ln ‖Φi,i+1(ω)‖
∣∣2] 1

2 ≤ K1,

where the constant K1 is independent of N .
Similarly, by considering the backward Ito differential equation we get

(
E|η2(ω)|2

) 1
2 ≤ K2,

where the constant K2 is independent of N .
It follows from (2.1) that

Eη2(ω) ≤ K3 = 2(K2
1 + K2

2 )

where the constant K3 is independent of N . Now, it is easily seen that, for any
s ∈ R

+, N ∈ N the variable η̃ = 1
N

ln ‖Φs,s+N(ω)‖ has second moment bounded
by a constant independent of s,N .
In case η̂(ω) = 1

T
ln ‖Φs,s+T (ω)‖, for arbitrary s ∈ R

+, T ∈ R
+, T > 1, we put

N = [T ], the integer part of T , and get

‖Φs,s+T (ω)‖ ≤ ‖Φs,s+1(ω)‖ . . . ‖Φs+N−1,s+N(ω)‖ ‖Φs+N,s+T (ω)‖ .

By the same arguments as for deriving (2.2), we get

(
E|η̂1(ω)|2

) 1
2 ≤ 1

T

( N−1∑

i=0

[E
∣∣ ln ‖Φi,i+1(ω)‖

∣∣2] 1
2 + [E

∣∣ ‖ln |ΦN,T (ω)‖
∣∣2] 1

2

)

≤ (N + 1)K̂1

T
≤ 2K̂1.

and (
E|η̂2(ω)|2

) 1
2 ≤ 2K̂2,

where the constant K̂1 and K̂2 are independent of s, T . So

Eη̂(ω)2 ≤ K̂3 = 4(K̂2
1 + K̂2

2 ).
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To summarize, we have shown that there exists a positive constant M1 indepen-
dent of T > 1 and i ∈ {0, 1, 2, ...} such that

E

(
1

T
ln

∥∥ΦiT,(i+1)T (ω)
∥∥

)2

≤ M1.

Similarly, we can find a constant M2 > 0 independent of T > 1 and i ∈ {0, 1, 2, ...}
such that

E
( 1

T
ln

∥∥Φ(i+1)T,iT (ω)
∥∥ )2 ≤ M2.

Fix a k ∈ {1, 2, ..., n}. Since

0 < dn[ΦiT,(i+1)T (ω)] ≤ dk[ΦiT,(i+1)T (ω)] ≤ d1[ΦiT,(i+1)T (ω)],

we have

( 1

T
ln dk[ΦiT,(i+1)T (ω)]

)2 ≤
( 1

T
ln

∥∥ΦiT,(i+1)T (ω)
∥∥ )2

+
( 1

T
ln

∥∥Φ(i+1)T,iT (ω)
∥∥ )2

.

Consequently,

E
( 1

T
ln dk[ΦiT,(i+1)T (ω)]

)2 ≤ M1 + M2.

Hence, 1
T

ln dk[ΦiT,(i+1)T (ω)] (i ∈ {0, 1, 2, ...}) is a sequence of independent ran-
dom variables having second moments bounded by M1 + M2. By virtue of the
Kolmogorov strong law of large numbers (see Shiryaev [18, Theorem 2, page
389]), the following equality holds with probability 1

lim
m→+∞

( 1

mT

m−1∑

i=0

ln dk

[
ΦiT,(i+1)T (ω)

]
− 1

mT

m−1∑

i=0

E lndk

[
ΦiT,(i+1)T (ω)

])
= 0.

Consequently,

lim sup
m→+∞

1

mT

m−1∑

i=0

ln dk

[
ΦiT,(i+1)T (ω)

]
= lim sup

m→+∞

1

mT

m−1∑

i=0

E lndk

[
ΦiT,(i+1)T (ω)

]
,

hence,

γk(ω) = lim sup
T→+∞

γk(T ).

The theorem is proved. �

Theorem 2.2. For any k ∈ {1, 2, ..., n} the central exponent Θk(ω) of (1.1) does

not depend on ω ∈ Ω.

Proof. Denote by
{
F t

s

}
t≥s≥0

the filtration of σ-algebras generated by the Wiener

processes (W 1
u ,W 2

u , ...,Wm
u )t≥u≥s (see e.g. Arnold [1, pages 91-92]). Clearly, the

Φ0,t(ω) is adapted to the filtration
{
F t

0

}
t≥0

. From the formula (1.5), it follows

that the random variable Θk(ω) is measurable with respect to the limit σ-algebra
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F+∞
0 := lim

t→+∞
F t

0 =
∨
t≥0

F t
0. We note that for any fixed k ∈ {1, 2, ..., n} and

N ∈ N,

Θk(ω) = sup
V ∈Gk

sup
T>1

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1

= sup
V ∈Gk

sup
T>1

lim sup
m→+∞

1

mT

( N∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1

+
m−1∑

i=N+1

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1

)
.

Since N is a fixed number,
N∑

i=0
ln

∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1

is a random vari-

able with finite second moment, hence, the limit

lim
m→+∞

1

mT

N∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1

= 0

exists and the equality holds with probability 1. Therefore,

Θk(ω) = sup
V ∈Gk

sup
T>1

lim sup
m→+∞

1

mT

m−1∑

i=N+1

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1

= sup
V ∈Gk

sup
T>1

lim sup
m→+∞

1

mT

m−1∑

i=N+1

ln

∥∥∥∥Φ(i+1)T,iT (ω)|||
ΦNT,(i+1)T (ω)

(
Φ0,NT (ω)V

)
∥∥∥∥
−1

≤ sup
Ṽ ∈Gk

sup
T>1

lim sup
m→+∞

1

mT

m−1∑

i=N+1

ln
∥∥∥Φ(i+1)T,iT (ω)|||ΦNT,(i+1)T (ω)Ṽ

∥∥∥
−1

=: r(ω).

On the other hand, by the definition of r(ω) just given above, for any ε > 0 and

ω ∈ Ω, there exists Ṽ1 ∈ Gk such that

r(ω) − ε < sup
T>1

lim sup
m→+∞

1

mT

m−1∑

i=N+1

ln
∥∥∥Φ(i+1)T,iT (ω)|||ΦNT,(i+1)T (ω)Ṽ1

∥∥∥
−1

.

Let Ṽ2 ∈ Gk denote the subspace Φ−1
0,NT (ω)Ṽ1. We have Φ0,NT (ω)Ṽ2 = Ṽ1, hence,

r(ω) − ε < sup
T>1

lim sup
m→+∞

1

mT

m−1∑

i=N+1

ln
∥∥∥Φ(i+1)T,iT (ω)|||ΦNT,(i+1)T (ω)Φ0,NT Ṽ2

∥∥∥
−1

= sup
T>1

lim sup
m→+∞

1

mT

m−1∑

i=N+1

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)Ṽ2

∥∥∥
−1

= sup
T>1

lim sup
m→+∞

1

mT

( N∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)Ṽ2

∥∥∥
−1
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+

m−1∑

i=N+1

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)Ṽ2

∥∥∥
−1

)

≤ sup
V ∈Gk

sup
T>1

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1

= Θk(ω).

Since ε > 0 is arbitrary so we have r(ω) ≤ Θk(ω). Thus, for any fixed N we have
Θk(ω) = r(ω) ∈ F+∞

(N+1)T so Θk(ω) is measurable with respect to the F+∞
(N+1)T =

lim
t→+∞

F t
(N+1)T =

∨
t≥(N+1)T F t

(N+1)T . Hence, Θk(ω) is measurable with respect

to the tail σ-algebra
+∞⋂
N=1

F+∞
(N+1)T . By the zero-or-one law (see Shiryaev [18, page

381]) the random variable Θk(ω) is degenerate, i.e. nonrandom. �

Theorem 2.3. For any k ∈ {1, 2, ..., n} the central exponents Ωk(ω) of (1.1)
does not depend on ω ∈ Ω.

Proof. We note that for any fixed k ∈ {1, 2, ..., n} and N ∈ N,

Ωk(ω) = inf
U∈Gn−k+1

inf
T>1

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥ΦiT,(i+1)T (ω)|||Φ0,iT (ω)U

∥∥∥

= inf
U∈Gn−k+1

inf
T>1

lim sup
m→+∞

1

mT

( N∑

i=0

ln
∥∥∥ΦiT,(i+1)T (ω)|||Φ0,iT (ω)U

∥∥∥

+

m−1∑

i=N+1

ln
∥∥∥ΦiT,(i+1)T (ω)|||Φ0,iT (ω)U

∥∥∥
)

.

Using an argument similar to that of the proof of Theorem 2.2, we can show that

Ωk(ω) is measurable with respect to the tail σ-algebra
+∞⋂
N=1

F+∞
(N+1)T , hence, is

degenerate, i.e. nonrandom. �

Now, since the Lyapunov, central and auxiliary exponents are independent of
ω, we will drop ω in their notations.

Theorem 2.4. For any k ∈ {1, 2, ..., n} the central exponent Ωk of (1.1) is larger

or equal to the Lyapunov exponent λk.

Proof. Fixing an ω ∈ Ω, for any ε > 0, by the definition of Ωk, there exists an
U ∈ Gn−k+1 such that

inf
T>1

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥ΦiT,(i+1)T (ω)|||Φ0,iT (ω)U

∥∥∥ < Ωk + ε.

For any vector x ∈ U and T > 1, we have

‖Φ0,mT (ω)x‖ =
∥∥Φ(m−1)T,mT (ω) ◦ Φ0,(m−1)T (ω)x

∥∥
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≤
∥∥∥Φ(m−1)T,mT (ω)|||Φ0,iT (ω)U

∥∥∥ ·
∥∥Φ0,(m−1)T (ω)x

∥∥ ≤ ...

≤
∥∥∥Φ(m−1)T,mT (ω)|||Φ0,iT (ω)U

∥∥∥ ... ‖Φ0,T (ω)|||U‖ ‖x‖ .

Therefore,

lim sup
m→+∞

1

mT
ln ‖Φ0,mT (ω)x‖ ≤ lim sup

m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥ΦiT,(i+1)T (ω)|||Φ0,iT (ω)U

∥∥∥ .

By Theorem 3.4 of N. D. Cong [8], for any h ∈ R
+, we have

λk(ω) = min
Ũ∈Gn−k+1

max
x∈Ũ

lim sup
m→+∞

m∈N

1

mh
ln ‖Φ0,mh(ω)x‖ .

Therefore,

λk ≤ inf
T>1

max
x∈U

lim sup
m→+∞

1

mT
ln ‖Φ0,mT (ω)x‖

≤ inf
T>1

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥ΦiT,(i+1)T (ω)|||Φ0,iT (ω)U

∥∥∥ < Ωk + ε.

Since ε > 0 is arbitrary, we derive λk ≤ Ωk. �

Theorem 2.5. For any k ∈ {1, 2, ..., n} the central exponent Θk of (1.1) is

smaller or equal to the Lyapunov exponent λk.

Proof. Fixing an ω ∈ Ω, for any ε > 0, by the definition of Θk, there exists an
V ∈ Gk such that

sup
T>1

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1

> Θk − ε.

By the definition of λk and Theorem 3.4 of N. D. Cong [8], there exists an
U ∈ Gn−k+1 such that for any h ∈ R

+

λk = max
x∈U

lim sup
m→+∞

1

mh
ln ‖Φ0,mh(ω)x‖ .

Since U , V are linear subspaces in R
n, the dimension of U is n − k + 1 and the

dimension of V is k, the dimension of the subspace U ∩ V is larger or equal to 1.
Take an x0 ∈ U ∩ V \ {0} we have

sup
T>1

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1

≤ sup
T>1

lim sup
m→+∞

1

mT
ln
‖Φ0,mT (ω)x0‖

‖x0‖

≤ sup
T>1

max
x∈U∗

lim sup
m→+∞

1

mT
ln
‖Φ0,mT (ω)x‖

‖x‖
= λk.
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Therefore, Θk − ε < λk for every ε > 0, hence, Θk ≤ λk. �

Theorem 2.6. For any k ∈ {1, 2, ..., n} the central exponent Θk of (1.1) is

smaller or equal to the auxiliary exponent γk.

Proof. First of all, as claimed in the Introduction, we will show that for definition
of Θk(ω) the formula (1.3) is equivalent to the formula (1.5). For V1 ∈ Gk, T ∈
R

+, ω ∈ Ω,m ∈ N we set

g(T,m, V1) :=
1

mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V1

∥∥∥
−1

.

Then

g(T, 2m,V1) =
1

2mT

2m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V1

∥∥∥
−1

=
1

2mT

2m−1∑

i=0

ln inf
z∈V1∗

∥∥Φ0,(i+1)T (ω)z
∥∥

‖Φ0,iT (ω)z‖

=
1

2mT

m−1∑

i=0

(
ln inf

z∈V1∗

∥∥Φ0,(2i+1)T (ω)z
∥∥

‖Φ0,2iT (ω)z‖ + ln inf
z∈V1∗

∥∥Φ0,(2i+2)T (ω)z
∥∥

∥∥Φ0,(2i+1)T (ω)z
∥∥

)

≤ 1

2mT

m−1∑

i=0

ln inf
z∈V1∗

∥∥Φ0,(2i+1)T (ω)z
∥∥

‖Φ0,2iT (ω)z‖ ×
∥∥Φ0,(2i+2)T (ω)z

∥∥
∥∥Φ0,(2i+1)T (ω)z

∥∥

=
1

2mT

m−1∑

i=0

ln inf
z∈V1∗

∥∥Φ0,(2i+2)T (ω)z
∥∥

‖Φ0,2iT (ω)z‖

=
1

2mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)2T,i2T (ω)|||Φ0,(i+1)2T (ω)V1

∥∥∥−1 = g(2T,m, V1).

Thus, for all V1 ∈ Gk, T ∈ R
+, ω ∈ Ω,m ∈ N, we have

g(T, 2m,V1) ≤ g(2T,m, V1).(2.3)

Now we will prove that for any fixed V1 ∈ Gk, T ∈ R
+ the following equality

lim sup
m→+∞

g(T, 2m,V1) = lim sup
m→+∞

g(T,m, V1)(2.4)

holds with probability 1. Note that

m + 1

m
g(T,m + 1, V1) − g(T,m, V1) =

1

mT
ln

∥∥∥Φ(m+1)T,mT (ω)|||Φ0,(m+1)T (ω)V1

∥∥∥
−1

,

and

− 1

mT
ln

∥∥∥Φ−1
mT,(m+1)T (ω)

∥∥∥ ≤ 1

mT
ln

∥∥∥Φ(m+1)T,mT (ω)|||Φ0,(m+1)T (ω)V1

∥∥∥
−1

≤ 1

mT
ln

∥∥ΦmT,(m+1)T (ω)
∥∥ .(2.5)
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Put

Bj :=
{
ω ∈ Ω|

∥∥ΦjT,(j+1)T (ω)
∥∥ ≥ jT + n2eKT

}
, j ∈ {0, 1, 2...} ,

B̃j :=
{
ω ∈ Ω|

∥∥Φ(j+1)T,jT (ω)
∥∥ ≥ jT + n2eKT

}
, j ∈ {0, 1, 2...} ,

B :=
+∞⋃

i=1

+∞⋂

j=i

(Ω \ (Bj ∪ B̃j)).

By Lemma 3.3 of N. D. Cong [8] we have P(B) = 1. Let ω ∈ B be arbitrary, then
there exists M(ω) > 0 such that for all m > M(ω) the following inequalities hold

1

mT
ln

∥∥ΦmT,(m+1)T (ω)
∥∥ ≤ ln(mT + n2eKT )

mT
,(2.6)

− 1

mT
ln

∥∥∥Φ−1
mT,(m+1)T (ω)

∥∥∥ ≥ − ln(mT + n2eKT )

mT
.(2.7)

From (2.5), (2.6) and (2.7), it follows that

lim
m→+∞

(m + 1

m
g(T,m + 1, V1) − g(T,m, V1)

)
= 0

with probability 1, in particular,

lim
l→+∞

(2l + 1

2l
g(T, 2l + 1, V1) − g(T, 2l, V1)

)
= 0.

Therefore, since lim
l→+∞

2l+1
2l

= 1, with probability 1, we have

lim sup
l→+∞

g(T, 2l + 1, V1) = lim sup
l→+∞

g(T, 2l, V1),

from which (2.4) follows.
By (2.3) and (2.4), for all V1 ∈ Gk, T ∈ R

+ with probability 1, we have

lim sup
m→+∞

g(T,m, V1) ≤ lim sup
m→+∞

g(2T,m, V1).

From this, it follows that the formula (1.3) is equivalent to the formula (1.5).
Moreover, this inequality also implies that

sup
T>1

lim sup
m→+∞

g(T,m, V1) = lim sup
T→+∞

lim sup
m→+∞

g(T,m, V1).

Therefore, taking into account Theorem 2.2, we have

Θk = sup
V ∈Gk

sup
T>1

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1

= sup
V ∈Gk

sup
T>1

lim sup
m→+∞

g(T,m, V )

= sup
V ∈Gk

lim sup
T→+∞

lim sup
m→+∞

g(T,m, V )

= sup
V ∈Gk

lim sup
T→+∞

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1
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= sup
V ∈Gk

lim sup
T→+∞

lim sup
m→+∞

1

mT

m−1∑

i=0

ln inf
z∈Φ0,iT (ω)V∗

∥∥ΦiT,(i+1)T (ω)z
∥∥

‖z‖

≤ lim sup
T→+∞

lim sup
m→+∞

1

mT

m−1∑

i=0

ln dk

[
ΦiT,(i+1)T (ω)

]

= lim sup
T→+∞

γk(T ) = γk.

The theorem is proved. �

Theorem 2.7. For the equation (1.1) we always have

γ1 ≥ Ω1 and γn = Θn.

Proof. Note that

d1[ΦiT,(i+1)T (ω)] =
∥∥ΦiT,(i+1)T (ω)

∥∥ ,

dn[ΦiT,(i+1)T (ω)] =
∥∥ΦiT,(i+1)T (ω)−1

∥∥−1
.

Since the space Gn has only one point R
n, using (1.3) and the argument in the

proof of Theorem 2.6, we get

Θn = sup
T∈R+

lim sup
m→+∞

1

mT

m−1∑

i=0

ln dn[ΦiT,(i+1)T (ω)]

= lim sup
T→+∞

lim sup
m→+∞

1

mT

m−1∑

i=0

ln dn[ΦiT,(i+1)T (ω)] = γn.

Using an argument similar to that of the proof of Θk in Theorem 2.6, we can
prove for any subspace U ∈ Gn−k+1,

Ωk = inf
U∈Gn−k+1

inf
T>1

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥ΦiT,(i+1)T (ω)

∣∣
Φ0,iT (ω)U

∥∥∥

= inf
U∈Gn−k+1

lim inf
T→+∞

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥ΦiT,(i+1)T (ω)

∣∣
Φ0,iT (ω)U

∥∥∥ .

So

Ω1 = inf
T>1

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥ΦiT,(i+1)T (ω)

∥∥

= lim inf
T→+∞

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥ΦiT,(i+1)T (ω)

∥∥

≤ lim sup
T→+∞

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥ΦiT,(i+1)T (ω)

∥∥
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= lim sup
T→+∞

lim sup
m→+∞

1

mT

m−1∑

i=0

ln d1[ΦiT,(i+1)T (ω)]

= γ1.

The theorem is proved. �

3. Lyapunov exponents of nondegenerate stochastic differential

equations coincide with central exponents

In the whole of this section, we will assume the nondegeneracy condition (1.10)
for the equation (1.1).

Proposition 3.1. For any ε>0 one can find 0 < δ = δ(ε) < 1 such that for any

V ∈Gk and U ∈Gn−k (k∈{1, 2, ..., n − 1}) and any τ ∈R
+ the set of ω∈Ω, for

which [
Φτ,τ+1(ω)V

]
∩ Û(δ(ε)) 6≡ {0}

has P-measure ≤ ε, where Û(%) denotes the cone consisting of vetors in R
n which

make an angle ≤ % with the subspace U .

Proof. The proof of this proposition is completely similar to the proof of the
Lemma 2 in N. D. Cong [5] and Theorem in N. D. Cong [7]. �

Theorem 3.2. There exists a positive constant c1 such that for any ε ∈ (0, 1), T >

1 and k ∈ {1, 2, · · · , n} the following inequality holds

Θk ≥ γk(T ) +
1

T
ln

δ(ε)

2
− 2c1

√
ε,(3.1)

where δ = δ(ε) is determined according to Proposition 3.1.

Proof. Let ε ∈ (0, 1) and fix k ∈ {1, 2, ..., n}. Determine δ = δ(ε) from ε according
to Proposition 3.1. Fix an arbitrary T > 1 and an arbitrary k-dimentional linear
subspace V of R

n. Let i ∈ {0, 1, 2, ...}, for brevity in expression, let Φi denotes
the matrix ΦiT,(i+1)T (ω). Denote by {f1, ..., fk, fk+1, ..., fn} such the eigenvectors,
corresponding to the eigenvalues

d2
1(Φi) ≥ · · · ≥ d2

k(Φi) ≥ d2
k+1(Φi) ≥ · · · ≥ d2

n(Φi)

of the matrix Φ∗
i Φi, that they depend measurably on ω and form an orthonormal

basis of R
n (for the existence of such a measurable orthonormal basis see, e.g.,

Arnold [1, pages 196-197]). Furthermore, we denote by Un−k
i,ω the linear subspace

spanned by the last n− k eigenvectors {fk+1, ..., fn} of Φ∗
i Φi. We introduce some

notations

Ci :=
{
ω ∈ Ω :

[
Φ0,iT (ω)V

]
∩ Ûn−k

i,ω

[
δ(ε)

]
6≡ {0}

}
,

ηi(ω) :=
1

T
ln

∥∥Φ(i+1)T,iT (ω)
∥∥ ,

ζi(ω) := inf
y∈V∗

1

T
ln

∥∥Φ0,(i+1)T (ω)y
∥∥

‖Φ0,iT (ω)y‖ .
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We have shown in the proof of Theorem 2.1 that for the equation (1.1) the random
variables ηi(ω) have second moments, bounded by a constant independent of
T > 1 and i ∈ {0, 1, 2, ...}. Let χi(ω) denote the indicator function of the set Ci.
By Proposition 3.1 and the Markov property of the solutions of the systems (1.1)
we have

P(Ci) ≤ ε, E(χi(ω)) ≤ ε.

By the definitions of Ci and χi, if χi(ω) = 0, then any vector of Φ0,iT (ω)V is

separated from Un−k
i,ω by an angle bigger than δ(ε), hence,

ζi(ω) = inf
z∈Φ0,iT (ω)V∗

1

T
ln

‖Φiz‖
‖z‖

≥ inf
z∈Φ0,iT (ω)V∗

1

T
ln

(
dk(Φi) sin ∠(z, Un−k

i,ω )
)

≥ 1

T
ln

(
dk(Φi) sin

[
δ(ε)

])

≥ 1

T
ln dk

[
ΦiT,(i+1)T (ω)

]
+

1

T
ln

δ(ε)

2
.

If χi(ω) = 1 then

ζi(ω) ≥ inf
z∈V∗

1

T
ln

∥∥ΦiT,(i+1)T (ω)z
∥∥

‖z‖ ≥ − 1

T
ln

∥∥∥Φ−1
iT,(i+1)T (ω)

∥∥∥ = −ηi(ω).

Consequently,

ζi(ω) ≥
[
1 − χi(ω)

]( 1

T
ln dk

[
ΦiT,(i+1)T (ω)

]
+

1

T
ln

δ(ε)

2

)
− χi(ω)ηi(ω)

≥ 1

T
ln dk

[
ΦiT,(i+1)T (ω)

]
+

1

T
ln

δ(ε)

2

− χi(ω)
1

T
ln dk

[
ΦiT,(i+1)T (ω)

]
− χi(ω)ηi(ω).

It is easily seen that, the random variables 1
T

ln dk

[
ΦiT,(i+1)T (ω)

]
, ζi(ω) have

second moments bounded by a constant independent of T > 1, i ∈ {0, 1, 2, ...}
and ε ∈ (0, 1). Thererefore, there exists a positive constant c1 > 0 which is
independent of T > 1, i ∈ {0, 1, 2, ...} and ε ∈ (0, 1) such that

E

∣∣∣∣χi(ω)
1

T
ln dk

[
ΦiT,(i+1)T (ω)

]∣∣∣∣ ≤
1

T

(
Eχ2

i (ω)

) 1
2
(

E ln2dk

[
ΦiT,(i+1)T (ω)

]) 1
2

≤c1

(∫

Ω

χ2
i (ω)dP

)
1
2 = c1P

({
ω

∣∣∣∣∣∣ χi(ω) = 1
})

1
2

≤ c1

√
ε,

and

E
∣∣χi(ω)ηi(ω)

∣∣ ≤
[
Eχ2

i (ω)
] 1

2
[
Eη2

i (ω)
] 1

2 ≤ c1

√
ε.
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Consequently,

Eζi(ω) ≥ 1

T
E ln dk

[
ΦiT,(i+1)T (ω)

]
+

1

T
ln

δ(ε)

2
− 2c1

√
ε.(3.2)

Now we use results by Rosenblatt-Roth [17] to prove that the sequence of random
variables ζi(ω), i = 1, 2, . . ., satisfies the strong law of large numbers. This is a
crucial argument in the proof of this theorem. Note that the random variables
ζi(ω), i = 1, 2, . . ., are not independent.

To this end, we define a Markov chain in the state space Gk×Gl(n, R) with the
Borel σ-algebra using the fundamental matrix of the equation (1.1) as follows:

Our Markov chain starts (at time τ = 0) from the state (V, I) ∈ Gk ×Gl(n, R).
From the state (V1, Y1) ∈ Gk × Gl(n, R) at time τ = iT it goes to the state
(V2, Y2) ∈ Gk ×Gl(n, R) next time τ = (i+1)T by the rule V2 = ΦiT,(i+1)T (ω)V1,
Y2 = Φ(i+1)T,(i+2)T (ω).

Note that the second coordinate of our chain is a sequence of independent
random variables, and the first coordinate is a Markov chain on the compact
state space Gk generated by the solutions of the equation (1.1). The transition
probability of our Markov chain is the product of transition probabilities on
two coordinates because the second coordinate is independent on the present
and past of the first coordinate. Denote by µ the Riemannian volume on the
compact space Gk, and Pi(V1, B1), where V1 ∈ Gk is a point and B1 ⊂ Gk is a
measurable subset of Gk, the transition probability of the Markov chain of the
first coordinate of our chain at the time moment τ = iT . This Markov chain on
Gk has density satisfying a parabolic partial equation which is determined by the
equation (1.1) (see Khasminskii [11, page 96]). Since Gk is a compact manifold
and our nondegeneracy condition (1.10) is uniform with respect to time, we can
find positive constants K3,K4 > 0 (see Aronson [2, page 891]) such that for any
i = 1, 2, . . ., any V1 ∈ Gk and any measurable subset B ⊂ Gk we have

K3µ(B) ≤ Pi(V1, B) ≤ K4µ(B),(3.3)

where the constants K3,K4 depend only on n, T, µ1, µ2 and the Lipschitz constant
K of the equation (1.1). From this, it follows that for any i = 1, 2, . . ., any pair
of points V1, V2 ∈ Gk and any measurable subset B ⊂ Gk we have

|Pi(V1, B) − Pi(V2, B)| ≤ K4

K3 + K4
.

Therefore,

sup |Pi(V1, B) − Pi(V2, B)| ≤ K4

K3 + K4
,(3.4)

where the sup is taken over the collections of all points V1, V2 ∈ Gk and all
measurable set B ⊂ Gk. Since the transition probability of our Markov chain on
the product space Gk ×Gl(n, R) is the product of two transition probabilities on
its coordinates, it is easily seen that, the ergodic coefficient αi of the transition
function Pi of our Markov chain (see Dobrushin [9] and Rosenblatt-Roth [17] for



50 NGUYEN DINH CONG AND NGUYEN THI THUY QUYNH

definition of ergodic coefficient and its properties) satisfies for any i = 1, 2, . . .
the inequality

αi = α(Pi) ≥
K3

K3 + K4
.(3.5)

Thus, for any m ∈ {1, 2, 3, ...} we have

α(m) := min
0≤i≤m−1

αi ≥
K3

K3 + K4
> 0.

Let us come back to the random variables ζi(ω) introduced above. We can con-
sider them as random variables defined on our Markov chain as follows:

ζi(ωi) = ζi(Vi,Φi) = inf
z∈V ∗

i

1

T
ln

‖Φi(z)‖
‖z‖ .

We know that ζi has second moments bounded by a constant c2 independent of
T > 1 and i ∈ {0, 1, 2, ...}, hence,

0 ≤ Dζi ≤ E|ζi|2 ≤ c2,

where Dξ(ω) denotes the variance of the random variable ξ(ω). This implies that

+∞∑

n=1

n−2Dζn < c2

+∞∑

n=1

n−2 < +∞.

Therefore, according to Rosenblatt-Roth [17, Theorem 2, page 567] the sequence
ζ0, ζ1, ζ2, ... satisfies the strong law of large numbers, so we have with probability
1 the equalities

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1

= lim sup
m→+∞

1

m

m−1∑

i=0

ζi(ω)

= lim sup
m→+∞

1

m

m−1∑

i=0

Eζi(ω)

= lim sup
m→+∞

1

mT

m−1∑

i=0

E ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1

.

Using the definition of the central exponent Θk, we get

Θk = sup
Ṽ ∈Gk

sup
T>1

lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||

Φ0,(i+1)T (ω)Ṽ

∥∥∥
−1

≥ lim sup
m→+∞

1

mT

m−1∑

i=0

ln
∥∥∥Φ(i+1)T,iT (ω)|||Φ0,(i+1)T (ω)V

∥∥∥
−1
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= lim sup
m→+∞

1

m

m−1∑

i=0

ζi(ω) = lim sup
m→+∞

1

m

m−1∑

i=0

E(ζi(ω))

≥ lim sup
m→+∞

1

m

m−1∑

i=0

(
1

T
E ln dk

[
ΦiT,(i+1)T (ω)

]
+

1

T
ln

δ(ε)

2
− 2c1

√
ε

)

= lim sup
m→+∞

1

mT

m−1∑

i=0

E ln dk

[
ΦiT,(i+1)T (ω)

]
+

1

T
ln

δ(ε)

2
− 2c1

√
ε.

Consequently, with probability 1, we have

Θk ≥ γk(T ) +
1

T
ln

δ(ε)

2
− 2c1

√
ε.(3.6)

The theorem is proved. �

Theorem 3.3. Assume the condition (1.10), then for any k ∈ {1, 2, ..., n}, we

have

γk = Θk.

Proof. Fix k ∈ {1, 2, ..., n}. Taking into account Theorem 2.6, it suffices to prove
that Θk ≥ γk. Due to Theorem 2.1, we only need to prove Θk ≥ lim sup

T→+∞
γk(T ).

To do this, we will show that for any % > 0, there exists T
(1)
% > 1 such that, for

any T > T
(1)
% ,

γk(T ) < Θk + %.

By Theorem 3.2, for any ε ∈ (0, 1) and T > 1, we have

γk(T ) +
1

T
ln

δ(ε)

2
− 2c1

√
ε ≤ Θk,

where δ = δ(ε) is specified as in Proposition 3.1. Fix an arbitrary 0 < ε < %2

16c21
.

Since lim
T→+∞

1
T

ln δ(ε)
2 = 0, for any % > 0 there exists T

(2)
% > 1 such that for any

T > T
(2)
% we have

−%

2
<

1

T
ln

δ(ε)

2
<

%

2
,

which implies, for any T > T
(2)
% ,

γk(T ) − %

2
− 2c1

√
ε < γk(T ) +

1

T
ln

δ(ε)

2
− 2c1

√
ε ≤ Θk.

Thus, taking into account the choice 0 < ε < min
{

1, %2

16c21

}
, we have that for any

% > 0, there exists T% = max
{

T
(1)
% , T

(2)
%

}
such that for any T > T%

γk(T ) < Θk +
%

2
+ 2c1

%

4c1
< Θk + %.

Since % > 0 is arbitrary, we obtain lim sup
T→+∞

γk(T ) ≤ Θk. �
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Theorem 3.4. Assume the condition (1.10) holds. Then the following equalitities

hold

Θ1 = λ1 = Ω1 = γ1.

Proof. By Theorem 2.7, Theorem 2.4 and Theorem 2.5, we have

γ1 ≥ Ω1 ≥ λ1 ≥ Θ1.

Due to assumption of the condition (1.10), Theorem 3.3 implies that

Θ1 = λ1 = Ω1 = γ1.

The theorem is proved. �
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