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CONVERGENCE OF A MODIFIED CONJUGATE DESCENT

METHOD IN THE PRESENCE OF ERRORS

MIN SUN

Abstract. The conjugate gradient method is a useful method for solving
large-scale minimization problems. Errors may arise because of inexact com-
putation. In this paper we study the global convergence of a modified conju-
gate descent method with strong Wolfe line search in the presence of errors.
Preliminary numerical experiments are given to show the efficiency and ro-
bustness of the method.

1. Introduction

In this paper we study the unconstrained minimization problem which is to
find the minimal point x∗ of f(x) over Rn, denoted by

(1.1) min f(x), x ∈ Rn,

where f : Rn → R is smooth and its gradient g(x) = ∇f(x) is available.

Conjugate gradient method is a very useful and powerful method for solving
large-scale minimization problems (1.1) due to its smaller storage requirements
and simple computation ([1, 2, 6]). Its iteration formula is given by

(1.2) xk+1 = xk + αkdk,

where αk ≥ 0 is a stepsize obtained by means of one-dimensional line search and
dk is the search direction defined by

(1.3) dk =

{

−gk, k = 1,
−gk + βkdk−1, k ≥ 2,

where gk = g(xk) and βk is a scalar. Varieties of this method differ in the way
of selecting βk. The best-known formulae for βk are called the Fletcher-Reeves
(FR), Polak-Ribiere-Polyak (PRP), Dai-Yuan (DY), and Conjugate Descent (CD)
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formulae, and are given by

βFR
k =

‖gk‖2

‖gk−1‖2
, βPRP

K =
g>k (gk − gk−1)

d>k−1(gk − gk−1)
,

βDY
k =

‖gk‖2

d>k−1(gk − gk−1)
=

g>k dk

g>k−1dk−1
, βCD

k = − ‖gk‖2

g>k−1dk−1
.

The global convergence of conjugate gradient methods can refer to a book [3]
and a recent review paper [4]. In [3], Dai pointed out that the global convergence
of conjugate gradient method can not be guaranteed if βk = βCD

k . Recently, Tang
and Shi [8] proposed a memory gradient method which is similar to CD conjugate
gradient method and only differs in the selecting of βk which is defined by

(1.4) βk =
ρ‖gk‖2

σg>k−1dk−1
,

where σ ∈ (0, 1/2) and ρ ∈ (1, σ/(1 + σ)). The parameters σ and ρ played an
important role in the global convergence.

In practical computation, errors may arise because of inexact computation of
the gradient of f(x) or approximate computation of subproblems. Li and Wang
[5] studied DY conjugate gradient method with line search in the presence of
errors. The main direction sk satisfies

(1.5) g>k sk ≤ −c1‖gk‖2, c1 > 0,

and the error term wk satisfies

‖wk‖ ≤ γk(q + p‖gk‖), p, q > 0,

where

γk = O(1/k), γk > 0.

Under the above conditions and g(x) is Lipschitz continuous, they proved either

lim
k→∞

f(xk) = −∞,

or

lim inf
k→∞

‖gk‖ = 0.

However, to the best of our knowledge, there is no published analysis for the
global convergence of conjugate descent method with errors.

In this paper, motivated by [8] and [5], we study a modified conjugate descent
method with errors. βk in the modified descent method has the following new
form

(1.6) βk =























− ρ‖gk‖2

σg>k−1dk−1
, g>k−1dk−1 < 0,

g>k (gk − gk−1)

‖gk−1‖2
, otherwise,
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where σ and ρ are two positive parameters defined below. An important feature
in our method is that we can prove the condition (1.5) is always right, and dk is
always a descent direction.

The paper is organized as follows: In Section 2 we propose the modified conju-
gate descent method with errors and prove the global convergence property of the
method under mild conditions. In Section 3 we give some preliminary numerical
experiments. Some concluding remarks are given in Section 4.

2. Modified conjugate descent method with errors

For the modified conjugate descent method with errors, we let

(2.1) xk+1 = xk + αk(sk − wk),

where αk is stepsize, wk is accumulative error and main direction sk is determined
by

(2.2) sk =

{

−gk, k = 1,
−gk + βkdk−1, k ≥ 2,

and

(2.3) dk−1 =

{

sk−1 − wk−1, g>k−1(sk−1 − wk−1) ≤ 0,

−sk−1 + wk−1, g>k−1(sk−1 − wk−1) > 0

where βk is determined by (1.6).

sk, wk satisfy the following assumptions:

(A) ‖wk‖ ≤ γk(q + p‖gk‖), p, q > 0.

(B) 0 ≤ γk ≤ c1/k, c1 > 0.

The following inexact line search is used in this paper.

Search A (Strong Wolfe Search) Choose a λk > 0 such that

(2.4)

{

f(xk + λkdk) ≤ f(xk) + ρλkg
>
k dk,

|g(xk + λkdk)
>dk| ≤ −σg>k dk.

Now we describe the algorithm formally as follows:

Algorithm 2.1. Set σ ∈ (0, 1/2) and ρ ∈ (0, σ/(
√

3 + 2σ)), x1 ∈ Rn, k := 1;

Step 1 Compute gk. If ‖gk‖ = 0, then stop, and xk is a stationary point, else
goto Step 2;

Step 2 Let dk is determined by (??).

If g>k (sk − wk) = 0, let αk = 0 and goto Step 3;

If g>k (sk − wk) 6= 0, let αk = λk, where λk is also determined by Search A,
and goto Step 3;

Step 3 Let xk+1 = xk + αkdk, k := k + 1, and return to Step 1.

In order to establish global convergence, we need the following assumption.

(H1). The level set L(x1) = {x ∈ Rn|f(x) ≤ f(x1)} with x1 given is bounded.
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(H2). The gradient g(x) of f(x) is Lipschitz continuous on an open convex set
B that contains the level set L(x1), i.e., there exists an L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ B.

Under (H1) and (H2), there exists positive c such that

(2.5) ‖g(x)‖ ≤ c, ∀x ∈ L(x1).

Remark 2.1. From (B), we have

(2.6) lim
k→∞

γk = 0.

Remark 2.2. In Algorithm 2.1, the search direction dk is always a descent di-
rection of f(x) at xk.

Lemma 2.1. [3] If ϕ(α) = f(xk +αdk) is bounded below when α > 0, there exists

α > 0 which satisfies the strong Wolfe line search.

Lemma 2.2. For all k ≥ 1, we have g>k sk ≤ (ρ − 1)‖gk‖2.

Proof. In the case k = 1, the conclusion is obviously right.

In the case k ≥ 2. If g>k−1dk−1 = 0, then xk = xk−1, thus

g>k sk = g>k (−gk + βkdk−1) = g>k−1(−gk−1 + βkdk−1) = −‖gk−1‖2 = −‖gk‖2.

If g>k−1dk−1 < 0, we have

g>k sk ≤ −‖gk‖2 − σβkg
>
k−1dk−1 ≤ −‖gk‖2 +

ρ‖gk‖2

σg>k−1dk−1
σg>k−1dk−1 = (ρ− 1)‖gk‖2.

Thus the conclusion holds. �

Remark 2.3. If dk is orthogonal to gk, let wk+1 = wk, αk = 0 and it follows
(2.1) that xk+1 = xk. From (??) and Lemma 2.2, we have

g>k+1dk+1 = g>k (−gk + βk+1dk + wk+1)

= −‖gk‖> + βk+1g
>
k dk + g>k wk

= −‖gk‖2 + g>k (sk − dk)

≤ −(2 − ρ)‖gk‖2.

Thus dk+1 is a descent direction except ‖gk‖ = 0.

Lemma 2.3. If {xk} is an infinite sequence generated by Algorithm 2.1, then

when I = {k|g>k (sk − wk) ≥ 0} is an infinite set, we have

lim
k∈I,k→∞

‖gk‖ = 0.

Proof. It follows from the definition of I that

g>k sk ≥ g>k wk.

By Lemma 2.2, we have

(1− ρ)‖gk‖2 ≤ −g>k wk ≤ ‖gk‖‖wk‖ ≤ γk(q + p||gk||)‖gk‖,
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that is
(1− ρ − γkp)‖gk‖ ≤ γkq.

By Remark 2.1, we get the desired conclusion. �

In following, we assume that I is a finite set. Without loss of generality, we
assume that

dk = sk − wk, g>k dk < 0, ∀k.

Lemma 2.4. [3] If (H1), (H2) hold and {xk} is an infinite sequence generated

by Algorithm 2.1, dk satisfies g>k dk < 0, then we have

(2.7)

∞
∑

k=1

(g>k dk)
2

‖dk‖2
< +∞.

To simplify the narration, we give the following notation

tk =
|g>k dk|
‖dk‖

.

Lemma 2.5. If (H1), (H2) hold and {xk} is an infinite sequence generated by

Algorithm 2.1, and there exists a constant ε0 > 0 such that

(2.8) ‖gk‖ ≥ ε0, ∀k ≥ 1,

then
∞

∑

k=1

‖gk‖4

‖dk‖2
< +∞.

Proof. From g>k dk = −‖gk‖2 + βkg
>
k dk−1 − g>k wk, we have

|g>k dk| ≥ ‖gk‖2 − βk|g>k dk−1| − |g>k wk|
≥ ‖gk‖2 − βkσ|g>k−1dk−1| − ‖gk‖‖wk‖
= ‖gk‖2 − βkσtk−1‖dk−1‖ − ‖gk‖‖wk‖
≥ ‖gk‖2 − σtk−1(‖sk‖ + ‖gk‖) − ‖gk‖‖wk‖
≥ ‖gk‖2 − σtk−1(‖dk‖+ ‖wk‖ + ‖gk‖) − ‖gk‖‖wk‖

≥ ‖gk‖2 − σtk−1(‖dk‖+
‖wk‖‖gk‖2

ε20
+

‖gk‖2

ε0
) − ‖gk‖2‖wk‖

ε0

= (1 − σtk−1 + ‖wk‖
ε0

− σtk−1‖wk‖
ε20

)‖gk‖2 − σ‖dk‖tk−1.

Dividing both sides of the above inequality by ‖dk‖, we have

tk + σtk−1 ≥ (1 − σtk−1 + ‖wk‖
ε0

− σtk−1‖wk‖
ε20

)
‖gk‖2

‖dk‖
.

From Remark 2.1 and Lemma 2.4, we have

lim
k→∞

tk = 0, lim
k→∞

‖wk‖ = 0.
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Thus, for some k sufficiently large

(2.9) tk + σtk−1 ≥ ‖gk‖2

2‖dk‖
.

From
[tk + σtk−1]

2 ≤ 2t2k + 2σ2t2k−1,

and
∞
∑

k=1

t2k < +∞,

we have

(2.10)

∞
∑

k=1

[tk + σtk−1]
2 < +∞.

From (2.9), (2.10), we have
∞

∑

k=1

‖gk‖4

‖dk‖2
< +∞.

The proof is complete. �

Theorem 2.1. If (H1), (H2) hold and {xk} is an infinite sequence generated by

Algorithm 2.1, then

(2.11) lim inf
k→∞

‖gk‖ = 0.

Proof. We assume that (2.11) is not true, then there exists a constant ε0 > 0
such that (2.8) is true. From Lemma 2.2 and (A), we have

g>k dk ≤ (ρ − 1)‖gk‖2 + γk‖gk‖(q + p‖gk‖)

≤ (pγk + ρ − 1)‖gk‖2 + γk
q‖gk‖2

ε0

= −[1 − ρ − γk(p + q/ε0)]‖gk‖2

thus, from (B), for sufficiently large k, we have

(2.12) g>k dk ≤ −(1 − 2ρ)‖gk‖2.

From (1.2), (1.3), (2.2), we obtain

‖dk‖2 ≤ 3‖gk‖2 + 3β2
k‖dk−1‖2 + 3‖wk‖2

≤ 3‖gk‖2 + 3
ρ2‖gk‖4

σ2(g>k−1dk−1)2
‖dk−1‖2 + 3γ2

k(q + p‖gk‖)2

≤ 3‖gk‖2 + 3
ρ2‖dk−1‖2

σ2(1 − 2ρ)2
+ 3γ2

k(q + p‖gk‖)2.

Dividing both sides of the above inequality by ‖gk‖4 and let

sk =
‖dk‖2

‖gk‖4
,
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we have

sk ≤ 3

‖gk‖2
+

3ρ2

σ2(1− 2ρ)2
sk−1 + 3γ2

k(
q

‖gk‖2
+

p

‖gk‖
)2

≤ 3

ε20
+

3ρ2

σ2(1− 2ρ)2
sk−1 + 3γ2

k(
q

ε20
+

p

ε0
)2

≤ wk + vsk−1,

where wk = 3/ε20 + 3γ2
k(q/ε20 + pε0)

2 and v = 3ρ2/σ2(1 − 2ρ)2. From (B) and

0 < ρ < σ/(
√

3 + 2σ), there exists w > 0,

wk < w, 0 < v < 1.

Thus

sk ≤ vs1 + w(1 + v + v2 + · · ·+ · · ·+ vk−2) ≤ s1 + (k − 1)w.

we have
∞
∑

k=1

1

sk
≥

∞
∑

k=1

1

s1 + (k − 1)w
= +∞.

This contradicts Lemma 2.5. Therefore (2.11) is true. �

3. Numerical results

In what follows, we report the numerical results of the new modified conjugate
descent method for two standard test problems. The new method is denoted by
MCD. The error term wk is obtained randomly in the case it satisfies assumptions
(A)(B). For each problem, the unit of CPU time is second and IT denotes the
iteration number when the algorithm terminates.

Parameters used in the algorithm are set as p = 1, q = 0.1, c1 = 1. All codes
are written in Matlab 7.1 and run on a portable computer.

Problem 1.[5]

f(x) = 10(x2
1 − x2)

2 + (1− x1)
2 + 9(x4 − x2

3)
2 + (1 − x3)

2 + 10.1((x2 − 1)2

+ (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1.

The initial point is (−3,−1,−3,−1)>.

Problem 2.[5]

f(x) =

N/2
∑

i=1

((x2i − x2
2i−1)

2 + (1 − x2i−1)
2).

The initial point is (−1, 2, 1, · · · ,−1, 2, 1)>.

Problem 3.[7]

f(x) = (x1 + 10x2)
4 + 5(x3 − x4)

4 + (x2 − 2x3)
4 + 10(x1 − x4)

4.

The initial point is (2, 2,−2,−2)>.
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For each method, we obtain the corresponding results for ‖g(xk)‖ ≤ 10−6, and
3.2119(−7) means 3.2119× 10−7. The numerical results are listed in Table 1.

Table 1. Numerical results of problems 1-3

Problem ρ σ IT CPU f(xk)
1 0.05 0.1 306 0.1903 3.9468(-13)

0.09 0.2 356 0.2203 2.9511(-13)
0.1 0.3 474 0.3004 3.5701(-13)

2 0.09 0.2 35 0.2053 3.2782(-12)
0.15 0.4 40 0.3292 1.5623(-12)

3 0.05 0.1 25 0.0200 7.0888(-6)
0.09 0.2 24 0.0200 9.9293(-6)
0.1 0.3 26 0.0200 9.9407(-6)
0.15 0.4 22 0.0200 6.0837(-6)

From Table 1, MCD is stable and effective for the tested problems. Certainly,
more test should probably required.

4. Conclusion

In this paper we proposed a conjugate descent method with errors. When the
descent direction is slightly perturbed, the global convergence still holds, and this
shows the stability of our new method. For further research, we should investigate
the upper bound of the error term wk, and hope to find a larger upper bound.
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