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CONVERGENCE OF A MODIFIED CONJUGATE DESCENT
METHOD IN THE PRESENCE OF ERRORS

MIN SUN

ABSTRACT. The conjugate gradient method is a useful method for solving
large-scale minimization problems. Errors may arise because of inexact com-
putation. In this paper we study the global convergence of a modified conju-
gate descent method with strong Wolfe line search in the presence of errors.
Preliminary numerical experiments are given to show the efficiency and ro-
bustness of the method.

1. INTRODUCTION

In this paper we study the unconstrained minimization problem which is to
find the minimal point x* of f(x) over R", denoted by

(1.1) min f(z), x € R",

where f: R™ — R is smooth and its gradient g(x) = V f(x) is available.

Conjugate gradient method is a very useful and powerful method for solving
large-scale minimization problems (1.1) due to its smaller storage requirements
and simple computation ([1, 2, 6]). Its iteration formula is given by

(1.2) Tp1 = Tk + apdg,

where o > 0 is a stepsize obtained by means of one-dimensional line search and
dy, is the search direction defined by

—9k;, k= 17
1.3 dy, =
(1.3) g { —9k + Brdi-1, k = 2,

where g, = g(z1) and [ is a scalar. Varieties of this method differ in the way
of selecting (. The best-known formulae for §i are called the Fletcher-Reeves
(FR), Polak-Ribiere-Polyak (PRP), Dai-Yuan (DY), and Conjugate Descent (CD)
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formulae, and are given by

II:R _ ||91'c||2 ;}Rp _ g,;r(gk - 9k—1)
2 dl (gk — gr—1)’

N gr—1ll

gPY [lgx|I” _ gx d 3D — _ [lgx|I”
di (g —gr—1) g (i1’ g5 dp—1
The global convergence of conjugate gradient methods can refer to a book [3]
and a recent review paper [4]. In [3], Dai pointed out that the global convergence
of conjugate gradient method can not be guaranteed if f = ﬁ,?D . Recently, Tang
and Shi [8] proposed a memory gradient method which is similar to CD conjugate

gradient method and only differs in the selecting of 5 which is defined by
pllgrl?
Ug];r_ldk—l ’

(1.4) Br =

where o € (0,1/2) and p € (1,0/(1+ 0)). The parameters o and p played an
important role in the global convergence.

In practical computation, errors may arise because of inexact computation of
the gradient of f(z) or approximate computation of subproblems. Li and Wang
[5] studied DY conjugate gradient method with line search in the presence of
errors. The main direction s; satisfies
(1.5) g sk < —cillgrl®, e >0,

and the error term w;, satisfies

lwell < v(q + pllgrl), p.g>0,
where
Yk = O(1/k), 7 > 0.

Under the above conditions and g(x) is Lipschitz continuous, they proved either

lim f(zx) = —o0,

k—o0
or

liminf ||gg|| = 0.

k—o0

However, to the best of our knowledge, there is no published analysis for the
global convergence of conjugate descent method with errors.

In this paper, motivated by [8] and [5], we study a modified conjugate descent
method with errors. (i in the modified descent method has the following new
form

~ pllgnl?

d
-1 <0
lelk lagkl 1 )

(1.6) Br =
94 (gr — gr—1)

i otherwise,
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where ¢ and p are two positive parameters defined below. An important feature
in our method is that we can prove the condition (1.5) is always right, and d, is
always a descent direction.

The paper is organized as follows: In Section 2 we propose the modified conju-
gate descent method with errors and prove the global convergence property of the
method under mild conditions. In Section 3 we give some preliminary numerical
experiments. Some concluding remarks are given in Section 4.

2. MODIFIED CONJUGATE DESCENT METHOD WITH ERRORS

For the modified conjugate descent method with errors, we let

(2.1) Tp+1 = Tk + oSy — wg),

where «y, is stepsize, wy, is accumulative error and main direction sy is determined

by

—9k, k= 17
2.2 =
(22) o { =9k + Brdk-1, k > 2,
and
-
Sk—1 — Wg—1, Gp_q(Sk—1 —wr—1) <0,
2.3 dp_1 =
(2:3) Pt { —Sk—1 + Wk—1, 911_1(81%—1 — wg—1) >0

where ) is determined by (1.6).

Sk, wy satisfy the following assumptions:

(A) |lwkll < k(g +pllgkll), p,g>0.

(B)0 <, <ci/k, c1 >0.

The following inexact line search is used in this paper.
Search A (Strong Wolfe Search) Choose a A > 0 such that

(2.4) f(@e + Medi) < fzk) + pArgy di,
’ |g(:L'k + /\kdk)—rdﬂ < —Ug,;rdk.

Now we describe the algorithm formally as follows:

Algorithm 2.1. Set o € (0,1/2) and p € (0,0/(V/3 +20)), 21 € R, k := 1;
Step 1 Compute gi. If ||gx|| = 0, then stop, and zj, is a stationary point, else
goto Step 2;

Step 2 Let dy, is determined by (?77).
If g (sp — wy) =0, let ay; = 0 and goto Step 3;

If g (s, — wi) # 0, let a = A\g, where Ay is also determined by Search A,
and goto Step 3;

Step 3 Let zpy1 = xx + agdy, k := k+ 1, and return to Step 1.

In order to establish global convergence, we need the following assumption.
(H1). The level set L(z1) = {z € R"|f(z) < f(x1)} with z; given is bounded.
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(H2). The gradient g(x) of f(z) is Lipschitz continuous on an open convex set
B that contains the level set L(z1), i.e., there exists an L > 0 such that

l9(x) =9Il < Lllz = yll, Y,y € B.
Under (H1) and (H2), there exists positive ¢ such that

(2.5) lo(@)]| < e, Vo € Liz).
Remark 2.1. From (B), we have
(2.6) klim Y = 0.

Remark 2.2. In Algorithm 2.1, the search direction dj, is always a descent di-
rection of f(x) at xy.

Lemma 2.1. [3] If p(a) = f(zr+ady) is bounded below when o > 0, there exists
a > 0 which satisfies the strong Wolfe line search.

Lemma 2.2. For all k > 1, we have g} si, < (p — 1)||gx>.

Proof. In the case k = 1, the conclusion is obviously right.
In the case k > 2. If g,j_ldk_l =0, then x; = xx_1, thus

gr sk = gn (—gk + Bedi—1) = gi_1(=gk—1 + Brdi—1) = —||ge-1 11> = — gk
If g,j_ldk_l < 0, we have
Te < 2 T d < 2 P||9k||2 T d _ 1 2
9k sk < —lgll” — o Bkgr—1dk—1 < —llgll” + —F——0gp_1dk—1 = (p— 1)l gxlI"-
ng_ldk—l
Thus the conclusion holds. O

Remark 2.3. If dj is orthogonal to g, let wx11 = wg, ap = 0 and it follows
(2.1) that z4+1 = zg. From (?7) and Lemma 2.2, we have

gh1ki1 = g (=g + Brradi + wiga)
= —llgrll " + Bryr9y di + gj wr
—llgxl1* + g (s — )
<=2 p)llgxll*-
Thus dj.+1 is a descent direction except ||gx|| = 0.

Lemma 2.3. If {zx} is an infinite sequence generated by Algorithm 2.1, then
when I = {k|g] (s —wg) > 0} is an infinite set, we have

1i —0.
erm g%l

Proof. It follows from the definition of I that
9h Sk > g5 Wk
By Lemma 2.2, we have

.
(1= p)lgrll* < =g wi < llgrllllwrll < vi(a + pllgrl )l gl
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that is

(L= p—p)lgrll < Ve
By Remark 2.1, we get the desired conclusion. O

In following, we assume that I is a finite set. Without loss of generality, we
assume that
dp = s — Wi, g,;rdk <0, Vk.

Lemma 2.4. [3] If (H1), (H2) hold and {x} is an infinite sequence generated
by Algorithm 2.1, dj. satisfies ngdk < 0, then we have

— (g5 di)?
k=1

To simplify the narration, we give the following notation

_ g, di|
| d||

Lemma 2.5. If (H1), (H2) hold and {z} is an infinite sequence generated by
Algorithm 2.1, and there exists a constant ey > 0 such that

(2.8) llgk|l > €0, VE > 1,
then

S lod!
< 4.
2 d]

Proof. From ngdk = —||gxl|® + ﬁkggdk_l — ngwk, we have
|9 di| > Nlgrll* = Belgyl dr—1] — |gi wil
> ||gkll* = Brolgi—1dr—1] = llgrlll[wg]
= lgxll” = Broti-lldr—1ll — llgrlllwk]
> [lgrll* = oti—1(llskll + llgrll) — llgrllllwk]
> [lg1ll* — otx—1 (ldill + llwill + lgxll) = lgellllwgl]

lwrllllgell® | llgell?,  lgrll?llwkl]
> |lgkll* — oti—1(||di]l + 5 + ) —
€ €0 €0
ot 1+ |well  otp_1llwkl|
=(1- - >—)lgkl1> = olldk|[te—1-

Dividing both sides of the above inequality by ||d||, we have

oty A flwkll atk_1||wk||)||gk||2

tp + otg—1 > (1 .
||

€0 63
From Remark 2.1 and Lemma 2.4, we have

lim ¢, =0, lim ||wg| =0.
k—o0 k—o0
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Thus, for some k sufficiently large

(2.9) ty+ oty_1 > llgw|*
— 2|[d]|

From
[te + otp_1]> < 2t2 + 2022,

and
o0
Zti < +00,
k=1
we have
o0
(2.10) D Ttk + otp1]® < oo
k=1

From (2.9), (2.10), we have

el
s ol
2 di]

The proof is complete. U

Theorem 2.1. If (H1), (H2) hold and {zx} is an infinite sequence generated by
Algorithm 2.1, then

(2.11) liminf ||gx|| = 0.
k—o0

Proof. We assume that (2.11) is not true, then there exists a constant ey > 0
such that (2.8) is true. From Lemma 2.2 and (A), we have

gt dr < (p = Dllgrll® + vellgell (@ + pllgrl)

q||gk
< v+ p - Dllgel? + 3 2] 0”

—[1 = p =0+ a/0)]llgwl®
thus, from (B), for sufficiently large k, we have
(2.12) g di < —(1=2p)|lgxll*.
From (1.2), (1.3), (2.2), we obtain
Idil1* < 3llgrll + 367l d—1[|* + 3w |®
P°llgkll*
2( T d _ )2

14 || k— 1|| 2 2
7+37 (g +pllgel)”
21—-2p)2 " "

Dividing both sides of the above inequality by ||gx||* and let
I 12
lgwll*’

2

< 3|\gkll* +3 ldk—1]” + 3vi(q + pllgkll)

< 3|\gxl* +3

Sk =
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we have
3 3p2 2, ¢ P 2
s < + sk—1+ 3V (5 + 77)
lgkll? ~ o2(1—2p)? lgkll® gl
3 3p2 2,4 P2
<SS+ s+ 35+ =
~ € * a2(1—2p)? ol 7k(€3 eo)

< wg + vSsg—1,
where wy, = 3/€3 + 372(q/€3 + pep)? and v = 3p?/0?(1 — 2p)?. From (B) and
0 < p<0c/(vV3+20), there exists w > 0,
wp < w, 0 <v <1,
Thus
sp<wvsi+w(l+v+vi+ 4+ 0P < s+ (k- Dw.

we have
=1 1
>y — 4}
kz_:sk ;sl—l—(k‘—l)w
This contradicts Lemma 2.5. Therefore (2.11) is true. O

3. NUMERICAL RESULTS

In what follows, we report the numerical results of the new modified conjugate
descent method for two standard test problems. The new method is denoted by
MCD. The error term wy, is obtained randomly in the case it satisfies assumptions
(A)(B). For each problem, the unit of CPU time is second and IT denotes the
iteration number when the algorithm terminates.

Parameters used in the algorithm are set as p =1, ¢ = 0.1, ¢ = 1. All codes
are written in Matlab 7.1 and run on a portable computer.

Problem 1.0
flx) =10(z% — 20)* + (1 —21)? + 9(zg — 22)? + (1 — 23)? +10.1((22 — 1)?
+ (x4 — 1)?) +19.8(xy — 1) (24 — 1.
The initial point is (=3, —1, =3, —1)T.

Problem 2.1
N/2
F@) = ((z2i — 28;_1)% + (1 — 22i1)°).
=1
The initial point is (=1,2,1,---,—1,2,1)T.
Problem 3.7

f(z) = (@1 + 10z2)* + 5(x5 — 24)* + (22 — 223)* +10(z1 — x4)L.
The initial point is (2,2, -2, —2) .
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For each method, we obtain the corresponding results for ||g(zx)|| < 1079, and
3.2119(—7) means 3.2119 x 10~7. The numerical results are listed in Table 1.

TABLE 1. Numerical results of problems 1-3

Problem | p | o | IT | CPU f(xg)
1 0.05 | 0.1 | 306 | 0.1903 | 3.9468(-13)
0.09 | 0.2 | 356 | 0.2203 | 2.9511(-13)
0.1 [0.3 474 |0.3004 | 3.5701(-13)
(12)

12)

2 0.09(0.2| 35 |0.2053 | 3.2782
0.15 (0.4 | 40 |0.3292 | 1.5623(-
3 0.05]0.1| 25 |0.0200 | 7.0888(-
0.09] 0.2 | 24 |0.0200 | 9.9293(
0.1 [ 0.3| 26 |0.0200 | 9.9407(-

(

0.15(0.4| 22 |0.0200 | 6.0837(-

From Table 1, MCD is stable and effective for the tested problems. Certainly,
more test should probably required.

4. CONCLUSION

In this paper we proposed a conjugate descent method with errors. When the
descent direction is slightly perturbed, the global convergence still holds, and this
shows the stability of our new method. For further research, we should investigate
the upper bound of the error term wy, and hope to find a larger upper bound.

REFERENCES

[1] Y. H. Dai and Y. Yan, Convergence properties of the Fletcher-Reeves method, TMA J.
Numer. Anal. 16 (1994), 155-164.

[2] Y. H. Dai and Y. Yan, A nonlinear conjugate gradient method with a strong global con-
vergence property, SIAM J. Optim. 10 (1999), 177-182.

[3] Y. H. Dai and Y. Yan, Nonlinear Conjugate Gradient Method, Shanghai Science and
Technology Press, 2000.

[4] W. W. Hager and H.Zhang, A survey of nonlinear conjugate gradient methods, Pacific J.
Optim. 2 (2006), 35-58.

[5] M. X. Li and C. Y. Wang, Dai-Yuan conjugate gradient method with linesearch in the
presence of errors, Chinese J. Engin. Math. 23 (5) (2006), 891-900.

[6] Z. J. Shi and J. Shen, Convergence of Liu-Story conjugate gradient method, European J.
Oper. Res. 182 (2007), 552-560.

[7] Z. J. Shi, A new memory gradient method under exact line search, Asian Pacific J. Oper.
Res. 20 (2) (2003), 275-284.

[8] J. Y. Tang and Z. J. Shi, A class of global convergent memory gradient methods and its
linear convergence rate, Advance in Math. 36 (1) (2007), 67-75.

DEPARTMENT OF MATHEMATICS AND INFORMATION SCIENCE
ZAOZHUANG UNIVERSITY, SHANDONG 277160, CHINA

FE-mail address: sunmin 2008@yahoo.com.cn



