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FURTHER RESULTS ON CONVEX FUNCTIONS AND

SEPARABLE SEQUENCES WITH APPLICATIONS

M. ADIL KHAN, M. NIEZGODA AND J. PEČARIĆ

Abstract. In this paper, generalizations are given for some recent results
of Niezgoda [M. Niezgoda, Remarks on convex functions and separable se-
quences, Discrete Math. 308 (2008) 1765-1773]. As applications, two mean
value theorems are derived. Gram type inequality is proved. Exponential con-
vexity for differences of power means is shown. Monotonicity of Cauchy type
means is shown.

1. Preliminaries and summary

We start with some notation and definitions, quoted from [7, 8].
Throughout this paper, inner product on Rn is defined by

(1) 〈a, b〉 =
n∑
k=1

akbkpk for a = (a1, . . . , an) and b = (b1, . . . , bn),

where p1, . . . , pn are positive numbers. We assume that e = {e1, . . . , en} is a basis
in Rn, and d = {d1, . . . , dn} is the dual basis of e, that is 〈ei, dj〉 = δij (Kronecker
delta).

We say that a vector v ∈ Rn is e-positive if 〈ei, v〉 > 0 for all i = 1, . . . , n.
We denote J = {1, . . . , n}. Let J1 and J2 be two sets of indices such that

J1 ∪ J2 = J . Let v ∈ Rn and µ ∈ R. A vector z ∈ Rn is said to be µ, v-separable
on J1 and J2 (with respect to the basis e), if

(2) 〈ei, z − µv〉 ≥ 0 for i ∈ J1, and 〈ej , z − µv〉 ≤ 0 for j ∈ J2

(see [7]). If v is e-positive, then z is µ, v-separable on J1 and J2 w.r.t. e if and
only if

(3) max
j∈J2

〈ej , z〉
〈ej , v〉

≤ µ ≤ min
i∈J1

〈ei, z〉
〈ei, v〉

.

A vector z ∈ Rn is said to be v-separable on J1 and J2 (w.r.t. e), if z is µ, v-
separable on J1 and J2 for some µ. By (3), z is v-separable on J1 and J2 w.r.t. e
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if and only if

(4) max
j∈J2

〈ej , z〉
〈ej , v〉

≤ min
i∈J1

〈ei, z〉
〈ei, v〉

(provided v is e-positive).

We say that a function ϕ : I ⊂ R → R preserves v-separability on J1 and J2

w.r.t. e, if (ϕ(z1), ϕ(z2), . . . , ϕ(zn)) is v-separable on J1 and J2 w.r.t. e for each
z = (z1, z2, . . . , zn) ∈ In such that z is v-separable on J1 and J2 w.r.t. e.

It is worth emphasising that depending on the choice of vector v and basis
e, the class of separable vectors in Rn embraces, among others, monotone vec-
tors, monotone in mean vectors, star-shaped vectors and convex vectors (see the
discussions after each of Corollaries 2.4-2.7).

A vector y ∈ Rn is said to be majorised by x ∈ Rn (in symbol, y ≺ x), if the
sum of m largest entries of y does not exceed the sum of m largest entries of x
for all m = 1, 2, . . . , n with equality for m = n [6, p. 7]. It is well known that

y ≺ x if and only if
n∑
k=1

f(yk) ≤
n∑
k=1

f(xk)

for all continuous convex functions f : I ⊂ R → R such that xk, yk ∈ I, k =
1, . . . , n [6, p. 108].

In [8] the following majorisation type theorem has been proved (cf. [4, 5]).

Theorem 1.1. (See [8, Theorem 2.2]). Let f : I → R be a convex function on
an open interval I ⊂ R. Assume ϕ ∈ ∂f , where ∂f is the subdifferential of f .

Let x = (x1, . . . , xn), y = (y1, . . . , yn) and p = (p1, . . . , pn), where xi, yi ∈ I,
pi > 0 for i ∈ J = {1, . . . , n}, and let w, v ∈ Rn with 〈w, v〉 > 0.

If there exist index sets J1 and J2 with J1 ∪ J2 = J such that

(i) y is v-separable on J1 and J2 w.r.t. e,
(ii) x− y is λ,w-separable on J1 and J2 w.r.t. d, where λ = 〈x− y, v〉/〈w, v〉,
(iii) 〈x− y, v〉 = 0, or 〈x− y, v〉〈z, w〉 ≥ 0, where z = (ϕ(y1), . . . , ϕ(yn)),
(iv) ϕ preserves v-separability on J1 and J2 w.r.t. e,

then

(5)

n∑
k=1

pkf(yk) ≤
n∑
k=1

pkf(xk).

Remark 1.2. Theorem 1.1 remains valid for arbitrary interval I ⊂ R whenever
f and ϕ are continuous on I (e.g., f ∈ C1(I)).

Remark 1.3. It is not hard to check that the quadratic function f(t) := t2,
t ∈ I, satisfies condition (iv). So, it follows from Theorem 1.1 that

(6)

n∑
k=1

pky
2
k ≤

n∑
k=1

pkx
2
k,

provided x, y, p, w, v satisfy the above conditions (i)-(ii) and (iii) for z = 2y.
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Remark 1.4. For some bases e and d and vectors w and v in Rn (see Corol-
laries 2.4 and 2.5), condition (iv) is satisfied automatically, since ϕ ∈ ∂f is
nondecreasing by the convexity of f . In such cases, (iv) can be dropped from
Theorem 1.1.

In this paper, we give some extensions of Theorem 1.1 (see Theorem 2.1 and
Corollaries 2.4, 2.5, 2.6 and 2.7). As applications, we derive some mean value
theorems (see Theorems 3.1 and 3.2). This allows to introduce a class of Cauchy
type means (see Section 3). In Section 4, we derive a Gram type inequality and
prove exponential convexity for differences of power means. Finally, we prove
monotonicity of Cauchy type means (see Section 5).

2. Refinements for twice differentiable functions

We now give a refinement of Theorem 1.1 for twice differentiable functions (not
necessarily convex) (cf. [4]).

Theorem 2.1. Let f : I ⊂ R→ R be a twice differentiable function on an open
interval I. Assume that there exist constants γ,Γ ∈ R with the property that

(7) γ ≤ f ′′(t) ≤ Γ for all t ∈ I.

Let x = (x1, . . . , xn), y = (y1, . . . , yn) and p = (p1, . . . , pn), where xi, yi ∈ I,
pi > 0 for i ∈ J = {1, . . . , n}, and let w, v ∈ Rn with 〈w, v〉 > 0.

If there exist index sets J1 and J2 with J1 ∪ J2 = J such that

(i) y is v-separable on J1 and J2 w.r.t. e,
(ii) x− y is λ,w-separable on J1 and J2 w.r.t. d, where λ = 〈x− y, v〉/〈w, v〉,

(iii’) 〈x− y, v〉 = 0, or 〈x− y, v〉〈z, w〉 ≥ 0 for

(8) z = (ϕγ(y1), . . . , ϕγ(yn)) and z = (ϕΓ(y1), . . . , ϕΓ(yn)),

where

(9) ϕγ(t) := f ′(t)− γt and ϕΓ(t) := Γt− f ′(t), t ∈ I,

(iv’) ϕγ and ϕΓ preserve v-separability on J1 and J2 w.r.t. e,

then

(10)
1

2
γ

n∑
k=1

pk(x
2
k − y2

k) ≤
n∑
k=1

pkf(xk)−
n∑
k=1

pkf(yk) ≤
1

2
Γ

n∑
k=1

pk(x
2
k − y2

k).

Proof. Similarly as in the proof of [4, Proposition 1], it is sufficient to apply
Theorem 1.1 and (5) to the convex functions fγ(t) := f(t) − 1

2γt
2 and fΓ(t) :=

1
2Γt2 − f(t), t ∈ I. �

Remark 2.2. Theorem 2.1 remains valid for an arbitrary interval I whenever f
and f ′ are defined and continuous on I.

Remark 2.3. For some bases e and d and vectors w and v (see Corollaries 2.4
and 2.5), condition (iv’) holds automatically, since the functions ϕγ and ϕΓ are
nondecreasing by (7).
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In the rest of this section, we demonstrate special cases of Theorem 2.1 for
various vectors w and v and bases e and d in Rn. This leads to generalizations
of [8, Corollaries 2.3, 2.6, 2.10, 2.11].

Corollary 2.4. Under the assumptions of Theorem 2.1, let w = v = (1, . . . , 1)
and let e = d be the basis in Rn (orthonormal w.r.t. inner product (1)) given by

(11) ei = di =
1
√
pi

( 0, . . . , 0︸ ︷︷ ︸
i− 1 times

, 1, 0, . . . , 0), i = 1, . . . , n.

Denote

(12) λ = 〈x− y, v〉/〈w, v〉 =
1

Pn

n∑
k=1

(xk − yk)pk, where Pn =
n∑
k=1

pk.

If there exist index sets J1 and J2 with J1 ∪ J2 = J such that

(i) y is v-separable on J1 and J2 w.r.t. e, i.e.,

(13) yj ≤ yi for i ∈ J1 and j ∈ J2,

(ii) x− y is λ,w-separable on J1 and J2 w.r.t. d = e, i.e.,

(14) xj − yj ≤ λ ≤ xi − yi for i ∈ J1 and j ∈ J2,

(iii’) 〈x− y, v〉 = 0, or 〈x− y, v〉〈z, v〉 ≥ 0 where z and ϕγ and ϕΓ are defined
by (8)-(9),

then (10) holds.

Proof. It is sufficient to show that condition (iv’) in Theorem 2.1 is fulfilled.
Since fγ(t) := f(t)− 1

2γt
2, t ∈ I, is a convex function (see (7)), ϕγ(t) = f ′γ(t) is

a nondecreasing function. If a = (a1, . . . , an) is a v-separable vector on J1 and J2

w.r.t. e, then aj ≤ ai for i ∈ J1 and j ∈ J2 (see (4), (1) and (11)). Consequently,

ϕγ(aj) ≤ ϕγ(ai) for i ∈ J1 and j ∈ J2.

Therefore the vector (ϕγ(a1), . . . , ϕγ(an)) is v-separable on J1 and J2 w.r.t. e.
Thus ϕγ preserves v-separability on J1 and J2.

In a similar way it can be proved that ϕΓ preserves v-separability on J1 and
J2 w.r.t. e.

In summary, condition (iv’) is satisfied, as required. �
Observe that conditions (13)-(14) are satisfied for

J1 = {1, 2, . . . ,m} and J2 = {m+ 1, . . . , n}
for some m ∈ J , if both y and x− y are monotonic nonincreasing vectors, i.e.,

y1 ≥ . . . ≥ yn and x1 − y1 ≥ . . . ≥ xn − yn.

Corollary 2.5. Under the assumptions of Theorem 2.1, let w = v = (1, . . . , 1)
and let λ be as in (12). Suppose that e is the basis in Rn consisting of the vectors

(15) ei = ( 0, . . . , 0︸ ︷︷ ︸
i− 1 times

,
1

pi
,− 1

pi+1
, 0, . . . , 0), i = 1, . . . , n− 1, and
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(16) en = (0, . . . , 0,
1

pn
).

Let d be the dual basis of e, that is

(17) di = (1, . . . , 1︸ ︷︷ ︸
i times

, 0, . . . , 0), i = 1, . . . , n.

If there exist index sets J1 and J2 with J1 ∪ J2 = J such that

(i) y is v-separable on J1 and J2 w.r.t. e, i.e., there exists µ ∈ R satisfying

(18) yj − yj+1 ≤ 0 ≤ yi − yi+1 for i ∈ J1 and j ∈ J2

with the convention yn+1 = µ,
(ii) x− y is λ,w-separable on J1 and J2 w.r.t. d, i.e.,

(19)
1

Pj

j∑
k=1

(xk − yk)pk ≤ λ ≤
1

Pi

i∑
k=1

(xk − yk)pk for i ∈ J1 and j ∈ J2,

where Pl =
l∑

k=1

pk for l = 1, 2, . . . , n,

(iii’) 〈x− y, v〉 = 0, or 〈x− y, v〉〈z, v〉 ≥ 0 where z and ϕγ and ϕΓ are defined
by (8)-(9),

then (10) holds.

Proof. It is not hard to check that condition (iv’) of Theorem 2.1 is met (see the
proof of Corollary 2.4). Now, Corollary 2.5 follows from Theorem 2.1. �

If y is monotonic nondecreasing, i.e., y1 ≤ y2 ≤ . . . ≤ yn, and x−y is monotonic
nondecreasing in P -mean [11, p. 318], i.e.,

(20)
1

Pl

l∑
k=1

(xk − yk)pk ≤
1

Pl+1

l+1∑
k=1

(xk − yk)pk , l = 1, 2, . . . , n− 1,

then conditions (18)-(19) are satisfied for

J1 = {n} and J2 = {1, 2, . . . , n− 1}.

Moreover, (20) can be replaced by

1

Pl

l∑
k=1

(xk − yk)pk ≤
1

Pn

n∑
k=1

(xk − yk)pk , l = 1, 2, . . . , n− 1.

Corollary 2.6. Under the assumptions of Theorem 2.1, let w = v = (1, 2, . . . , n)
and let e = d be the basis in Rn given by (11). Denote

(21) λ = 〈x− y, v〉/〈w, v〉 =
1

P̃n

n∑
k=1

(xk − yk)kpk , where P̃n =
n∑
k=1

k2pk.

If there exist index sets J1 and J2 with J1 ∪ J2 = J such that
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(i) y is v-separable on J1 and J2 w.r.t. e, i.e.,

(22)
yj
j
≤ yi

i
for i ∈ J1 and j ∈ J2,

(ii) x− y is λ,w-separable on J1 and J2 w.r.t. d = e, i.e.,

(23)
xj − yj

j
≤ λ ≤ xi − yi

i
for i ∈ J1 and j ∈ J2,

(iii’) 〈x− y, v〉 = 0, or 〈x− y, v〉〈z, v〉 ≥ 0 where z and ϕγ and ϕΓ are defined
by (8)-(9),

(iv’) ϕγ and ϕΓ preserve v-separability on J1 and J2 w.r.t. e, i.e., (22) implies

(24)
ϕγ(yj)

j
≤ ϕγ(yi)

i
and

ϕΓ(yj)

j
≤ ϕΓ(yi)

i
for i ∈ J1 and j ∈ J2,

then (10) holds.

Proof. Apply Theorem 2.1. �
A vector y = (y1, . . . , yn) ∈ Rn is said to be star-shaped [11, p. 318], if

(25) yl
l ≤

yl+1

l+1 for l = 1, 2, . . . , n− 1.

A function ϕ : I → R, t ∈ I, where I ⊂ R+, is said to be star-shaped, if the

function t→ ϕ(t)
t is nondecreasing.

It has been proved in [8] that if ϕ : I ⊂ R+ → R+ is a differentiable nonde-
creasing convex and star-shaped function on an open interval I, then ϕ preserves
star-shapeness of vectors, i.e., (25) implies

(26)
ϕ(yl)

l
≤ ϕ(yl+1)

l + 1
for l = 1, 2, . . . , n− 1.

If y and x − y are star-shaped vectors, and ϕγ and ϕΓ preserve star-shaped
vectors, then conditions (22)-(24) are satisfied for the index sets

J1 = {m+ 1, . . . , n} and J2 = {1, 2, . . . ,m}
for some m.

Corollary 2.7. Under the assumptions of Theorem 2.1, let w = v = (1, 2, . . . , n)
and let λ be as in (21). Assume that e and d are the bases in Rn defined by
(15)-(17).

If there exist index sets J1 and J2 with J1 ∪ J2 = J such that

(i) y is v-separable on J1 and J2 w.r.t. e, i.e., there exists µ ∈ R satisfying

(27) yj+1 − yj ≥ µ ≥ yi+1 − yi for i ∈ J1 and j ∈ J2

with the convention yn+1 = µ(n+ 1),
(ii) x− y is λ,w-separable on J1 and J2 w.r.t. d, i.e.,

(28)
1

P̂j

j∑
k=1

(xk − yk)pk ≤ λ ≤
1

P̂i

i∑
k=1

(xk − yk)pk for i ∈ J1 and j ∈ J2,

where P̂l =
l∑

k=1

kpk, l = 1, . . . , n,
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(iii’) 〈x− y, v〉 = 0, or 〈x− y, v〉〈z, v〉 ≥ 0 where z and ϕγ and ϕΓ are defined
by (8)-(9),

(iv’) ϕγ and ϕΓ preserve v-separability on J1 and J2 w.r.t. e, i.e., (27) implies
that there exist ν, ρ ∈ R satisfying

(29) ϕγ(yj+1)− ϕγ(yj) ≥ ν ≥ ϕγ(yi+1)− ϕγ(yi) for i ∈ J1 and j ∈ J2,

(30) ϕΓ(yj+1)− ϕΓ(yj) ≥ ρ ≥ ϕΓ(yi+1)− ϕΓ(yi) for i ∈ J1 and j ∈ J2

with the convention ϕγ(yn+1) = ν(n+ 1) and ϕΓ(yn+1) = ρ(n+ 1),

then (10) holds.

Proof. Use Theorem 2.1. �
A vector y = (y1, . . . , yn) is said to be convex [11, p. 318], if

(31) y2 − y1 ≤ y3 − y2 ≤ . . . ≤ yn − yn−1.

Equivalently, (31) says that

(32) yl ≤
yl−1 + yl+1

2
for l = 2, . . . , n− 1.

In consequence, a function ϕ : I → R preserves convex vectors if (32) implies

(33) ϕ(yl) ≤
ϕ(yl−1) + ϕ(yl+1)

2
for l = 2, . . . , n− 1.

For instance, if ϕ is nondecreasing and convex, then (33) is met.
Conditions (27)-(30) are fulfilled for the index sets

J1 = {1, 2, . . . ,m} and J2 = {m+ 1, . . . , n}

for some m depending on λ, whenever ϕγ and ϕΓ are nondecreasing convex
functions with ϕγ(0) = 0 and ϕΓ(0) = 0, and x − y is monotonic nonincreasing

in P̂ -mean, i.e.,

1

P̂l

l∑
k=1

(xk − yk)pk ≥
1

P̂l+1

l+1∑
k=1

(xk − yk)pk for l = 1, 2, . . . , n− 1,

and, in addition, y = (y1, . . . , yn) is a decreasing convex vector such that y1 ≤
n(y2 − y1) (e.g., y = −(n+ 1, n+ 2, . . . , 2n)).

3. Mean value theorems

We are now in a position to give a mean value theorem.

Theorem 3.1. Let f ∈ C2(I), where I is a closed interval in R, and let x =
(x1, . . . , xn), y = (y1, . . . , yn) and p = (p1, . . . , pn), where xi, yi ∈ I, pi > 0 for
i ∈ J = {1, . . . , n}, and w, v ∈ Rn with 〈w, v〉 > 0.

Suppose that x, y, p, w, v satisfy conditions (i)- (iii) from Theorem 1.1, where
z = 2y and conditions (iii’)- (iv’) from Theorem 2.1, where γ := min

t∈I
f ′′(t) and

Γ := max
t∈I

f ′′(t).
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Then there exists ξ ∈ I such that

(34)
n∑
k=1

pk [f(yk)− f(xk)] =
f ′′(ξ)

2

n∑
k=1

pk
(
y2
k − x2

k

)
.

Proof. By Theorem 2.1 and Remark 2.2, we conclude that (10) holds. If

n∑
k=1

pk
(
x2
k − y2

k

)
= 0

then (10) gives
n∑
k=1

pk [f(xk)− f(yk)] = 0.

Taking any number ξ in I we obtain (34).
Let us consider the case when

n∑
k=1

pk
(
x2
k − y2

k

)
6= 0.

Applying Remark 1.3 gives
n∑
k=1

pk
(
x2
k − y2

k

)
> 0.

Now by Theorem 2.1 we have

1

2
γ

n∑
k=1

pk
(
x2
k − y2

k

)
≤

n∑
k=1

pk [f(xk)− f(yk)] ≤
1

2
Γ

n∑
k=1

pk
(
x2
k − y2

k

)
.

In consequence, we obtain

γ ≤
2
∑n

k=1 pk [f(xk)− f(yk)]∑n
k=1 pk

(
x2
k − y2

k

) ≤ Γ.

Making use of the fact that for each ρ ∈ [γ,Γ] there exists ξ ∈ I such that
f ′′(ξ) = ρ, we get (34). �

Theorem 3.2. Let f, g ∈ C2(I), where I is a closed interval in R, and let
x = (x1, . . . , xn), y = (y1, . . . , yn) and p = (p1, . . . , pn), where xi, yi ∈ I, pi > 0
for i ∈ J = {1, . . . , n}, and w, v ∈ Rn with 〈w, v〉 > 0, 〈x − y, v〉 = 0 and∑n

k=1 pk
(
y2
k − x2

k

)
6= 0.

Suppose that x, y, p, w, v satisfy conditions (i)- (ii) from Theorem 2.1 for some
index sets J1 and J2 (J1 ∪ J2 = J), and all nondecreasing functions defined on I
preserve v-separability on J1 and J2 w.r.t. e.

Then there exists ξ ∈ I such that

(35)
f ′′(ξ)

g′′(ξ)
=

∑n
k=1 pk [f(yk)− f(xk)]∑n
k=1 pk [g(yk)− g(xk)]

,

provided that the denominators are non-zero.
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Proof. Define

h := c1f − c2g,

where

(36) c1 :=

n∑
k=1

pk [g(yk)− g(xk)] and c2 :=

n∑
k=1

pk [f(yk)− f(xk)] .

Clearly, h ∈ C2(I).
Observe that the assumptions of Theorem 2.1 are fulfilled for the function h

in place of f . Using (34) we obtain

(37)
n∑
k=1

pk [h(yk)− h(xk)] =
h′′(ξ)

2

n∑
k=1

pk
(
y2
k − x2

k

)
for some ξ ∈ I. It is easy to verify that

∑n
k=1 pk [h(yk)− h(xk)] = 0. Therefore

(37) reduces to

(38) 0 =

(
c1f
′′(ξ)

2
− c2g

′′(ξ)

2

) n∑
k=1

pk
(
y2
k − x2

k

)
,

which gives
c2

c1
=
f ′′(ξ)

g′′(ξ)
.

Combining this with (36) implies (35). �

Corollary 3.3. Under the assumptions of Theorem 3.2, set f(x) = xa and g(x) =
xb, for b 6= a 6= 0, 1, with I ⊂ Rn

+.
Then there exists ξ ∈ I such that

(39) ξa−b =
b(b− 1)

∑n
k=1 pk (yak − xak)

a(a− 1)
∑n

k=1 pk
(
ybk − xbk

) .
Proof. Apply Theorem 3.2. �

Remark 3.4. Since the function ξ → ξa−b, b 6= a 6= 0, 1, is invertible, then from
(39) we have

(40) min
k
{xk, yk} ≤

{
b(b− 1)

∑n
k=1 pk (yak − xak)

a(a− 1)
∑n

k=1 pk
(
ybk − xbk

)} 1
a−b

≤ max
k
{xk, yk}

with I = [min
k
{xk, yk},max

k
{xk, yk}].

In fact, similar result can also be given for (35). Namely, suppose that f ′′

g′′ has

the inverse function. Then from (35) we have

(41) ξ =

(
f ′′

g′′

)−1(∑n
k=1 pk [f(yk)− f(xk)]∑n
k=1 pk [g(yk)− g(xk)]

)
.

So, the expression on the right hand side of (41) is a mean (see Section 5).
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4. Exponential convexity and Gram’s inequality

In this section we develop some ideas given in [3].
A continuous function h : (a, b)→ R is said to be exponentially convex if

n∑
i,j=1

αiαjh(xi + xj) ≥ 0

for all n ∈ N and αi ∈ R, i = 1, . . . , n, and xi, xj such that xi + xj ∈ (a, b),
i, j = 1, . . . , n.

Equivalently, a continuous function h : (a, b) → R is exponentially convex if
and only if

(42)

n∑
i,j=1

αiαjh(
xi + xj

2
) ≥ 0

for all αi ∈ R and xi, xj ∈ (a, b) , i = 1, . . . , n (see [3]).
It is known (see [3]) that each exponentially convex positive function h :

(a, b)→ (0,∞) is log-convex:

(43) h2(
xi + xj

2
) ≤ h(xi)h(xj) for xi, xj ∈ (a, b).

Let us define the function

(44) ϕs(u) :=


us

s(s−1) , s 6= 0, 1;

− log u , s = 0;
u log u , s = 1

for u > 0.

It is easily seen that d2ϕs(u)
du2

= us−2 for u > 0, that is the function u 7→ ϕs(u) is
convex on (0,∞).

Remind that e and d are dual bases in Rn with respect to the inner product
given by (1).

Theorem 4.1. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ In with I ⊂ R+, p =
(p1, . . . , pn) ∈ Rn

+ and v, w ∈ Rn with 〈v, w〉 > 0 and 〈x− y, v〉 = 0. Assume that
x, y, p, w, v satisfy the conditions (i)- (ii) of Theorem 1.1 for some index sets J1

and J2 (J1 ∪ J2 = J), and that all nondecreasing functions defined on I preserve
v-separability on J1 and J2 w.r.t. e.

Denote

(45) Γs = Γs (x, y; p) :=

n∑
k=1

pk [ϕs(xk)− ϕs(yk)] for s ∈ R.

Then the following two statements hold.

(i) The matrix [
Γ si+sj

2

]
i,j=1,...,n

for si, sj ∈ R

is positive semi-definite.
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In consequence, the following Gram’s inequality holds

(46) det

[
Γ si+sj

2

]
i,j=1,...,m

≥ 0 for si, sj ∈ R, m = 1, . . . , n.

(ii) If the function s 7→ Γs is continuous (e.g., if v = (1, . . . , 1) and
n∑
k=1

pkxk =

n∑
k=1

pkyk) then it is exponentially convex.

Proof. (Based on the proof of [3, Theorem 3].)
(i) Setting

(47) f(u) :=
n∑

i,j=1

αiαjϕsij (u) for u > 0,

where αi, αj ∈ R and sij =
si+sj

2 , we derive

d2f(u)

du2
=

n∑
i,j=1

αiαju
sij−2 =

(
n∑
i=1

αiu
si
2
−1

)2

≥ 0 for u > 0.

So, f is a convex function on (0,∞). Thus the derivative df
du is nondecreasing. In

consequence, it preserves v-separability on J1 and J2 w.r.t. e. Using Theorem 1.1
and Remark 1.2 for f , we obtain

(48)
n∑
k=1

pkf(xk) ≥
n∑
k=1

pkf(yk).

Now from (45), (47) and (48) we get that

n∑
i,j=1

αiαjΓsij =

n∑
k=1

pk[f(xk)− f(yk)] ≥ 0.

Therefore the matrix
[
Γsij

]
i,j=1,...,n

is positive semi-definite, as required.

Clearly, (46) is a consequence of the semi-definiteness of the matrix.
(ii) Assume the function s 7→ Γs is continuous. By the proved positive semi-

definiteness of the matrix

[
Γ si+sj

2

]
i,j=1,...,n

we obtain

n∑
i,j=1

αiαjΓ si+sj
2

≥ 0

for all αi ∈ R and si, sj ∈ R. This implies exponential convexity of the function
s 7→ Γs (see (42)). �
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5. Cauchy type means

Let x, y, p ∈ Rn
+ and w, v ∈ Rn with 〈v, w〉 > 0, 〈x− y, v〉 = 0 and

n∑
k=1

pk(x
2
k −

y2
k) 6= 0 as in Theorem 4.1. We give the following definition.

(49) Ma,b :=

(
Γa
Γb

) 1
a−b

for a, b ∈ R such that a 6= b,

where Γs is defined by (45) (see also (44)). By Remark 3.4 these expressions are
means. For example,

Ma,b =

{
b(b− 1)

∑n
k=1 pk (yak − xak)

a(a− 1)
∑n

k=1 pk
(
ybk − xbk

)} 1
a−b

for a 6= b, a, b 6= 0, 1.

Moreover, by limit we also have

Ma,a = exp

(∑n
k=1 pk [yak log yk − xak log xk]∑n

k=1 pk
[
yak − xak

] − 2a− 1

a(a− 1)

)
for a 6= 0, 1,

M0,0 = exp

(∑n
k=1 pk

[
log2 yk − log2 xk

]
2
∑n

k=1 pk [log yk − log xk]
+ 1

)
,

M1,1 = exp

(∑n
k=1 pk

[
yk log2 yk − xk log2 xk

]
2
∑n

k=1 pk [yk log yk − xk log xk]
− 1

)
.

Theorem 5.1. Under the assumptions of Theorem 4.1, let the function s 7→ Γs
be continuous and positive. Then the following inequality is valid.

(50) Mr,t ≤Ma,b for r, t, a, b ∈ R such that r ≤ a and t ≤ b.

Proof. Since the function s 7→ Γs is continuous, it is exponential convex by
Theorem 4.1. Consequently, Γs is log-convex (see (43)). So, we have

log Γt − log Γr
t− r

≤ log Γb − log Γa
b− a

for r 6= t and a 6= b

(see [9, p. 2]). That is,

(51) log

(
Γt
Γr

) 1
t−r

≤ log

(
Γa
Γb

) 1
a−b

for r 6= t and a 6= b.

From (51) and (49) we get (50) for r 6= t and a 6= b. For r = t or a = b, we have
the limiting case. �
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