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ITERATED POLYHARMONIC GREEN FUNCTIONS

FOR PLANE DOMAINS

HEINRICH BEGEHR

Dedicated to Tran Duc Van on the occasion of his sixtieth birthday

in respect of his work and fate

Abstract. Convoluting harmonic Green, Neumann, and Robin functions
leads to certain hybrid polyharmonic Green functions and related boundary
value problems for partial differential equations with some power of the Lapla-
cian as leading operator. This paper is a survey about hybrid polyharmonic
Green functions for plane domains and related results.

1. Introduction

Fundamental solutions to higher order partial differential operators can be
found in a natural way through continued construction of primitives to fundamen-
tal solutions of lower order ones. In this manner, from the fundamental solution
− 1

πz
of the Cauchy-Riemann operator ∂z a fundamental solution to the polyan-

alytic operator ∂k
z is seen to be − zk−1

π(k−1)!z . Also, − 1
π

log |z|2 turns out as a fun-

damental solution to the Laplace operator ∂z∂z. From here − zk−1zl−1

π(k−1)!(l−1)! log |z|2

appears to be a fundamental solution to the operator ∂k
z ∂l

z and, in particular,

− |z|2(k−1)

π(k−1)!2
log |z|2 a fundamental solution to the polyharmonic operator (∂z∂z)

k.

By the way, as fundamental solutions are only defined modulo the kernel of the

operator it sometimes is appropriate to use − zk−1zl−1

π(k−1)!(l−1)! [log |z|
2−

k−1∑
m=1

1
m
−

l−1∑
n=1

1
n
]

as a fundamental solution to ∂k
z ∂l

z, see [23]. In context to boundary value prob-
lems fundamental solutions are adjusted to certain boundary conditions. For
the well-known case of the Laplace operator such fundamental solutions are the
Green, the Neumann, and the Robin functions. These harmonic kernel functions
are known to exist for quite general domains. They are discussed in many text-
books for partial differential equations, e.g. [40, 42, 43]. For particular domains,
they are expressed in explicit form [8,10,11,16,24,26,28,30,31,43].
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The general complex model partial differential operator ∂k
z ∂l

z can be written
as a product of a polyanalytic operator ∂m

z or its complex conjugate ∂m
z and an

polyanalytic operator (∂z∂z)
n. Boundary value problems to such general model

equations are investigated in [39, 44, 45] while boundary value problems for the
polyanalytic operator are solved in [1, 2, 8, 20, 25, 38, 52–57]. Certain classes of
general linear complex higher order equations are treated in [2–5,22].

2. Iterated polyharmonic Green functions

Recently, some particular polyharmonic Green functions were constructed via
an iteration procedure. In case of the polyharmonic operator (∂z∂z)

n of order n,
there are n boundary data to be described in order to get a well-posed boundary
value problem for the n-th order Poisson equation (∂z∂z)

nw = f . Obviously, the
theory of related polyharmonic Green functions is quite involved. The polyhar-
monic Dirichlet problem

(2.1) ∂µ
ν w = γµ, 0 ≤ µ ≤ n − 1 on ∂D,

the polyharmonic Neumann problem

(2.2) ∂µ
ν w = γµ, 1 ≤ µ ≤ n on ∂D,

where ∂ν denotes the outward normal derivative on the boundary ∂D of the
regular domain D under consideration, the polyharmonic Riquier problem, [46],

(2.3) (∂z∂z)
µw = γµ, 0 ≤ µ ≤ n − 1, on ∂D,

the problem

(2.4) ∂ν(∂z∂z)
µ = γµ, 0 ≤ µ ≤ n − 1, on ∂D,

and the problem
(2.5)

(∂z∂z)
µw = γ0µ, 0 ≤ 2µ ≤ n − 1, ∂ν(∂z∂z)

µw = γ1µ, 0 ≤ 2µ ≤ n − 2, on ∂D,

are possible boundary value problems for the n-Poisson equation, see e.g. [9, 14,
15, 17, 26–28, 32, 35, 36, 41, 44, 46, 47]. Naturally, there are many other proper
boundary conditions.

The polyharmonic Green-Almansi function, given in explicit form for the unit
disc, see [7, 9, 49] and for the upper half plane, see [41], is adjusted to problem
(2.5), see [9,14,35,41]. As the Riquier problem (2.4) can be viewed as the iterated
form of the Dirichlet problem for the Poisson equation

∂z∂zwµ = wµ+1 in D, wµ = γµ on ∂D, 0 ≤ µ ≤ n − 1,

with w0 = w and wn = f its solution is composed from

wµ(z) = −
1

4π

∫

∂D

γµ(ζ)∂νζ
G1(z, ζ)dsζ −

1

π

∫

D

wµ+1(ζ)G1(z, ζ)dξdη
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as

w(z) = −
1

4π

n−1∑

µ=0

∫

∂D

γµ(ζ)∂νζ
Ĝµ+1(z, ζ)dsζ −

1

π

∫

D

f(ζ)Ĝn(z, ζ)dξdη

where with Ĝ1(z, ζ) = G1(z, ζ)

Ĝµ(z, ζ) = −
1

π

∫

D

G1(z, ζ̃)Ĝµ−1(ζ̃ , ζ)dξ̃dη̃, 2 ≤ µ ≤ n,

is the iterated polyharmonic Green function of order µ. From the properties of

the harmonic Green function G1(z, ζ), it is seen that Ĝµ(z, ζ) is a solution for
the Dirichlet problem for the Poisson equation

∂z∂zĜµ(z, ζ) = Ĝµ−1(z, ζ) in D,

Ĝµ(z, ζ) = 0 on ∂D.

Hence Ĝµ(·, ζ) satisfies for any ζ ∈ D

• Ĝµ(·, ζ) is a polyharmonic function in D\{ζ},

• Ĝµ(z, ζ) + |ζ−z|2(µ−1)

(µ−1)!2
log |ζ − z|2 is polyharmonic of order µ in D

• (∂z∂z)
νĜµ(z, ζ) = 0, 0 ≤ ν ≤ µ − 1, on ∂D.

Moreover, its symmetry

• Ĝµ(z, ζ) = Ĝµ(ζ, z), z, ζ ∈ D, z 6= ζ,

can be shown. The outward normal derivative of Ĝµ(z, ζ) on ∂D with respect
to the variable ζ is the polyharmonic Poisson kernel of order µ,

gµ(z, ζ) = ∂νζ
Ĝµ(z, ζ), z ∈ D, ζ ∈ ∂D.

For the particular domain D = D = {|z| < 1}, the first four iterated polyharmonic
Green functions are

Ĝ1(z, ζ) = log
∣∣∣
1 − zζ

ζ − z

∣∣∣
2
,

Ĝ2(z, ζ) = |ζ − z|2Ĝ1(z, ζ) + (1 − |z|2)(1 − |ζ|2
[ log(1 − zζ)

zζ
+

log(1 − zζ)

zζ

]
,

Ĝ3(z, ζ) =
1

4
|ζ − z|4 log

∣∣∣∣
1 − zζ

ζ − z

∣∣∣∣
2

+
1

4
(1 − |z|2)(1 − |ζ|2)(zζ + zζ − 4)

−
1

4
(1 − |z|4)(1 − |ζ|4)

[
log(1 − zζ)

(zζ)2
+

log(1 − zζ)

(zζ)2
+

1

zζ
+

1

zζ

]

+
1

2
(1 − |z|2)(1 − |ζ|2)(|z|2 + |ζ|2)

[
log(1 − zζ)

zζ
+

log(1 − zζ)

zζ

]

+ (1 − |z|2)(1 − |ζ|2)

∞∑

l=0

1

(l + 1)2

[
(zζ)l + (zζ)l

]
,



172 HEINRICH BEGEHR

Ĝ4(z, ζ) =
1

36
|ζ − z|6 log

∣∣∣∣
1 − zζ

ζ − z

∣∣∣∣
2

−
1

36
(1 − |z|2)(1 − |ζ|2)(z2ζ2 + z2ζ

2
− 30)

+
1

12
(1 − |z|2)(1 − |ζ|2)(|ζ|2 + |z|2)(zζ + zζ − 4)

−
1

72
(1 − |z|4)(1 − |ζ|4)(zζ + zζ)

+
1

36
(1 − |z|6)(1 − |ζ|6)

[1

2

(
1

zζ
+

1

zζ

)
+

1

(zζ)2
+

1

(zζ)2

+
log(1 − zζ)

(zζ)3
+

log(1 − zζ)

(zζ)3

]

−
1

12

[
(1 − |z|6)(1 − |ζ|4) + (1 − |z|4)(1 − |ζ|6) + 3(1 − |z|2)(1 − |ζ|4)

+ 3(1 − |z|4)(1 − |ζ|2)

][
log(1 − zζ)

(zζ)2
+

log(1 − zζ)

(zζ)2
+

1

zζ
+

1

zζ

]

+
1

12

[
(1 − |z|6)(1 − |ζ|2) + (1 − |z|2)(1 − |ζ|6) + 3(1 − |z|4)(1 − |ζ|4)

+ 3(1 − |z|2)(1 − |ζ|2)

] [
log(1 − zζ)

zζ
+

log(1 − zζ)

zζ

]

− (1 − |z|2)(1 − |ζ|2)
∞∑

l=0

(zζ)l + (zζ)l

(l + 1)3

+
1

2
(1 − |z|2)(1 − |ζ|2)(1 + |z|2 + |ζ|2)

∞∑

l=0

(zζ)l + (zζ)l

(l + 1)2
, z, ζ ∈ D,

see [28, 37, 53]. For an induction proof of the respective formula for the general
iterated polyharmonic Green function for the unit disc D, this function has to be
guessed from the first samples. It seems that more samples of lower order Green
functions have to be calculated before such a conjecture becomes available. But
the iteration procedure is involved. Many area integrals need to be evaluated for
every step, see [37,53].

By the way, W. Ying [53] did calculate Ĝ4(z, ζ) for some arbitrary disc sector
and then just has guessed the function for D. Once having made some guess,
the verification for being the proper - uniquely given - Green function is easily
done by checking the homogeneous Dirichlet conditions for the respective Poisson
equation.

Without knowing the polyharmonic Green function, the related polyharmonic

Poisson kernel gn(z, ζ) = ∂νζ
Ĝn(z, ζ), z ∈ D, ζ ∈ ∂D, iteratively defined by

gn(z, ζ) = −
1

π

∫

D

Ĝ1(z, ζ̃)gn−1(ζ̃ , ζ)dξ̃dη̃,
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can be found from the system of conditions

• ∂z∂zg1(z, ζ) = 0, ∂z∂zgn(z, ζ) = gn−1(z, ζ), 2 ≤ n,

• lim
z→t,|z|<1,|t|=1

1

2πi

∫

∂D

γ(ζ)g1(z, ζ)
dζ

ζ
= γ(t), for γ ∈ C(∂D; C),

• lim
z→t,|z|<1,|t|=1

1

2πi

∫

∂D

γ(ζ)g2(z, ζ)
dζ

ζ
= 0 for γ ∈ C(∂D; C),

• lim
z→t,|z|<1,|t|=1

gn(z, ζ) = 0 for 2 < n and |ζ| = 1,

• gn(·, ζ) ∈ C2n(D; C) for any ζ ∈ ∂D, gn(z, ζ), ∂zgn(z, ζ), ∂zgn(z, ζ) ∈
C(D × ∂D; C), n ∈ N,

see [17,39]. The first ones are for z ∈ D, ζ ∈ ∂D,

g1(z, ζ) =
1

1 − zζ
+

1

1 − zζ
− 1,

g2(z, ζ) = (1 − |z|2)

[
1 +

log(1 − zζ)

zζ
+

log(1 − zζ)

zζ

]
,

g3(z, ζ) = (1 − |z|2)

[
1 +

∞∑

k=2

(zζ)k−1 + (zζ)k−1

k2

]

−
1 − |z|4

2

[
1

2
+

∞∑

k=2

(zζ)k−1 + (zζ)k−1

k(k + 1)2

]
,

g4(z, ζ) = −(1 − |z|2)

[
1 +

∞∑

k=2

(zζ)k−1 + (zζ)k−1

k2

]

+
1 − |z|4

2!

[
1

2!
+

∞∑

k=2

(zζ)k−1 + (zζ)k−1

k2(k + 1)

]

+
1 − |z|2

2!

[
1

2!
+

∞∑

k=2

(zζ)k−1 + (zζ)k−1

k2(k + 1)

]

−
1 − |z|6

3!

[
1

3!
+

∞∑

k=2

(zζ)k−1 + (zζ)k−1

k(k + 1)(k + 2)

]
.

In [39], an involved formula is given for general gn(z, ζ) using so-called vertical
sums, see also [18]. The formula obviously produces all polyharmonic Poisson
kernels for the unit disc. But as well a concise form as an induction proof still
need to be given.
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3. Hybrid polyharmonic Green functions

The iteration process applied to the Green function can in the same way be
used to produce higher order polyharmonic Neumann and Robin functions,

Nn(z, ζ) = −
1

π

∫

D

N1(z, ζ̃)Nn−1(ζ̃, ζ)dξ̃dη̃, n ∈ N, 2 ≤ n,

Rn(z, ζ) = −
1

π

∫

D

R1(z, ζ̃)Rn−1(ζ̃ , ζ)dξ̃dη̃, n ∈ N, 2 ≤ n,

see [15,21,26,28,32].

For the unit disc D, the first polyharmonic Neumann functions are

N1(z, ζ) = − log |(ζ − z)(1 − zζ)|2,

N2(z, ζ) = |ζ − z|2 [4 + N1(z, ζ)] − 4
∞∑

k=2

(zζ)k + (zζ)k

k2

− 2(zζ + zζ) log |1 − zζ|2

− (1 + |z|2)(1 + |ζ|2)
[ log(1 − zζ)

zζ
+

log(1 − zζ)

zζ

]
,

N3(z, ζ) =
3

2
(|ζ|4 + |z|4) + 5(1 + |ζ|2)(1 + |z|2) + 2(6 + |ζ|2 + |z|2)

+
1

4
(1 − |z|2)(1 − |ζ|2)(zζ + zζ) +

1

4
|ζ − z|4 log

∣∣∣∣
1 − zζ

ζ − z

∣∣∣∣
2

−

[
2(2 + |z|2)(2 + |ζ|2) +

1

2
(|ζ|4 + |z|4)

]
log |1 − zζ|2

+

[
1

2
(|ζ|2 + |z|2)(1 + |z|2)(1 + |ζ|2) + 4(2 + |z|2 + |ζ|2)

]

×

[
log(1 − zζ)

zζ
+

log(1 − zζ)

zζ

]

−
1

4
(1 + |z|4)(1 + |ζ|4)

[
log(1 − zζ)

(zζ)2
+

log(1 − zζ)

(zζ)2
+

1

zζ
+

1

zζ

]

+
∞∑

l=0

( 8

(l + 1)3
−

(|ζ|2 + 1)(|z|2 + 1)

(l + 2)2
−

4|z|2 + 4|ζ|2 + 6

(l + 1)2

)

×
[
(zζ)l+1 + (zζ)l+1

]
, z, ζ ∈ D,

see [15,37,53].

The harmonic Robin function R1;α,β(z, ζ) satisfying the boundary condition

αR1;α,β(z, ζ) + β∂νzR1;α,β(z, ζ) = 0 for z ∈ ∂D, ζ ∈ D
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is for the unit disc D and α, β ∈ R, α2 + β2 6= 0,

R1;α,β(z, ζ) = G1(z, ζ) + 2β

∞∑

k=1

(zζ)k + (zζ)k

α + βk
+

2β

α
, if −

α

β
/∈ N0,

R1;α,β(z, ζ) = G1(z, ζ) + 2β

∞∑

k=1,α+βk 6=0

(zζ)k + (zζ)k

α + βk
+

2β

α
−

β

α
[(zζ)

−α
β + (zζ)

−α
β ]

+ 2β[(zζ)−
α
β log(zζ) + (zζ)−

α
β log(zζ)], if −

α

β
∈ N0,

see [31]. For β = 0, this is just the harmonic Green function. The iteration process
has not yet been undertaken. However, for α = β = 1 denoting R1;1,1(z, ζ) just
by R1(z, ζ) for D

R1(z, ζ) = G1(z, ζ) − 2
[
1 +

log(1 − zζ)

zζ
+

log(1 − zζ)

zζ

]
,

R2(z, ζ) = G2(z, ζ) − 2[2 − |z|2 − |ζ|2]

∞∑

k=1

(zζ)k + (zζ)k

(k + 1)2

− 4
[
1 +

∞∑

k=1

(zζ)k + (zζ)k

(k + 1)3

]
,

see [21,28].

Rather than iterating Green, Neumann, and Robin functions, also called Green
functions of first, second, and third kind, respectively, convolutions of them with
one another can be used to determine a variety of polyharmonic Green functions.
They are given as

KmK̂n(z, ζ) = −
1

π

∫

D

Km(z, ζ̃)K̂n(ζ̃ , ζ)dξ̃dη̃

with
Km(z, ζ) ∈ {Gm(z, ζ), Ĝm(z, ζ), Nm(z, ζ), Rm;α,β(z, ζ)}

or any other polyharmonic Green function of order m and similarly with K̂n(z, ζ)

any polyharmonic Green function of order n. KmK̂n(z, ζ) is a polyharmonic
Green function of order m + n. In general, it is not symmetric with respect to
its both variables. While its boundary behavior as a function of z is determined
from that of Km(z, ζ); the boundary properties as a function of ζ is copying the

ones from K̂n(z, ζ). In detail, this can be formulated as a result.

Theorem. Let the m boundary conditions and additional side conditions, if

needed, for Km(z, ζ) for z ∈ ∂D, ζ ∈ D be denoted by Bm such that Km(z, ζ)
satisfies

• Km(·, ζ) is polyharmonic of order m in D\{ζ},

• Km(z, ζ)+ |ζ−z|2(m−1)

(m−1)!2
log |ζ−z|2 is polyharmonic of order m in D for any

ζ ∈ D,
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• Km(z, ζ) satisfies the conditions Bm for z ∈ ∂D, ζ ∈ D.

As a function of z, KmK̂n(z, ζ) satisfies for any ζ ∈ D the boundary value problem

(3.1) (∂z∂z)
mKmK̂n(z, ζ) = K̂n(z, ζ) in D,

(3.2) Bm(KmK̂n(z, ζ)) = −
1

π

∫

D

(Bm(Km(z, ζ̃)))K̂n(ζ̃ , ζ)dξ̃dη̃ on ∂D,

and as a function of ζ for any fixed z ∈ D

(3.3) (∂ζ∂ζ)
n(KmK̂n(z, ζ)) = Km(z, ζ) in D,

(3.4) B̂n(KmK̂n(z, ζ)) = −
1

π

∫

D

Km(z, ζ̃)B̂nK̂n(ζ̃ , ζ)dξ̃dη̃ on ∂D.

In cases where Km(z, ζ) and K̂n(z, ζ) are both symmetric, then

KmK̂n(z, ζ) = K̂nKm(ζ, z)

follows.

Proof. As Km(z, ζ) is a fundamental solution of (∂z∂z)
m, differential equation

(3.1) holds. Applying the conditions Bm shows (3.2). Similarly, because K̂n(z, ζ)
as a function of ζ is a fundamental solution to (∂ζ∂ζ)

n, equation (3.3) follows. And

(3.4) again is seen by applying the boundary operator B̂n. From the symmetry
conditions

KmK̂n(z, ζ) = −
1

π

∫

D

K̂n(ζ, ζ̃)Km(ζ̃ , z)dξ̃dη̃ = K̂nKm(ζ, z)

follows. �

Such hybrid Green functions are used in [13] to solve the Dirichlet-Neumann
biharmonic problem which is differently treated in [50] via the Goursat represen-
tation of biharmonic functions. In [29], as an example of a higher order hybrid
Green function, the convolution of the polyharmonic iterated Green function

Ĝm(z, ζ) of order m with the polyharmonic Green-Almansi function Gn(z, ζ) of
order n, see [7, 9, 49], is investigated and used to solve the related polyharmonic
Dirichlet problem. Independently, other higher order hybrid polyharmonic Green
functions are studied and applied for certain boundary value problems in [5], see
also [6]. For some simple cases, see [12, 13, 15, 24, 26]. The case when explicit
formulas are aimed for the unit disc is mostly considered in the mentioned liter-
ature. There are some other simple domains treated also as e.g. half, quarter,
octo planes, half discs, half rings, disc sectors, triangles, rectangles, concentric
and arbitrary rings, see [16,19,28–31,33,34,41,47,48,51,53].

As an example for the situation of the theorem, the mentioned polyharmonic

Green function GmĜn(z, ζ) of order m + n is discussed. The properties of the
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iterated polyharmonic Green function are listed in Section 2. The polyharmonic
Green-Almansi function of order n has the properties, see e.g. [9, 49]

• Gn(·, ζ) is polyharmonic of order n in D\{ζ},

• Gn(z, ζ) +
|ζ − z|2(n−1)

(n − 1)!2
log |ζ − z|2 is polyharmonic of order n in D for

any ζ ∈ D,

• ∂µ
νzGn(z, ζ) = 0 for z ∈ ∂D, ζ ∈ D, 0 ≤ µ ≤ n − 1,

• Gn(z, ζ) = Gn(ζ, z) for z, ζ ∈ D, z 6= ζ.

Thus, GmĜn(z, ζ) has the following properties.

For any ζ ∈ D

• GmĜn(·, ζ) is polyharmonic of order m + n in D\{ζ},

• GmĜn(z, ζ) +
|ζ − z|2(m+n−1)

(m + n − 1)!2
log |ζ − z|2 is polyharmonic of order m + n

in D,

• ∂µ
νzGmĜn(z, ζ) = 0 for z ∈ ∂D, 0 ≤ µ ≤ m − 1,

• (∂z∂z)
(m+λ)GmĜn(z, ζ) = 0 for z ∈ ∂D, 0 ≤ λ ≤ n − 1.

For any z ∈ D

• GmĜn(z, ·) is polyharmonic of order m + n in D\{z},

• GmĜn(z, ζ) +
|ζ − z|2(m+n−1)

(m + n − 1)!2
log |ζ − z|2 is polyharmonic of order m + n

in D,

• (∂ζ∂ζ)
µGmĜn(z, ζ) = 0 for ζ ∈ ∂D, 0 ≤ µ ≤ n − 1,

• ∂µ
νζ

(∂ζ∂ζ)
nGmĜn(z, ζ) = 0 for ζ ∈ ∂D, 0 ≤ µ ≤ m − 1.

As both Gm(z, ζ) and Ĝn(z, ζ) are symmetric functions, GmĜn(z, ζ) satisfies
the relation

• GmĜn(z, ζ) = ĜnGm(ζ, z).

Certain simple (biharmonic) hybrid Green functions for some particular do-
mains are calculated, see e.g. [29]. For the unit disc D, they are the Green-
Neumann function

G1N1(z, ζ) = − |ζ − z|2 log |ζ − z|2

− (1 − |z|2)
[
4 +

1 − zζ

zζ
log(1 − zζ) +

1 − zζ

zζ
log(1 − zζ)

]

−
(ζ − z)(1 − zζ)

z
log(1 − zζ) −

(ζ − z)(1 − zζ)

z
log(1 − zζ),
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Green-Robin function for the particular case α = β = 1

G1R1(z, ζ) = G2(z, ζ) − 2(1 − |z|2)
[ ∞∑

k=1

(zζ)k−1 + (zζ)k−1

k2
− 1

]
,

Neumann-Robin function for the particular case α = β = 1

N1R1(t, ζ) = − |ζ − z|2 log |ζ − z|2

− (1 − |ζ|2)
[
4 +

1 − zζ

zζ
log(1 − zζ) +

1 − zζ

zζ
log(1 − zζ)

]

+
(ζ − z)(1 − zζ)

ζ
log(1 − zζ) +

(ζ − z)(1 − zζ)

ζ
log(1 − zζ)

− 4 log |1 − zζ|2 + 4
[ log(1 − zζ)

zζ
+

log(1 − zζ)

zζ

]

− 2(1 + |z|2)

∞∑

k=1

(zζ)k−1 + (zζ)k−1

k2
+ 16 − 2(1 − |z|2).

As is mentioned before, the general Robin function R1;α,β(z, ζ) has not yet been
involved in this convolution process.
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Added in Proof. The harmonic Robin function from Section 3 can be modified so that it becomes
intermediate between the Green and the Neumann functions, see H. Begehr and T. Vaitekhovich,
Modified harmonic Robin function, Preprint, FU Berlin, 2011. This is done by altering the
above homogeneous boundary condition by introducing the inhomogeneity from the Neumann
function. In case of the unit disc D the condition reads

αR1;α,β(z, ζ) + β∂νz
R1;α,β(z, ζ) = −2β for z ∈ ∂D.

The Robin function then is in the case −
α
β

/∈ N
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R1;α,β(z, ζ) = log
∣∣∣1 − zζ

ζ − z

∣∣∣
2

+ 2β

∞∑

k=1

(zζ)k + (zζ)k

α + kβ
.

If β = 0 this obviously is the Green function for D, for α = 0 it is the Neumann function.
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