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ON SOME GENERALIZED NEW TYPE DIFFERENCE
SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION

AYHAN ESI

Abstract. The idea of difference sequence spaces were defined by Kizmaz [6]
and generalized by Et and Çolak [3]. Later Tripathy et al. [16] introduced the
notion of the new difference operator ∆n

mxk for fixed n,m ∈ N. In this paper
we introduce some new type difference sequence spaces defined by a modulus
function and the new concept of statistical convergence. We give various
properties and inclusion relations on these new type difference sequence spaces.

1. Introduction

The difference sequence spaces X (∆) was introduced by Kizmaz [6] as follows:

X (∆) = {x = (xk) : (∆xk) ∈ X} for X = l∞, c and c0,

where ∆xk = xk − xk+1 for all k ∈ N. Later, the difference sequence spaces were
generalized by Et and Çolak [3] as follows: Let n ∈ N be fixed, then

X (∆n) = {x = (xk) : (∆nxk) ∈ X} for X = l∞, c and c0,

where ∆nxk = ∆n−1xk −∆n−1xk+1 and so ∆nxk =
∑n

v=0 (−1)v
(
n
v

)
xk+v. Quite

recently, this operator was generalized by Tripathy et al. as follows: Let n,m ∈ N
be fixed, then

X (∆n
m) = {x = (xk) : (∆n

mxk) ∈ X} for X = l∞, c and c0,

where ∆n
mxk = ∆n−1

m xk − ∆n−1
m xk+1 and ∆0

mxk = xk for all k ∈ N. This
generalized notion has the following binomial representation:

∆n
mxk =

n∑
v=0

(−1)v
(
n

v

)
xk+mv.

The notion of modulus function was introduced by Nakano [13] and Ruckle
[15]. We recall that a modulus f is a function from [0,∞) to [0,∞) such that

(i) f(x) = 0 if and only if x = 0,
(ii) f(x+ y) ≤ f(x) + f(y),
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(iii) f is increasing, and
(iv) f is continuous from the right at 0.
It is immediate from (ii) and (iv) that f is continuous on [0,∞). Also, from

condition (ii), we have f (nx) ≤ nf (x) for all n ∈ N, and so f (x) ≤ f
(
nx 1

n

)
≤

nf
(
x
n

)
. Hence 1

nf (x) ≤ f
(
x
n

)
for all n ∈ N. A modulus function may be bounded

(for example, f (x) = x
1+x) or unbounded (for example, f (x) = x). Ruckle [15],

Maddox [11], Esi [2] and several authors used a modulus f to construct some
sequence spaces.

Spaces of strongly summable sequences were discussed by Kuttner [7], Maddox
[9] and others. The class of sequences which are strongly Cesaro summable with
recpect to a modulus was introduced by Maddox [11] as an extension of the
definition of strongly Cesaro summable sequences. Connor [1] further extended
this definition to a definition of strongly A − summability with recpect to a
modulus when A is non-negative regular matrix.

Let Λ = (λi) be a non-decreasing sequence of positive real numbers tending to
infinity and λ1 = 1 and λi+1 ≤ λi + 1.

The generalized de la Vallee-Poussin means is defined by

ti (x) =
1
λi

∑
k∈Ii

xk,

where Ii = [i− λi + 1, i] . A sequence x = (xk) is said to be (V, λ)-summable to
a number L if ti (x)→ L as i→∞ (see [8]). We write

[V, λ]0 =

x = (xk) : lim
i

1
λi

∑
k∈Ii

|xk| = 0

 ,

[V, λ] =

x = (xk) : lim
i

1
λi

∑
k∈Ii

|xk − L| = 0, for some L

 ,

and [V, λ]∞ =

x = (xk) : sup
i

1
λi

∑
k∈Ii

|xk| <∞

 .

For the sets of sequences that are called λ − strongly summable to zero, λ −
strongly summable and λ − strongly bounded by de la Vallee-Poussin method.
In the special case, where λi = 1 for all i = 1, 2, 3, ... the sets [V, λ]0 , [V, λ] and
[V, λ]∞ reduce to the sets w0, w and w∞ introduced and studied by Maddox [9].

The following inequality will be used throughout this paper:

(1.1) |ak + bk|pk ≤ C (|ak|pk + |bk|pk) ,

where ak and bk are complex numbers, C = max
(
1, 2H−1

)
, H = supk pk < ∞

[16].
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2. Main results

Definition 2.1. Let E be a Banach space. We define w(E) to be vector space
of all E-valued sequences, that is

w (E) = {x = (xk) : xk ∈ E} .

Let f be a modulus function, p = (pk) be any sequence of strictly positive real
numbers, A = (ask) be a non-negative matrix such that sups

∑∞
k=1 ask <∞ and

n,m ∈ N be fixed. (This assumption is made throughout the rest of this paper).
We define the following sets:

[
V E
λ , A,∆

n
m, f, p

]
0

=

x = (xk) ∈ w (E) : lim
i

1
λi

∑
k∈Ii

ask [f (‖∆n
mxk‖)]

pk = 0

 ,

[
V E
λ , A,∆

n
m, f, p

]
1

=

{
x = (xk) ∈ w (E) : lim

i

1
λi

∑
k∈Ii

ask[f(‖∆n
mxk − L‖)]pk = 0,

for some L

}
, and

[
V E
λ , A,∆

n
m, f, p

]
∞ =

x = (xk) ∈ w (E) : sup
i

1
λi

∑
k∈Ii

ask [f (‖∆n
mxk‖)]

pk <∞

 .

If x ∈
[
V E
λ , A,∆

n
m, f, p

]
1

then we write x→ L
([
V E
λ , A,∆

n
m, f, p

]
1

)
and L will be

called λn,mE −new type difference limit of x = (xk) with recpect to the modulus
function f .

If ask = 1 for all s, k ∈ N andm = 0, then
[
V E
λ , A,∆

n
m, f, p

]
0
,
[
V E
λ , A,∆

n
m, f, p

]
1

and
[
V E
λ , A,∆

n
m, f, p

]
∞ reduce to [V, λ, p]0 (∆n, E), [V, λ, p]1 (∆n, E) and [V, λ, p]∞

(∆n, E) which were studied by Et et al. [11].
Throughout the paper Z will denote any one of the notation 0, 1 or ∞.

Proposition 2.1. Let the sequence p = (pk) be bounded. Then the sequence
spaces

[
V E
λ , A,∆

n
m, f, p

]
Z

are linear spaces over the complex field C for Z = 0, 1,
or ∞.

Proof. We consider only
[
V E
λ , A,∆

n
m, f, p

]
0
. The others can be treated similarly.

Let x, y ∈
[
V E
λ , A,∆

n
m, f, p

]
0

and γ, µ ∈ C. Then there exist positive numbers
Mγ and Nµ such that |γ| ≤ Mγ and |µ| ≤ Nµ. Since f is subadditive and the
operation ∆n

m is linear

1
λi

∑
k∈Ii

ask [f (‖∆n
m (γxk + µyk)‖)]pk

≤ 1
λi

∑
k∈Ii

ask [f (|γ| ‖∆n
mxk‖) + f (|µ| ‖∆n

myk‖)]
pk
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≤C (Mγ)H
1
λi

∑
k∈Ii

ask [f (‖∆n
mxk‖)]

pk

+ C (Nµ)H
1
λi

∑
k∈Ii

ask [f (‖∆n
myk‖)]

pk → 0 as n→∞.

This proves that
[
V E
λ , A,∆

n
m, f, p

]
0

is a linear space. �

Proposition 2.2. Let f be a modulus, then[
V E
λ , A,∆

n
m, f, p

]
0
⊂
[
V E
λ , A,∆

n
m, f, p

]
1
⊂
[
V E
λ , A,∆

n
m, f, p

]
∞ .

Proof. The first inclusion is obvious. We establish the second inclusion. Let
x ∈

[
V E
λ , A,∆

n
m, f, p

]
1
. By definition of modulus f , we have

1
λi

∑
k∈Ii

ask [f (‖∆n
mxk‖)]

pk

≤C
λi

∑
k∈Ii

ask [f (‖∆n
mxk − L‖)]

pk +
C

λi

∑
k∈Ii

ask [f (‖L‖)]pk .

There exists a positive integer ML such that ‖L‖ ≤ML. Hence we have

1
λi

∑
k∈Ii

ask [f (‖∆n
mxk‖)]

pk

≤C
λi

∑
k∈Ii

ask [f (‖∆n
mxk − L‖)]

pk +
C (MLf (1))H

λi

∑
k∈Ii

ask.

Since x ∈
[
V E
λ , A,∆

n
m, f, p

]
1

, we have x ∈
[
V E
λ , A,∆

n
m, f, p

]
∞ and this completes

the proof. �

Theorem 2.3. The sequence space
[
V E
λ , A,∆

n
m, f, p

]
0

is a paranormed space with

g∆n
m

(x) = sup
i

 1
λi

∑
k∈Ii

ask [f (‖∆n
mxk‖)]

pk

 1
M

,

where M = max (1, supk pk) .

Proof. From Proposition 2.2, for each x ∈
[
V E
λ , A,∆

n
m, f, p

]
0
, g∆n

m
(x) exists.

Clearly, g∆n
m

(x) = g∆n
m

(−x). It is trivial that ∆n
mxk = 0 for x = 0. Since f(0) =

0, we get g∆n
m

(x) = 0 for x = 0 and by Minkowski’s Inequality g∆n
m

(x+ y) ≤
g∆n

m
(x)+g∆n

m
(y) . We now show that the scalar multiplication is continuous. Let

γ be any complex number. By definition of modulus f , we have

g∆n
m

(γx) = sup
i

 1
λi

∑
k∈Ii

ask [f (‖∆n
mγxk‖)]

pk

 1
M

≤ N
H
M
γ g∆n

m
(x) ,
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where Nγ is a positive integer such that |γ| ≤ Nγ . Now, γ → 0 for any fixed
x = (xk) with g∆n

m
(x) 6= 0. By definition of modulus f , for |γ| < 1, we have

(2.1)
1
λi

∑
k∈Ii

ask [f (‖∆n
mγxk‖)]

pk < ε for i > i0 (ε) .

Also, for 1 ≤ i ≤ i0, taking γ small enough, since f is continuous, we have

(2.2)
1
λi

∑
k∈Ii

ask [f (‖∆n
mγxk‖)]

pk < ε.

(2.1) and (2.2) together imply that g∆n
m

(γx) → 0 as γ → 0. This completes the
proof �

Proposition 2.4. If n ≥ 1, then the inclusion[
V E
λ , A,∆

n−1
m , f, p

]
Z
⊂
[
V E
λ , A,∆

n
m, f, p

]
Z

is strict for Z = 0, 1, or ∞. In general
[
V E
λ , A,∆

j
m, f, p

]
Z
⊂
[
V E
λ , A,∆

n
m, f, p

]
Z

for j = 1, 2, ..., n− 1 and the inclusion is strict for j = 1, 2, ..., n− 1.

Proof. We give the proof for Z =∞ only. The others can be proved in a similar
way for Z = 0 and Z = 1. Let x ∈

[
V E
λ , A,∆

n−1
m , f, p

]
Z

. Then we have

sup
i

1
λi

∑
k∈Ii

ask
[
f
(∥∥∆n−1

m xk
∥∥)]pk <∞.

By definition of modulus f , we have
1
λi

∑
k∈Ii

ask [f (‖∆n
mxk‖)]

pk

≤ 1
λi

∑
k∈Ii

ask
[
f
(∥∥∆n−1

m xk
∥∥)+ f

(∥∥∆n−1
m xk+1

∥∥)]pk

≤C
λi

∑
k∈Ii

ask
[
f
(∥∥∆n−1

m xk
∥∥)]pk +

C

λi

∑
k∈Ii

ask
[
f
(∥∥∆n−1

m xk+1

∥∥)]pk <∞.

Thus,
[
V E
λ , A,∆

n−1
m , f, p

]
Z
⊂
[
V E
λ , A,∆

n
m, f, p

]
Z

for j = 1, 2, ..., n − 1. Now,

proceeding in this way one will have
[
V E
λ , A,∆

j
m, f, p

]
∞
⊂
[
V E
λ , A,∆

n
m, f, p

]
∞

for j = 1, 2, ..., n − 1. Let E = C, λi = i for each i ∈ N and ask = 1 for each
s, k ∈ N. Then the sequence x = (kn) belongs to

[
V C
λ , A,∆

n
m, f, p

]
∞ but it does

not belong to
[
V C
λ , A,∆

n−1
m , f, p

]
∞ for f (x) = x and m = 0. Note that, x = (kn) ,

then ∆nxk = (−1)n n! and ∆n−1xk = (−1)n+1 n!
(
k +

(
n−1

2

))
for all k ∈ N and

m = 0. �

Proposition 2.5. Let f be a modulus function.
(a) If 0 < infk pk ≤ pk ≤ 1 for all k ∈ N, then[

V E
λ , A,∆

n
m, f, p

]
1
⊂
[
V E
λ , A,∆

n
m, f

]
1
.
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(b) If 1 ≤ pk ≤ supk pk <∞ for all k ∈ N, then[
V E
λ , A,∆

n
m, f

]
1
⊂
[
V E
λ , A,∆

n
m, f, p

]
1
.

(c) Let 0 < pk ≤ qk for all k ∈ N and
(
qk
pk

)
be bounded, then[

V E
λ , A,∆

n
m, f, q

]
1
⊂
[
V E
λ , A,∆

n
m, f, p

]
1
.

Proof. (a) Let x ∈
[
V E
λ , A,∆

n
m, f, p

]
1
. Since 0 < infk pk ≤ pk ≤ 1 for all k ∈ N,

we get
1
λi

∑
k∈Ii

askf (‖∆n
mxk − L‖) ≤

1
λi

∑
k∈Ii

ask [f (‖∆n
mxk − L‖)]

pk

and hence x ∈
[
V E
λ , A,∆

n
m, f

]
1
.

(b) Let 1 ≤ pk ≤ supk pk < ∞ for all k ∈ N and x ∈
[
V E
λ , A,∆

n
m, f

]
1
. Then

for each 0 < ε < 1, there exists a positive integer i0 such that
1
λi

∑
k∈Ii

askf (‖∆n
mxk − L‖) ≤ ε < 1 for all i ≥ i0.

This implies that
1
λi

∑
k∈Ii

ask [f (‖∆n
mxk − L‖)]

pk ≤ 1
λi

∑
k∈Ii

askf (‖∆n
mxk − L‖) .

Therefore x ∈
[
V E
λ , A,∆

n
m, f, p

]
1
.

(c) Using the same technique as in Theorem 2 of Nanda [14], it is easy to prove
(c). �

3. Statistical convergence

The notion of statistical convergence was introduced by Fast [5] and studied by
various authors. Recently, Mursaleen [12] introduced a new concept of statistical
convergence as follows:

A sequence x = (xk) is said to be λ−statistically convergent or sλ−statistically
convergent to L if for every ε > 0

lim
i

1
λi
|{k ∈ Ii : |xk − L| ≥ ε}| = 0,

where the vertical bars indicate the number of elements in the enclosed set. In
this case we write sλ − limx = L or xk → L (sλ) and sλ = { x = (xk): ∃L ∈ R,
sλ − limx = L}.

Definition 3.1. A sequence x = (xk) is said to be λn,mE −statistically convergent
to L if for every ε > 0

lim
i

1
λi
|{k ∈ Ii : ‖ ∆n

mxk − L‖ ≥ ε}| = 0.
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In this case we write
[
sEλ ,∆

n
m

]
− limx = L or xk → L

([
sEλ ,∆

n
m

])
. In the case

m = 0,
[
sEλ ,∆

n
m

]
reduces to sλ (∆n

m) which was studied by Et et al. [4].

Theorem 3.1. Let λ = (λi) be the same as in Section 1, then
(a) If xk → L

[
V E
λ ,∆

n
m

]
1
, then xk → L

([
sEλ ,∆

n
m

])
, where

[
V E
λ ,∆

n
m

]
1

=

x = (xk) ∈ w (E) : lim
i

1
λi

∑
k∈Ii

‖∆n
mxk − L‖ = 0, for some L

 .

(b) If x ∈ l∞ (∆n
m, E) and xk → L

([
sEλ ,∆

n
m

])
, then xk → L

[
V E
λ ,∆

n
m

]
1
, where

l∞ (∆n
m, E) =

{
x = (xk) ∈ w (E) : sup

k
‖∆n

mxk‖ <∞
}
.

(c)
[
sEλ ,∆

n
m

]
∩ l∞ (∆n

m, E) =
[
V E
λ ,∆

n
m

]
1
∩ l∞ (∆n

m, E) .

Proof. (a) Let ε > 0 and xk → L
[
V E
λ ,∆

n
m

]
1
, then we have

1
λi

∑
k∈Ii

‖∆n
mxk − L‖ ≥ ε |{k ∈ Ii : ‖ ∆n

mxk − L‖ ≥ ε}| .

So, xk → L
([
sEλ ,∆

n
m

])
. In fact, the set

[
V E
λ ,∆

n
m

]
1

is a proper subset of
[
sEλ ,∆

n
m

]
.

To show this, let E = C, and we define x = (xk) by ∆n
mxk = k, for i−

[∣∣√i∣∣]+1 ≤
k ≤ i and ∆n

mxk = 0, otherwise. Then x /∈ l∞ (∆n
m, E) and x /∈

[
V E
λ ,∆

n
m

]
1

but
xk → L = 0

([
sEλ ,∆

n
m

])
.

(b) Suppose that xk → L
([
sEλ ,∆

n
m

])
and x ∈ l∞ (∆n

m, E) , say ‖ ∆n
mxk − L‖ ≤

T (T ≥ 0) . Given ε > 0, we have

1
λi

∑
k∈Ii

‖∆n
mxk − L‖ =

1
λi

∑
k ∈ Ii

‖ ∆n
mxk − L‖ ≥ ε

‖∆n
mxk − L‖

+
1
λi

∑
k ∈ Ii

‖ ∆n
mxk − L‖ < ε

‖∆n
mxk − L‖

≤ T

λi
|{k ∈ Ii : ‖ ∆n

mxk − L‖ ≥ ε}|+ ε.

Hence xk → L
[
V E
λ ,∆

n
m

]
1
.

(c) This immediately follows from (a) and (b). �

Proposition 3.2. If limi
λi
i > 0, then

[
sE ,∆n

m

]
⊂
[
sEλ ,∆

n
m

]
, where[

sE ,∆n
m

]
=
{
x = (xk) : lim

i

1
i
|{k ≤ i : ‖ ∆n

mxk − L‖ ≥ ε}| = 0
}
.
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Proof. For given ε > 0, we get

{k ≤ i : ‖ ∆n
mxk − L‖ ≥ ε} ⊃ {k ∈ Ii : ‖ ∆n

mxk − L‖ ≥ ε} .

Hence

1
i
|{k ≤ i : ‖ ∆n

mxk − L‖ ≥ ε}| ≥
1
i
|{k ∈ Ii : ‖ ∆n

mxk − L‖ ≥ ε}|

=
λi
i

1
λi
|{k ∈ Ii : ‖ ∆n

mxk − L‖ ≥ ε}| .

So, we obtain x ∈
[
sEλ ,∆

n
m

]
. �

Proposition 3.3. Let f be a modulus function, ask = 1, for all s, k ∈ N and
0 < h = infk pk ≤ pk ≤ supk pk = H <∞. Then[

V E
λ , A,∆

n
m, f

]
1
⊂
[
sEλ ,∆

n
m

]
.

Proof. Let x ∈
[
V E
λ , A,∆

n
m, f

]
1

and ε > 0 be given.

1
λi

∑
k∈Ii

f(‖∆n
mxk − L‖) =

1
λi

∑
k ∈ Ii

‖∆n
mxk − L‖ ≥ ε

f (‖∆n
mxk − L‖)

+
1
λi

∑
k ∈ Ii

‖ ∆n
mxk − L‖ < ε

f (‖∆n
mxk − L‖)

≥ 1
λi

∑
k ∈ Ii

‖ ∆n
mxk − L‖ ≥ ε

f (‖∆n
mxk − L‖)

≥ 1
λi

∑
k ∈ Ii

‖ ∆n
mxk − L‖ ≥ ε

f (ε)

≥ 1
λi
|{k ∈ Ii : ‖∆n

mxk − L‖ ≥ ε}| .f (ε) .

So, we obtain x ∈
[
sEλ ,∆

n
m

]
. �

Proposition 3.4. Let f be bounded and ask = 1, for all s, k ∈ N and 0 < h =
infk pk ≤ pk ≤ supk pk = H <∞. Then[

V E
λ , A,∆

n
m, f

]
1
⊃
[
sEλ ,∆

n
m

]
.
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Proof. Suppose that f is bounded. Let ε > 0 be given. Since f is bounded, there
exists an integer T such that f (x) < T for all x ≥ 0. Then

1
λi

∑
k∈Ii

f (‖∆n
mxk − L‖) =

1
λi

∑
k ∈ Ii

‖ ∆n
mxk − L‖ ≥ ε

f (‖∆n
mxk − L‖)

+
1
λi

∑
k ∈ Ii

‖ ∆n
mxk − L‖ < ε

f (‖∆n
mxk − L‖)

≤ 1
λi

∑
k∈Ii

T +
1
λi

∑
k∈Ii

f (ε)

=
T

λi
|{k ∈ Ii : ‖ ∆n

mxk − L‖ ≥ ε}|+ f (ε) .

Hence x ∈
[
V E
λ , A,∆

n
m, f

]
1
. �

Theorem 3.5. Let ask = 1, for all s, k ∈ N and 0 < h = infk pk ≤ pk ≤ supk pk =
H <∞. Then [

V E
λ , A,∆

n
m, f

]
1

=
[
sEλ ,∆

n
m

]
⇔ f is bounded.

Proof. Let f be bounded, by Proposition 3.3 and Proposition 3.4, we have[
V E
λ , A,∆

n
m, f

]
1

=
[
sEλ ,∆

n
m

]
.

Conversely, suppose that f is unbounded. Then there exists a sequence z =
(zk) of positive numbers with f (zk) = k2 for k = 1, 2, .... If we choose ∆n

mxj = zk
for j = k2, j = 1, 2, ... and ∆n

mxj = 0, otherwise, then we have

1
λi
|{k ∈ Ii : |∆n

mxk − L| ≥ ε}| ≤
√
λi−1

λi
for all i ∈ N

and so x ∈
[
sC
λ ,∆

n
m

]
but x /∈

[
V C
λ , A,∆

n
m, f

]
1

for E = C. This contradicts[
V E
λ , A,∆

n
m, f

]
1

=
[
sEλ ,∆

n
m

]
. �
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[3] M. Et and R.Çolak, On some generalized difference spaces, Soochow J. Math. 21 (1995),
377–386.



252 AYHAN ESI

[4] M. Et, Y. Altin and H. Altinok, On some generalized difference sequence spaces defined
by a modulus function, Filomat 17 (2003), 23–33.

[5] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
[6] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169–176.
[7] B. Kuttner, Note on strong summability, J. London Math. Soc. 21 (1946), 118–122.
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