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ON SOME GENERALIZED NEW TYPE DIFFERENCE
SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION

AYHAN ESI

ABSTRACT. The idea of difference sequence spaces were defined by Kizmaz [6]
and generalized by Et and Colak [3]. Later Tripathy et al. [16] introduced the
notion of the new difference operator Aj, zy for fixed n,m € N. In this paper
we introduce some new type difference sequence spaces defined by a modulus
function and the new concept of statistical convergence. We give various
properties and inclusion relations on these new type difference sequence spaces.

1. INTRODUCTION

The difference sequence spaces X (A) was introduced by Kizmaz [6] as follows:
X (A)={z = (z1) : (Azxg) € X} for X =, c and o,
where Axy =z — x4 for all k € N. Later, the difference sequence spaces were
generalized by Et and Colak [3] as follows: Let n € N be fixed, then
X (A") ={z=(xr): (A"zy) € X} for X =, c and cp,
where A"z, = A"tz — A"y and so A"z, = >0 (—1)° (Z)xlﬂ_v. Quite

recently, this operator was generalized by Tripathy et al. as follows: Let n,m € N
be fixed, then

X (A7) ={x = (z) : (ALzx) € X} for X = o, c and ¢y,

where A"z, = AP lyp — AP 1z and Az, = =z, for all k € N. This
generalized notion has the following binomial representation:

n " n
AL xyp = Z (-1) <U>33k+mv-

v=0
The notion of modulus function was introduced by Nakano [13] and Ruckle
[15]. We recall that a modulus f is a function from [0, c0) to [0, 00) such that
(i) f(x) =0 if and only if x = 0,
(i) f(z+y) < fl2)+ f(y),
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(iii) f is increasing, and
(iv) f is continuous from the right at 0.

It is immediate from (ii) and (iv) that f is continuous on [0,00). Also, from
condition (i), we have f (nz) < nf (z) for all n € N, and so f (z) < f (nzl) <
nf (%) Hence %f (x) < f (%) for all n € N. A modulus function may be bounded
(for example, f (z) = ) or unbounded (for example, f (r) = z). Ruckle [15],
Maddox [11], Esi [2] and several authors used a modulus f to construct some

sequence spaces.

Spaces of strongly summable sequences were discussed by Kuttner [7], Maddox
[9] and others. The class of sequences which are strongly Cesaro summable with
recpect to a modulus was introduced by Maddox [11] as an extension of the
definition of strongly Cesaro summable sequences. Connor [1] further extended
this definition to a definition of strongly A — summability with recpect to a
modulus when A is non-negative regular matrix.

Let A = (\;) be a non-decreasing sequence of positive real numbers tending to
infinity and Ay =1 and Ajp1 < A\ + 1.

The generalized de la Vallee-Poussin means is defined by

tz‘ (.17) :%Zm’k,

' kel

where I; = [i — \; + 1,i] . A sequence x = () is said to be (V, A)-summable to
a number L if t; () — L as i — oo (see [8]). We write

1
V,Alg =42 =(2p): hzm)\i’;’xk’:o )

1
VA =<z = (xp) : h;m)\i;mk—L\:O, for some L » ,

1
and [V, A = Sz = () : sup - Z || < oo
7 Zk:eli

For the sets of sequences that are called A — strongly summable to zero, A —
strongly summable and A — strongly bounded by de la Vallee-Poussin method.
In the special case, where \; = 1 for all ¢ = 1,2,3, ... the sets [V, ], [V, A] and
[V, Al , reduce to the sets wp,w and ws introduced and studied by Maddox [9].

The following inequality will be used throughout this paper:
(1.1) |ak + 0" < C (Jag™ + [bg[™*)

where a; and by are complex numbers, C' = max (1,2H_1) , H = sup, pr < o0
[16].
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2. MAIN RESULTS

Definition 2.1. Let E be a Banach space. We define w(E) to be vector space
of all E-valued sequences, that is

w(E)={x=(xg): xx € E}.

Let f be a modulus function, p = (py) be any sequence of strictly positive real
numbers, A = (as;) be a non-negative matrix such that sup, > ;2 asr < oo and
n,m € N be fixed. (This assumption is made throughout the rest of this paper).
We define the following sets:

(VA AL fiply =S o= () € hm—Zask (AR zx DI ;
" kel

[V)\EvAaAn fa j| :{ :(m) hmizask |A ‘/Lik‘iLH)] 7
! kel

for some L} ,and

[V)\EaA7 Arnlwfap]oo =3§T= (mk) € U) Sllp Z ask ”An ka)]Pk < 00

! kel
Ifx e [VE A, AT f,p]l then we write x — L ([VE A, AT f,p]l) and L will be
called ;" —new type difference limit of x = (z) with recpect to the modulus

function f.

Ifag, = 1forall s,k € Nand m = 0, then [V/\E,A, Aﬁl,f,p]o, [V/\E,A,Afw f,p]1
and [V)\E, A AT p]oo reduce to [V, A\, p|, (A", E), [V, A\, p|; (A", E) and [V, A, p]
(A", E') which were studied by Et et al. [11].

Throughout the paper Z will denote any one of the notation 0, 1 or co.

o0

Proposition 2.1. Let the sequence p = (pi) be bounded. Then the sequence
spaces [V/\E, A, AL f,p]Z are linear spaces over the complex field C for Z =0, 1,
or 0.

Proof. We consider only [V/\E JA AT LT p] o - The others can be treated similarly.
Let x,y € [V/\E,A, Afn,f,p]o and v, € C. Then there exist positive numbers
M., and N, such that |y| < M, and |u| < N,,. Since f is subadditive and the
operation A7, is linear

*Zask (A%, vk + pyr) DI
" kel;

Z ask [f (VI A7zelD) + F (pl A7yl

" kel;



246 AYHAN ESI

1
) Z agk [ (| Amk )™

ke[
1
W5 ask L (1AL )P — 0 as n — oo.
kEI
This proves that [V,\Ea A7 A?nv f’ p] 0 is a linear space. O

Proposition 2.2. Let f be a modulus, then
[V)\E7 A7 A:lna f7 p]o - [V)\Ea A7 A?n? f7 p] 1 - [V)\Ev A7 A%7 f?p] 00

Proof. The first inclusion is obvious. We establish the second inclusion. Let
T € [V/\E, A, AT f, p] . By definition of modulus f, we have

- Z ask [f ([|AR2k )]

" kel
*Zask ([Amzr = LI +*Zask (I
! kel ! kel

There exists a positive integer My, such that |L|| < M. Hence we have

+ Z asy [f (I Az@k )]

! kel
C(My,
o3 a7 (1 — e + SO 2 S
' kel kel;
Since x € [V)\E, A AL p] 1 » we have z € [V/\E, A, A, p]oo and this completes
the proof. O

Theorem 2.3. The sequence space [V)\E, A, AT, p] o i a paranormed space with

M

9ay, (z) = sup Zask (IARzeDI |
' kel;

where M = max (1, supy, p) -

Proof. From Proposition 2.2, for each z € [V/\E,A, Aﬁl,f,p]o, gan () exists.
Clearly, gar () = gan (—=). It is trivial that A7} z;, = 0 for x = 0. Since f(0) =
0, we get gan (z) = 0 for x = 0 and by Minkowski’s Inequality gar (z +y) <
gan () +gan (y). We now show that the scalar multiplication is continuous. Let
~v be any complex number. By definition of modulus f, we have

L
M

H
9y, (y) = sup Z agk [f (|A%yzeDPE | < N gan (),
kEI
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where N, is a positive integer such that |y| < N,. Now, v — 0 for any fixed
r = () with gan (z) # 0. By definition of modulus f, for [y| < 1, we have

(2.1) —Zask (J|A v | )]PF < € for i > g (¢) .
" kel
Also, for 1 < i <, takmg ~ small enough, since f is continuous, we have
(2.2) — Z agk [f (1A% vz )] < e.
" kel

(2.1) and (2.2) together imply that gan (yz) — 0 as v — 0. This completes the
proof O

Proposition 2.4. Ifn > 1, then the inclusion
[V)\Ev Aa A:Ln_la f7 p}Z - [V)\E7 A7 A:an f7 p]Z
is strict for Z = 0,1, or co. In general [VAE,A, Ai'n,f,p]z C [V)\E,A,Aﬁl,f,p]z

for 5 =1,2,....,n— 1 and the inclusion is strict for j =1,2,....,n — 1.

Proof. We give the proof for Z = oo only. The others can be proved in a similar
way for Z =0and Z =1. Let x € [V)\E,A,A%_l,f,p]z . Then we have

Sup ask (HA?{lka)}pk < 0.
)\
kel;

By definition of modulus f, we have

& 3wl (1AL

" kel

Zask (1A% wkll) + £ (1A% el )]™

! kel

Zask (1A% ) p’“+*Zask (1A% k)] < oo,

! kel " kel
Thus, [VE A AL fp], € [VE A AL, f.p], for j =1,2,...,n — 1. Now,
proceeding in this way one will have [V)\ JA, A}n, 1 } [V)\ A AL ]

for j =1,2,...,n—1. Let & = (C)\:zforeachzENandaskflforeach
s,k e N. Then the sequence = = (k™) belongs to [V)\ JA AT S, p]oo but it does

not belong to [V)(\C, A AL f p}oo for f(x) = x and m = 0. Note that, x = (k"),
then Azy = (—1)"n! and A" 1oy = (—1)""' n! (k4 (%51)) for all k € N and
m = 0.

Proposition 2.5. Let f be a modulus function.
(a) If 0 < infypr < pr <1 for all k € N, then

[V)\Ea Aa Anm? fap] 1 - [VAEv Aa A%? f]l
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(b) If 1 < pp < supy pr < 00 for all k € N, then
[V,\Ev Aa A?n) f] 1 C [V)\E7 A7 A:Lnu fvp} 1

(c) Let 0 < pr < qx for all k € N and < ) be bounded, then
[V)\ 7A7A%7f)q]l C [V)\ 7A)Az17f7p}l

Proof. (a) Let x € [V/\E,A, A"nll,f,p]l. Since 0 < infgpr < pp < 1 for all k € N,
we get

— Zaskf A 2, — L||) < — Z ask [f (| A"z — L)
" kel ! kel
and hence x € [VAE,A,Afn, f]l
(b) Let 1 < pi, < supypr < oo for all k € N and z € [V/\E,A, A"m,f]l. Then

for each 0 < € < 1, there exists a positive integer iy such that

*Zaskf |AT x, — L||) < e < 1 for all i > 1.

ke[
This implies that
1
£ 3 ol 18k~ I < 5 3w (185 = LI).
! kel el;

Therefore z € [VF, A, A% f.p],

(c) Using the same technique as in Theorem 2 of Nanda [14], it is easy to prove
(c). O

3. STATISTICAL CONVERGENCE

The notion of statistical convergence was introduced by Fast [5] and studied by
various authors. Recently, Mursaleen [12] introduced a new concept of statistical
convergence as follows:

A sequence z = (xy) is said to be A—statistically convergent or s)—statistically
convergent to L if for every € > 0

1
lim—|{kel;: |xp—L| >} =0,
i )\z‘

where the vertical bars indicate the number of elements in the enclosed set. In
this case we write sy —limz = L or x;, — L(s)) and sy = { z = (zx): IL € R,
sy —limz = L}.

Definition 3.1. A sequence x = (z},) is said to be )\%’m—statistically convergent
to L if for every € > 0

1
lim = [{k € I; : [| Afzx — L] > €} = 0.
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In this case we write [s/\,A”] —limx=Loraxy — L ([s/\,A” ]) . In the case
=0, [s¥, A% ] reduces to sy (A7) which was studied by Et et al. [4].

Theorem 3.1. Let A = (\;) be the same as in Section 1, then
(a) If xp — L [V/\E,Aml, then x, — L ([s/\,A"]) , where

[V)\E,Aﬁl]l =qx= (1) ew(E): hm— Z |AY xp — L|| =0, for some L
! kel

(b) If x € loo (A}, E) and zj, — L ([sf,A”m]), then xp, — L [V)\E,A’n‘lh, where
e (A 5) = {2 = (o) € 0 (B) s sup | ] < o0}
(c) [sX,An] Nlse (A, E) = [VF, AL, Nl (AT, E).
Proof. (a) Let e > 0 and x, — L [ViF, A%] | » then we have
3 A~ L 2 ek € Lo || Al — Ll 2 €}

! kel;

So, z, — L ([sf, Aﬁl]) . In fact, the set [V/\E, Am | 1s a proper subset of [sf, A’,},L] .
To show this, let E = C, and we define z = (z1,) by A% x), =k, for i— [|Vi|] +1 <
k <iand A} xp = 0, otherwise. Then x ¢ I (A}, E) and x ¢ [V)\E,Aml but
T — LzO([s)\,A”])

(b) Suppose that z, — L ([s¥,An]) and z € loo (AL, E), say || Alhay, — L|| <
T (T >0). Given € > 0, we have

*Z |AR k= L] = > |AR Tk — Ll

' kel; ke Ii
| Afzr — Ll = €
1 n
D D [Py
keI

| Apar — L[|l <e
T n
< )TH]{} el;: H Amxk—LH Z€}|+€.

Hence zj, — L [V.F, A7 ] 1
(c) This immediately follows from (a) and (b). O

Proposition 3.2. If lim; % > 0, then [sE,A%] [SA,A"} , where

[SE,A"m]:{x—( k) - hm |{k:<z I Anmxk—L||25}|=O}.
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Proof. For given € > 0, we get

(k<i:||Atap—L| >e} D{kel:| Alay— L] > e}

Hence
1 . n 1 n
sk sicll Apay = Ll 2 e} = - {k € L+ || Apzy — Ll > €}
Ai 1
= 2k e i || Anay— L] 2 e},
1
So, we obtain z € [s¥, Al ]. O

Proposition 3.3. Let f be a modulus function, asp, = 1, for all s,k € N and
0 < h=infppr < pr <supypr =H <oo. Then

(VE A AL f], C [sN, A -

Proof. Let x € [Vf, A, AT f]l and € > 0 be given.

1 n 1 n
ny(HAmxkz_L”):x > flARze — L)
" kel t = Ii
AL @y — Ll =2 €
1 n
T SR A (PN}
kel
| Al xp — L|| <e
1 n
D S R( Yy
kel

I Ay — Ll > €

1

" > f ()
’ kel

I Ay = L > €

Y
|

v

1
ke L [[Apze = Ll 2 €} .f ().

So, we obtain z € [s¥, A% ]. O

Proposition 3.4. Let f be bounded and ag, = 1, for all s,k € N and 0 < h =
infg pr, < px < sup,pr = H < 00. Then

(Vi A AL F], D [y, A
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Proof. Suppose that f is bounded. Let € > 0 be given. Since f is bounded, there
exists an integer T" such that f (z) < T for all > 0. Then

S fUsne- L= Y (A LI)
kel; kel
| A~ L] 2 ¢
D M A ([N )
kel

| Az, — L|| < e

S%ZTwL%Zf(ﬁ)

Zke.[i Zk’efi
T
= L\ke 1| Ay~ Ll 2 <} + £ (2).

Hence z € [V/\E, A, AT f]l . ([

Theorem 3.5. Letasp = 1, for all s,k € N and 0 < h = infy p, < pr, < supy pr =
H < oco. Then

[V)\E,A, A"m,f}l = [sf,Afn] < f is bounded.

Proof. Let f be bounded, by Proposition 3.3 and Proposition 3.4, we have

[VAE,A,A"m,fL = [s¥,An].

Conversely, suppose that f is unbounded. Then there exists a sequence z =
(z1) of positive numbers with f (z;) = k? for k = 1,2, .... If we choose Al xj =z
for j =k% j=1,2,... and Al xj = 0, otherwise, then we have

1 i
Tk el AL~ L2 e} < 5 Lforalli € N
and so ¢ € [SE,A%] but =z ¢ [V)\C,A,A’,‘n,f]l for E = C. This contradicts

VE A, Ag,f]l = [s,An]. O
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