ON SOME GENERALIZED NEW TYPE DIFFERENCE SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION

AYHAN ESI

ABSTRACT. The idea of difference sequence spaces were defined by Kizmaz [6] and generalized by Et and Colak [3]. Later Tripathy et al. [16] introduced the notion of the new difference operator $\Delta_m^n x_k$ for fixed $n, m \in \mathbb{N}$. In this paper we introduce some new type difference sequence spaces defined by a modulus function and the new concept of statistical convergence. We give various properties and inclusion relations on these new type difference sequence spaces.

1. INTRODUCTION

The difference sequence spaces $X(\Delta)$ was introduced by Kizmaz [6] as follows:

$$
X(\Delta) = \{x = (x_k) : (\Delta x_k) \in X\} \text{ for } X = l_{\infty}, c \text{ and } c_0,
$$

where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$. Later, the difference sequence spaces were generalized by Et and Çolak [3] as follows: Let $n \in \mathbb{N}$ be fixed, then

$$
X(\Delta^n) = \{x = (x_k) : \ (\Delta^n x_k) \in X\} \text{ for } X = l_\infty, c \text{ and } c_0,
$$

where $\Delta^n x_k = \Delta^{n-1} x_k - \Delta^{n-1} x_{k+1}$ and so $\Delta^n x_k = \sum_{v=0}^n (-1)^v \binom{n}{v}$ $v^{\binom{n}{v}}x_{k+v}$. Quite recently, this operator was generalized by Tripathy et al. as follows: Let $n, m \in \mathbb{N}$ be fixed, then

$$
X(\Delta_m^n) = \{x = (x_k) : (\Delta_m^n x_k) \in X\}
$$
 for $X = l_\infty, c$ and c_0 ,

where $\Delta_m^n x_k = \Delta_m^{n-1} x_k - \Delta_m^{n-1} x_{k+1}$ and $\Delta_m^0 x_k = x_k$ for all $k \in \mathbb{N}$. This generalized notion has the following binomial representation:

$$
\Delta_m^n x_k = \sum_{v=0}^n (-1)^v \binom{n}{v} x_{k+mv}.
$$

The notion of modulus function was introduced by Nakano [13] and Ruckle [15]. We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that

- (i) $f(x) = 0$ if and only if $x = 0$,
- (ii) $f(x + y) \leq f(x) + f(y)$,

Key words and phrases. Modulus function, de la Vallee-Poussin means, paranorm.

This paper is in final form and no version of it will be submitted for publication elsewhere.

Received August 26, 2008; in revised form July 6, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 40D05, 40A05.

(iii) f is increasing, and

 (iv) f is continuous from the right at 0.

It is immediate from (ii) and (iv) that f is continuous on $[0, \infty)$. Also, from condition (ii), we have $f(nx) \leq nf(x)$ for all $n \in \mathbb{N}$, and so $f(x) \leq f(nx \frac{1}{n}) \leq$ $nf\left(\frac{x}{n}\right)$ $\frac{x}{n}$. Hence $\frac{1}{n}f(x) \leq f\left(\frac{x}{n}\right)$ $\frac{x}{n}$ for all $n \in \mathbb{N}$. A modulus function may be bounded (for example, $f(x) = \frac{x}{1+x}$) or unbounded (for example, $f(x) = x$). Ruckle [15], Maddox [11], Esi [2] and several authors used a modulus f to construct some sequence spaces.

Spaces of strongly summable sequences were discussed by Kuttner [7], Maddox [9] and others. The class of sequences which are strongly Cesaro summable with recpect to a modulus was introduced by Maddox [11] as an extension of the definition of strongly Cesaro summable sequences. Connor [1] further extended this definition to a definition of strongly $A - summability$ with recpect to a modulus when A is non-negative regular matrix.

Let $\Lambda = (\lambda_i)$ be a non-decreasing sequence of positive real numbers tending to infinity and $\lambda_1 = 1$ and $\lambda_{i+1} \leq \lambda_i + 1$.

The generalized de la Vallee-Poussin means is defined by

$$
t_i(x) = \frac{1}{\lambda_i} \sum_{k \in I_i} x_k,
$$

where $I_i = [i - \lambda_i + 1, i]$. A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number L if $t_i(x) \to L$ as $i \to \infty$ (see [8]). We write

$$
[V, \lambda]_0 = \left\{ x = (x_k) : \lim_{i} \frac{1}{\lambda_i} \sum_{k \in I_i} |x_k| = 0 \right\},
$$

$$
[V, \lambda] = \left\{ x = (x_k) : \lim_{i} \frac{1}{\lambda_i} \sum_{k \in I_i} |x_k - L| = 0, \text{ for some } L \right\},
$$

and
$$
[V, \lambda]_{\infty} = \left\{ x = (x_k) : \sup_{i} \frac{1}{\lambda_i} \sum_{k \in I_i} |x_k| < \infty \right\}.
$$

For the sets of sequences that are called λ – strongly summable to zero, λ – strongly summable and λ – strongly bounded by de la Vallee-Poussin method. In the special case, where $\lambda_i = 1$ for all $i = 1, 2, 3, ...$ the sets $[V, \lambda]_0$, $[V, \lambda]$ and $[V, \lambda]_{\infty}$ reduce to the sets w_0, w and w_{∞} introduced and studied by Maddox [9].

The following inequality will be used throughout this paper:

(1.1)
$$
|a_k + b_k|^{p_k} \leq C (|a_k|^{p_k} + |b_k|^{p_k}),
$$

where a_k and b_k are complex numbers, $C = \max(1, 2^{H-1})$, $H = \sup_k p_k < \infty$ [16].

2. Main results

Definition 2.1. Let E be a Banach space. We define $w(E)$ to be vector space of all E-valued sequences, that is

$$
w(E) = \{x = (x_k) : x_k \in E\}.
$$

Let f be a modulus function, $p = (p_k)$ be any sequence of strictly positive real numbers, $A = (a_{sk})$ be a non-negative matrix such that $\sup_s \sum_{k=1}^{\infty} a_{sk} < \infty$ and $n, m \in \mathbb{N}$ be fixed. (This assumption is made throughout the rest of this paper). We define the following sets:

$$
\begin{aligned}\n\left[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p\right]_{0} &= \left\{x = (x_{k}) \in w\left(E\right) : \lim_{i} \frac{1}{\lambda_{i}} \sum_{k \in I_{i}} a_{sk} \left[f\left(\left\|\Delta_{m}^{n} x_{k}\right\|\right)\right]^{p_{k}} = 0\right\}, \\
\left[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p\right]_{1} &= \left\{x = (x_{k}) \in w\left(E\right) : \lim_{i} \frac{1}{\lambda_{i}} \sum_{k \in I_{i}} a_{sk} \left[f\left(\left\|\Delta_{m}^{n} x_{k} - L\right\|\right)\right]^{p_{k}} = 0, \\
&\text{for some } L\right\}, \text{and}\n\end{aligned}
$$

$$
\left[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p\right]_{\infty} = \left\{ x = (x_{k}) \in w\left(E\right) : \sup_{i} \frac{1}{\lambda_{i}} \sum_{k \in I_{i}} a_{sk} \left[f\left(\left\|\Delta_{m}^{n} x_{k}\right\|\right)\right]^{p_{k}} < \infty \right\}.
$$

If $x \in \left[V_{\lambda}^E, A, \Delta_m^n, f, p \right]_1$ then we write $x \to L\left(\left[V_{\lambda}^E, A, \Delta_m^n, f, p \right]_1 \right)$ and L will be called $\lambda_E^{n,m}$ –new type difference limit of $x = (x_k)$ with recpect to the modulus function f .

If $a_{sk} = 1$ for all $s, k \in \mathbb{N}$ and $m = 0$, then $\left[V_k^E, A, \Delta_m^n, f, p\right]_0, \left[V_k^E, A, \Delta_m^n, f, p\right]_1$ and $[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{\infty}$ reduce to $[V_{\lambda}, N_{p}]_{0} (\Delta^{n}, E), [V_{\lambda}, N_{p}]_{1} (\Delta^{n}, E)$ and $[V_{\lambda}, N_{p}]_{\infty}$ (Δ^n, E) which were studied by Et et al. [11].

Throughout the paper Z will denote any one of the notation 0, 1 or ∞ .

Proposition 2.1. Let the sequence $p = (p_k)$ be bounded. Then the sequence spaces $[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{Z}$ are linear spaces over the complex field \mathbb{C} for $Z = 0, 1,$ or ∞ .

Proof. We consider only $[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{0}$. The others can be treated similarly. Let $x, y \in [V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{0}$ and $\gamma, \mu \in \mathbb{C}$. Then there exist positive numbers M_{γ} and N_{μ} such that $|\gamma| \leq M_{\gamma}$ and $|\mu| \leq N_{\mu}$. Since f is subadditive and the operation Δ_m^n is linear

$$
\frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (||\Delta_m^n (\gamma x_k + \mu y_k)||)]^{p_k}
$$

$$
\leq \frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (|\gamma| ||\Delta_m^n x_k||) + f (|\mu| ||\Delta_m^n y_k||)]^{p_k}
$$

246 AYHAN ESI

$$
\leq C (M_{\gamma})^H \frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (||\Delta_m^n x_k||)]^{p_k}
$$

+ $C (N_{\mu})^H \frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (||\Delta_m^n y_k||)]^{p_k} \to 0 \text{ as } n \to \infty.$

This proves that $[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{0}$ is a linear space.

Proposition 2.2. Let f be a modulus, then

$$
\left[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p\right]_{0} \subset \left[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p\right]_{1} \subset \left[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p\right]_{\infty}.
$$

Proof. The first inclusion is obvious. We establish the second inclusion. Let $x \in \left[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p \right]_{1}$. By definition of modulus f, we have

$$
\frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (||\Delta_m^n x_k||)]^{p_k}
$$

$$
\leq \frac{C}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (||\Delta_m^n x_k - L||)]^{p_k} + \frac{C}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (||L||)]^{p_k}
$$

There exists a positive integer M_L such that $||L|| \leq M_L$. Hence we have

$$
\frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (||\Delta_m^n x_k||)]^{p_k} \n\leq \frac{C}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (||\Delta_m^n x_k - L||)]^{p_k} + \frac{C (M_L f (1))^H}{\lambda_i} \sum_{k \in I_i} a_{sk}.
$$

Since $x \in [V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{1}$, we have $x \in [V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{\infty}$ and this completes the proof. \Box

Theorem 2.3. The sequence space $[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{0}$ is a paranormed space with

$$
g_{\Delta_m^n}(x) = \sup_i \left(\frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} [f(||\Delta_m^n x_k||)]^{p_k} \right)^{\frac{1}{M}},
$$

where $M = \max(1, \sup_k p_k)$.

Proof. From Proposition 2.2, for each $x \in [V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{0}, g_{\Delta_{m}^{n}}(x)$ exists. Clearly, $g_{\Delta_m^n}(x) = g_{\Delta_m^n}(-x)$. It is trivial that $\Delta_m^n x_k = 0$ for $x = 0$. Since $f(0) =$ 0, we get $g_{\Delta_m^n}(x) = 0$ for $x = 0$ and by Minkowski's Inequality $g_{\Delta_m^n}(x + y) \leq$ $g_{\Delta_m^n}(x) + g_{\Delta_m^n}(y)$. We now show that the scalar multiplication is continuous. Let γ be any complex number. By definition of modulus f, we have

$$
g_{\Delta_m^n}(\gamma x) = \sup_i \left(\frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} [f(||\Delta_m^n \gamma x_k||)]^{p_k} \right)^{\frac{1}{M}} \leq N_{\gamma}^{\frac{H}{M}} g_{\Delta_m^n}(x),
$$

.

where N_{γ} is a positive integer such that $|\gamma| \le N_{\gamma}$. Now, $\gamma \to 0$ for any fixed $x = (x_k)$ with $g_{\Delta_m^n}(x) \neq 0$. By definition of modulus f, for $|\gamma| < 1$, we have

(2.1)
$$
\frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} [f(||\Delta_m^n \gamma x_k||)]^{p_k} < \varepsilon \text{ for } i > i_0 (\varepsilon).
$$

Also, for $1 \leq i \leq i_0$, taking γ small enough, since f is continuous, we have

(2.2)
$$
\frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (||\Delta_m^n \gamma x_k||)]^{p_k} < \varepsilon.
$$

(2.1) and (2.2) together imply that $g_{\Delta_m^n}(\gamma x) \to 0$ as $\gamma \to 0$. This completes the \Box

Proposition 2.4. If $n \geq 1$, then the inclusion

$$
\left[V_\lambda^E, A, \Delta^{n-1}_m, f, p\right]_Z \subset \left[V_\lambda^E, A, \Delta^n_m, f, p\right]_Z
$$

is strict for $Z = 0, 1$, or ∞ . In general $\left[V_{\lambda}^{E}, A, \Delta_{m}^{j}, f, p\right]_{Z} \subset \left[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p\right]_{Z}$ for $j = 1, 2, ..., n - 1$ and the inclusion is strict for $j = 1, 2, ..., n - 1$.

Proof. We give the proof for $Z = \infty$ only. The others can be proved in a similar way for $Z = 0$ and $Z = 1$. Let $x \in [V_{\lambda}^{E}, A, \Delta_{m}^{n-1}, f, p]_{Z}$. Then we have

$$
\sup_{i} \frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} \left[f\left(\left\| \Delta_m^{n-1} x_k \right\| \right) \right]^{p_k} < \infty.
$$

By definition of modulus f , we have

$$
\frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (||\Delta_m^n x_k||)]^{p_k}
$$
\n
$$
\leq \frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (||\Delta_m^{n-1} x_k||) + f (||\Delta_m^{n-1} x_{k+1}||)]^{p_k}
$$
\n
$$
\leq \frac{C}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (||\Delta_m^{n-1} x_k||)]^{p_k} + \frac{C}{\lambda_i} \sum_{k \in I_i} a_{sk} [f (||\Delta_m^{n-1} x_{k+1}||)]^{p_k} < \infty.
$$

Thus, $[V_{\lambda}^{E}, A, \Delta_{m}^{n-1}, f, p]_{Z} \subset [V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{Z}$ for $j = 1, 2, ..., n-1$. Now, proceeding in this way one will have $\left[V_{\lambda}^{E}, A, \Delta_{m}^{j}, f, p\right]_{\infty} \subset \left[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p\right]_{\infty}$
for $j = 1, 2, ..., n - 1$. Let $E = \mathbb{C}, \lambda_{i} = i$ for each $i \in \mathbb{N}$ and $a_{sk} = 1$ for each $s, k \in \mathbb{N}$. Then the sequence $x = (k^n)$ belongs to $[V_{\lambda}^{\mathbb{C}}]$ $\left[\sum_{\lambda}^{\infty} A, \Delta_m^n, f, p \right]_{\infty}$ but it does not belong to $[V_\lambda^{\mathbb{C}}]$ $\mathcal{L}_{\lambda}^{\mathbb{C}}, A, \Delta_{m}^{n-1}, f, p_{\infty}^{\mathbb{D}}$ for $f(x) = x$ and $m = 0$. Note that, $x = (k^{n})$, then $\Delta^n x_k = (-1)^n n!$ and $\Delta^{n-1} x_k = (-1)^{n+1} n! (k + (\frac{n-1}{2})^n)$ $\frac{-1}{2}$) for all $k \in \mathbb{N}$ and $m = 0.$

Proposition 2.5. Let f be a modulus function. (a) If $0 < \inf_k p_k \leq p_k \leq 1$ for all $k \in \mathbb{N}$, then $[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{1} \subset [V_{\lambda}^{E}, A, \Delta_{m}^{n}, f]_{1}$. 248 AYHAN ESI

(b) If $1 \leq p_k \leq \sup_k p_k < \infty$ for all $k \in \mathbb{N}$, then $[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f]_{1} \subset [V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{1}$. (c) Let $0 < p_k \leq q_k$ for all $k \in \mathbb{N}$ and $\left(\frac{q_k}{p_k}\right)$ $\overline{p_k}$ $\big)$ be bounded, then $[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, q]_{1} \subset [V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{1}$.

Proof. (a) Let $x \in [V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_1$. Since $0 < \inf_k p_k \leq p_k \leq 1$ for all $k \in \mathbb{N}$, we get

$$
\frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} f\left(\left\|\Delta_m^n x_k - L\right\|\right) \le \frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} \left[f\left(\left\|\Delta_m^n x_k - L\right\|\right)\right]^{p_k}
$$

and hence $x \in [V_{\lambda}^{E}, A, \Delta_{m}^{n}, f]_{1}$.

(b) Let $1 \leq p_k \leq \sup_k p_k < \infty$ for all $k \in \mathbb{N}$ and $x \in \left[V_{\lambda}^E, A, \Delta_m^n, f \right]_1$. Then for each $0 < \varepsilon < 1$, there exists a positive integer i_0 such that

$$
\frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} f\left(\left\|\Delta_m^n x_k - L\right\|\right) \le \varepsilon < 1 \text{ for all } i \ge i_0.
$$

This implies that

$$
\frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} [f(||\Delta_m^n x_k - L||)]^{p_k} \leq \frac{1}{\lambda_i} \sum_{k \in I_i} a_{sk} f(||\Delta_m^n x_k - L||).
$$

Therefore $x \in [V_{\lambda}^{E}, A, \Delta_{m}^{n}, f, p]_{1}$.

(c) Using the same technique as in Theorem 2 of Nanda [14], it is easy to prove $(c).$

3. STATISTICAL CONVERGENCE

The notion of statistical convergence was introduced by Fast [5] and studied by various authors. Recently, Mursaleen [12] introduced a new concept of statistical convergence as follows:

A sequence $x = (x_k)$ is said to be λ -statistically convergent or s_λ -statistically convergent to L if for every $\varepsilon > 0$

$$
\lim_{i} \frac{1}{\lambda_i} |\{k \in I_i : \ |x_k - L| \ge \varepsilon\}| = 0,
$$

where the vertical bars indicate the number of elements in the enclosed set. In this case we write $s_{\lambda} - \lim x = L$ or $x_k \to L(s_{\lambda})$ and $s_{\lambda} = \{ x = (x_k) : \exists L \in \mathbb{R},$ s_{λ} – $\lim x = L$.

Definition 3.1. A sequence $x = (x_k)$ is said to be $\lambda_E^{n,m}$ -statistically convergent to L if for every $\varepsilon > 0$

$$
\lim_{i} \frac{1}{\lambda_i} |\{k \in I_i : ||\Delta_m^n x_k - L|| \ge \varepsilon\}| = 0.
$$

In this case we write $[s_{\lambda}^{E}, \Delta_{m}^{n}] - \lim x = L$ or $x_{k} \to L([s_{\lambda}^{E}, \Delta_{m}^{n}])$. In the case $m = 0, [s_{\lambda}^{E}, \Delta_{m}^{n}]$ reduces to $s_{\lambda}(\Delta_{m}^{n})$ which was studied by Et et al. [4].

Theorem 3.1. Let $\lambda = (\lambda_i)$ be the same as in Section 1, then (a) If $x_k \to L\left[V_\lambda^E, \Delta_m^n\right]_1$, then $x_k \to L\left(\left[s_\lambda^E, \Delta_m^n\right]\right)$, where

$$
\left[V_{\lambda}^{E}, \Delta_{m}^{n}\right]_{1} = \left\{x = (x_{k}) \in w(E): \lim_{i} \frac{1}{\lambda_{i}} \sum_{k \in I_{i}} ||\Delta_{m}^{n} x_{k} - L|| = 0, \text{ for some } L\right\}.
$$

(b) If $x \in l_{\infty}(\Delta_m^n, E)$ and $x_k \to L([s_{\lambda}^E, \Delta_m^n])$, then $x_k \to L[V_{\lambda}^E, \Delta_m^n]_1$, where

$$
l_{\infty}(\Delta_m^n, E) = \left\{ x = (x_k) \in w(E) : \sup_k \|\Delta_m^n x_k\| < \infty \right\}.
$$

(c) $\left[s_{\lambda}^{E}, \Delta_{m}^{n}\right] \cap l_{\infty}(\Delta_{m}^{n}, E) = \left[V_{\lambda}^{E}, \Delta_{m}^{n}\right]_{1} \cap l_{\infty}(\Delta_{m}^{n}, E).$

Proof. (a) Let $\varepsilon > 0$ and $x_k \to L\left[V_\lambda^E, \Delta_m^n\right]_1$, then we have

$$
\frac{1}{\lambda_i} \sum_{k \in I_i} \left\| \Delta_m^n x_k - L \right\| \ge \varepsilon \left| \left\{ k \in I_i : \left\| \Delta_m^n x_k - L \right\| \ge \varepsilon \right\} \right|.
$$

So, $x_k \to L\left(\left[s_k^E, \Delta_m^n\right]\right)$. In fact, the set $\left[V_k^E, \Delta_m^n\right]_1$ is a proper subset of $\left[s_k^E, \Delta_m^n\right]$. To show this, let $E = \mathbb{C}$, and we define $x = (x_k)$ by $\Delta_m^n x_k = k$, for $i - \frac{\lfloor |\sqrt{i}| \rfloor + 1}{\lfloor |\sqrt{i}| \rfloor + 1}$ $k \leq i$ and $\Delta_m^n x_k = 0$, otherwise. Then $x \notin l_\infty(\Delta_m^n, E)$ and $x \notin [V_\lambda^E, \Delta_m^n]_1$ but $x_k \to L = 0 \left(\left[s_\lambda^E, \Delta_m^n \right] \right).$

(b) Suppose that $x_k \to L\left(\left[s_k^E, \Delta_m^n\right]\right)$ and $x \in l_\infty(\Delta_m^n, E)$, say $\|\Delta_m^n x_k - L\| \le$ $T(T \geq 0)$. Given $\varepsilon > 0$, we have

$$
\frac{1}{\lambda_i} \sum_{k \in I_i} \|\Delta_m^n x_k - L\| = \frac{1}{\lambda_i} \sum_{\substack{k \in I_i \\ \|\Delta_m^n x_k - L\| \ \ge \ \varepsilon}} \|\Delta_m^n x_k - L\|
$$
\n
$$
+ \frac{1}{\lambda_i} \sum_{\substack{k \in I_i \\ \|\Delta_m^n x_k - L\| < \ \varepsilon}} \|\Delta_m^n x_k - L\|
$$
\n
$$
\le \frac{T}{\lambda_i} \|\{k \in I_i : \|\Delta_m^n x_k - L\| \ge \varepsilon\}| + \varepsilon.
$$

Hence $x_k \to L \left[V_{\lambda}^E, \Delta_m^n \right]_1$.

(c) This immediately follows from (a) and (b). \square

 $\overline{}$

Proposition 3.2. If $\lim_i \frac{\lambda_i}{i} > 0$, then $[s^E, \Delta_m^n] \subset [s^E_{\lambda}, \Delta_m^n]$, where

$$
[sE, \Deltanm] = \left\{ x = (x_k) : \lim_{i} \frac{1}{i} | \{ k \le i : || \Deltanm x_k - L || \ge \varepsilon \} | = 0 \right\}.
$$

Proof. For given $\varepsilon > 0$, we get

$$
\{k \leq i : \|\Delta_m^n x_k - L\| \geq \varepsilon\} \supset \{k \in I_i : \|\Delta_m^n x_k - L\| \geq \varepsilon\}.
$$

Hence

$$
\frac{1}{i} |\{k \le i : \|\Delta_m^n x_k - L\| \ge \varepsilon\}| \ge \frac{1}{i} |\{k \in I_i : \|\Delta_m^n x_k - L\| \ge \varepsilon\}|
$$

$$
= \frac{\lambda_i}{i} \frac{1}{\lambda_i} |\{k \in I_i : \|\Delta_m^n x_k - L\| \ge \varepsilon\}|.
$$

So, we obtain $x \in [s_{\lambda}^{E}, \Delta_{m}^{n}]$

Proposition 3.3. Let f be a modulus function, $a_{sk} = 1$, for all $s, k \in \mathbb{N}$ and $0 < h = \inf_k p_k \leq p_k \leq \sup_k p_k = H < \infty$. Then

$$
\left[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f\right]_{1} \subset \left[s_{\lambda}^{E}, \Delta_{m}^{n}\right].
$$

Proof. Let $x \in [V_{\lambda}^E, A, \Delta_m^n, f]_1$ and $\varepsilon > 0$ be given.

$$
\frac{1}{\lambda_i} \sum_{k \in I_i} f(||\Delta_m^n x_k - L||) = \frac{1}{\lambda_i} \qquad \sum_{k \in I_i} f(||\Delta_m^n x_k - L||)
$$
\n
$$
||\Delta_m^n x_k - L|| \ge \varepsilon
$$
\n
$$
+ \frac{1}{\lambda_i} \qquad \sum_{k \in I_i} f(||\Delta_m^n x_k - L||)
$$
\n
$$
\ge \frac{1}{\lambda_i} \qquad \sum_{k \in I_i} f(||\Delta_m^n x_k - L||)
$$
\n
$$
\le \frac{1}{\lambda_i} \qquad \sum_{k \in I_i} f(||\Delta_m^n x_k - L||)
$$
\n
$$
\ge \frac{1}{\lambda_i} \qquad \sum_{k \in I_i} f(\varepsilon)
$$
\n
$$
\ge \frac{1}{\lambda_i} ||\Delta_m^n x_k - L|| \ge \varepsilon
$$
\n
$$
\ge \frac{1}{\lambda_i} ||\{k \in I_i : ||\Delta_m^n x_k - L|| \ge \varepsilon\}||.f(\varepsilon).
$$

So, we obtain $x \in [s_{\lambda}^{E}, \Delta_{m}^{n}]$

Proposition 3.4. Let f be bounded and $a_{sk} = 1$, for all $s, k \in \mathbb{N}$ and $0 < h =$ $\inf_k p_k \leq p_k \leq \sup_k p_k = H < \infty$. Then

.

$$
\left[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f\right]_{1} \supset \left[s_{\lambda}^{E}, \Delta_{m}^{n}\right].
$$

.

Proof. Suppose that f is bounded. Let $\varepsilon > 0$ be given. Since f is bounded, there exists an integer T such that $f(x) < T$ for all $x \ge 0$. Then

$$
\frac{1}{\lambda_i} \sum_{k \in I_i} f(||\Delta_m^n x_k - L||) = \frac{1}{\lambda_i} \sum_{\substack{k \in I_i \\ \|\Delta_m^n x_k - L\| \ge \varepsilon}} f(||\Delta_m^n x_k - L||)
$$
\n
$$
||\Delta_m^n x_k - L|| \ge \varepsilon
$$
\n
$$
+ \frac{1}{\lambda_i} \sum_{\substack{k \in I_i \\ \|\Delta_m^n x_k - L\| < \varepsilon}} f(||\Delta_m^n x_k - L||)
$$
\n
$$
\le \frac{1}{\lambda_i} \sum_{k \in I_i} T + \frac{1}{\lambda_i} \sum_{k \in I_i} f(\varepsilon)
$$
\n
$$
= \frac{T}{\lambda_i} |\{k \in I_i : \|\Delta_m^n x_k - L\| \ge \varepsilon\}| + f(\varepsilon).
$$

Hence $x \in [V_{\lambda}^{E}, A, \Delta_{m}^{n}, f]_{1}$

Theorem 3.5. Let $a_{sk} = 1$, for all $s, k \in \mathbb{N}$ and $0 < h = \inf_k p_k \leq p_k \leq \sup_k p_k =$ $H < \infty$. Then

$$
\left[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f\right]_{1} = \left[s_{\lambda}^{E}, \Delta_{m}^{n}\right] \iff f \text{ is bounded.}
$$

Proof. Let f be bounded, by Proposition 3.3 and Proposition 3.4, we have

$$
\left[V_{\lambda}^{E}, A, \Delta_{m}^{n}, f\right]_{1} = \left[s_{\lambda}^{E}, \Delta_{m}^{n}\right].
$$

Conversely, suppose that f is unbounded. Then there exists a sequence $z =$ (z_k) of positive numbers with $f(z_k) = k^2$ for $k = 1, 2, ...$ If we choose $\Delta_m^n x_j = z_k$ for $j = k^2$, $j = 1, 2, ...$ and $\Delta_m^n x_j = 0$, otherwise, then we have

$$
\frac{1}{\lambda_i} |\{k \in I_i : \ |\Delta_m^n x_k - L| \ge \varepsilon\}| \le \frac{\sqrt{\lambda_{i-1}}}{\lambda_i} \text{ for all } i \in \mathbb{N}
$$

and so $x \in [s_{\lambda}^{\mathbb{C}}]$ $\left[\nabla_{\lambda}, \Delta_{m}^{n}\right]$ but $x \notin \left[V_{\lambda}^{\mathbb{C}}\right]$ $\left[\sum_{\lambda}^{\infty} A, \Delta_m^n, f \right]_1$ for $E = \mathbb{C}$. This contradicts $[V_{\lambda}^{E}, A, \Delta_{m}^{n}, \bar{f}]_{1} = [s_{\lambda}^{E}, \Delta_{m}^{n}].$

ACKNOWLEDGEMENT

The author would like to record their gratitude to the reviewer for his/her careful reading and suggestion which improved the presentation of the paper.

REFERENCES

- [1] J. S. Connor, On strong matrix summability with recpect to a modulus and statistical convergence, Canad. Math. Bull 32 (2) (1989), 194–198.
- [2] A. Esi, Some new sequence spaces defined by a sequence of moduli, Turkish J. Math. 21 (1997), 61–68.
- [3] M. Et and R.Colak, On some generalized difference spaces, Soochow J. Math. 21 (1995), 377–386.

252 AYHAN ESI

- [4] M. Et, Y. Altin and H. Altinok, On some generalized difference sequence spaces defined by a modulus function, Filomat 17 (2003), 23–33.
- H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- [6] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169–176.
- [7] B. Kuttner, Note on strong summability, J. London Math. Soc. 21 (1946), 118–122.
- [8] L. Leindler, Über die la Vallee-Pousinche summierbarkeit allgemeiner orthoganalreihen, Acta Math. Hung. 16 (1965), 375–378.
- [9] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. 18 (2) (1967), 345–355.
- [10] I. J. Maddox, Elements of Funtional Analysis, Cambridge Univ. Press, 1970.
- [11] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100 (1986), 161–166.
- [12] M. Mursaleen, λ -statistical convergence, *Math. Slovaca* 50 (2000), 111–115.
- [13] H. Nakano, Concave modulars, J. Math. Soc. Japan 5 (1953), 29–49.
- [14] S. Nanda, Strongly almost summable and strongly almost convergent sequences, Acta Math. Hung. 49 (1-2) (1987), 71–76.
- [15] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973–978.
- [16] B. C. Tripathy, A. Esi and B. Tripathy, On a new type generalized difference Cesaro sequence spaces, Soochow J. Math. 31 (3) (2005), 333–340.

Adiyaman University, Science and Art Faculty Department of Mathematics, 02040 Adiyaman, Turkey

E-mail address: aesi23@adiyaman.edu.tr