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STABILITY AND UNIFORM BOUNDEDNESS RESULTS FOR

NON-AUTONOMOUS LIENARD-TYPE EQUATIONS

WITH A VARIABLE DEVIATING ARGUMENT

CEMIL TUNÇ

Abstract. In this paper, we establish two new results related to the stabil-
ity and uniform boundedness of the following non-autonomous Liénard type
equation with a variable deviating argument r(t):

x′′(t) + f(t, x(t), x(t− r(t)), x′(t), x′(t− r(t)))x′(t) + g1(x(t))

+g2(x(t− r(t))) = p(t, x(t), x(t− r(t)), x′(t), x′(t− r(t))),

when p(.) ≡ 0, and p(.) 6= 0, respectively. By the Lyapunov functional ap-
proach, we prove our results and give an example to illustrate the theoretical
analysis in this work. By this work, we extend and improve an important
result in the literature.

1. Introduction

In applied sciences, some pratical problems concerning mechanics, the engineer-
ing technique fields, economy, control theory, physics, biology, medicine, atomic
energy, information theory, etc. are associated with certain second order linear
or nonlinear differential equations with a deviating argument (see, for example,
the book of Kolmanovskii and Myshkis [20]). Among these equations, espe-
cially, Liénard type equations with a deviating argument have a great important
place. Because, in fact, many actual systems have the property of aftereffect,
i.e. the future states depend not only on the present, but also on the past his-
tory. Therefore, the investigation of the qualitative properties of Liénard type
equations with a deviating argument; in particular, stability and boundedness of
solutions of these type equations, are very considerable. So far, the qualitative
properties of Liénard type equations with and without a deviating argument have
been intensively studied and are still being investigated in the literature. We refer
the reader to the papers or books of Ahmad and Rama Mohana Rao [1], Barnett
[2], Burton ([3], [4]), Burton and Zhang [5], Caldeira-Saraiva [6], Cantarelli [7],

Èl‘sgol’ts [8], Èl‘sgol’ts and Norkin [9], Gao and Zhao [10], Hale [11], Hara and
Yoneyama ([12], [13]), Heidel ([14], [15]), Huang and Yu [16], Jitsuro and Yusuke
[17], Kato ([18], [19]), Krasovskii [21], Li [22], Liu and Huang ([23], [24]), Liu and
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Xu [25], Liu [26], Long and Zhang [27], Luk [28], Malyseva [30], Muresan [31],
Nápoles Valdés [32], Sugie [33], Sugie and Amano [34], Sugie et al. [35], Tunç
[36-42], C. Tunç and E. Tunç [43], Yang [44], Ye et al. [45], Yoshizawa [46], Zhang
([47], [48]), Zhang and Yan [49], Zhou and Jiang [50], Zhou an Liu [51], Zhou and
Xiang [52], Wei and Huang [53], Wiandt [54] and the references therein.

Besides, in 2008, Liu and Huang [24] discussed the uniform boundedness of
solutions to the following Lienard type equation with a deviating argument τ(t):

(1) x′′(t) + f(x(t))x′(t) + g1(x(t)) + g2(x(t− τ(t))) = e(t),

where f, g1 and g2 are continuous functions on < = (−∞,∞), τ(t) ≥ 0 is a
bounded continuous function on <, and e(t) is a bounded continuous function on
<+ = [0,∞).

Define

ϕ(x) =

x∫
0

[f(u)− 1]du

and

y =
dx

dt
+ ϕ(x).

Then, Eq. (1) can be transformed into the following system:

(2)

dx(t)

dt
= y(t)− ϕ(x(t)),

dy(t)

dt
= −y(t)−

{
g1(x(t))− ϕ(x(t))

}
− g2(x(t− τ(t))) + e(t).

Under the above acceptations, Liu and Huang [24] proved the following theorem,
and introduced an example for illustration of the topic.

Theorem A. (Liu and Huang [24, Theorem 3.1]). Assume that the following
conditions hold:

(C1) There exists a constant d > 1 such that d |u| ≤ sign(u)ϕ(u) for all u ∈ <.
(C2) There exist non-negative constants L1, L2, q1 and q2 such that

|(g1(u)− ϕ(u))| ≤ L1 |u|+ q1,

|g2(u)| ≤ L2 |u|+ q2, for all u ∈ <,
L1 + L2 < 1,

e(t) is a bounded continuous function on <+ = [0,∞).

Then the solutions of (2) are uniformly bounded.
It should be noted that by the above work Liu and Huang [24] obtained

some new sufficient conditions for all solutions of (1) and their derivatives to
be uniformly bounded, which substantially extend and improve some important
results in the literature (see [24]). The authors also showed that some results
obtained in the literature cannot be applicable to the systems of the form (2)
(see [24]). That is to say that by the mentioned work, Liu and Huang [24]
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achieved an important contribution to the topic of boundedness of solutions of
Liénard equations with a variable delay in the literature.

In this paper, we consider the non-autonomous Liénard type equation with a
variable deviating argument r(t):

(3)
x′′(t) + f(t, x(t), x(t− r(t)), x′(t), x′(t− r(t)))x′(t) + g1(x(t))

+g2(x(t− r(t))) = p(t, x(t), x(t− r(t)), x′(t), x′(t− r(t))),

where r(t) is a continuous, differentiable and bounded variable deviating argu-
ment, 0 ≤ r(t) ≤ γ, r′(t) ≤ β, 0 < β < 1, γ and β are some positive constants
and γ will be determined later; the primes in Eq. (3) denote differentiation with
respect to t ∈ <+, <+ = [0,∞); f , g1, g2 and p are continuous functions in their
respective arguments on <+×<4,<,< and <+×<4 and depend only on the argu-
ments displayed explicitly with g1(0) = g2(0) = 0. The continuity of the functions
f , g1, g2 and p is a sufficient condition for the existence of the solutions of Eq. (3).
It is also assumed as basic that the functions f , g1, g2 and p satisfy a Lipschitz
condition in x′, . . . , x′(t − r(t)). In this way, the uniqueness of the solutions of

(3) is guaranteed. Besides, it is assumed that the derivative dg2
dx ≡ g′2(x) exists

and is continuous. We examine here the stability and the uniform boundedness
of the solutions of Eq. (3), when p ≡ 0 and p 6= 0, respectively.

In addition to the above information, it is worth mentioning that, in 2003,
Liu and Huang [23] also discussed the boundedness of solutions to the following
equation with the constant delay h:

x′′ + f1(x)x′ + f2(x)(x′)2 + g(x(t− h)) = e(t).

After that, the author in [36] improved the result of Liu and Huang [23] for the
stability and boundedness of solutions to the following Liénard type equation
with a variable deviating argument r(t):

x′′(t) + f1(x(t), x(t− r(t)), x′(t), x′(t− r(t)))x′(t)

+f2(x(t), x(t− r(t)), x′(t), x′(t− r(t))) (x′(t))2 + g1(x(t))

+g2(x(t− r(t))) = p(t, x(t), x(t− r(t)), x′(t), x′(t− r(t))).

In addition, in 2009, Ye et al. [45] studied the uniform boundedness of all
solutions of the following Liénard equation with a variable deviating argument
τ(t):

x′′(t) + f1(x(t))x′(t) + f2(x(t))x′(t) + g1(x(t)) + g2(x(t− τ(t))) = e(t).

At the same line, in 2010, Long and Zhang [27] considered the following Liénard
equation with a variable deviating argument τ(t):

x′′(t) + f1(x(t))
(
x′(t)

)2
+ f2(x(t))x′(t) + g1(x(t)) + g2(x(t− τ(t))) = e(t).

The authors proved a theorem which ensures that all solutions of the above
Liénard equation satisfying given initial conditions are bounded.
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Instead of Eq. (3), we consider the following system:

x′(t) =y(t)

y′(t) =− f(t, x(t), x(t− r(t)), y(t), y(t− r(t)))y(t)− g1(x(t))− g2(x(t))

+

t∫
t−r(t)

g′2(x(s))y(s)ds+ p(t, x(t), x(t− r(t)), y(t), y(t− r(t))),(4)

which was obtained from Eq. (3). Throughout the paper x(t), y(t) are also
abbreviated as x and y, respectively.

The motivation for the present paper has been inspired basically by the paper
Liu and Huang [24]. It is worth mentioning that, to the best of our knowledge, it
is not found any research on the stability and boundedness of solutions of Eq. (3)
in the literature. It is also clear that the equation discussed in Liu and Huang [24],
Eq. (1), is a special case of our equation, Eq. (3). Liu and Huang [24] studied the
boundedness of solutions of Eq. (1). In addition to the boundedness of solutions,
we also discuss the stability of solutions for Eq. (3), and introduce an example
on the topic. By defining a new Lyapunov functional (see, also, Krasovskii [21]
and Lyapunov [29]) some sufficient conditions for the stability and boundedness
of solutions of Eq. (3) are obtained, when p ≡ 0 and p 6= 0, respectively. Thus,
in view of the above information, it is worthwhile to continue the investigation
of the stability and boundedness of solutions of Eq. (3). When we compare the
results established in the above papers, books and that to be established here,
it can be seen that our results are different from that obtained in the foregoing
sources and that in the literature.

Consider the general non-autonomous delay differential system:

(5) ẋ = F (t, xt), xt = x(t+ θ),−r ≤ θ ≤ 0, t ≥ 0,

where F : <+ × CH → <n is a continuous mapping, F (t, 0) = 0, and we suppose
that F takes closed bounded sets into bounded sets of <n. Here (C, ‖. ‖) is the
Banach space of continuous functions φ: [−r, 0] → <n with supremum norm;
r > 0, CH is the open H-ball in C; CH := {φ ∈ (C[−r, 0], <n) : ‖φ‖ < H}.
Standard existence theory, see Burton [4], shows that if φ ∈ CH and t ≥ 0, then
there is at least one continuous solution x(t, t0, φ) on [t0, t0 + α) satisfying (5)
for t > t0, xt(t, φ) = φ and α is a positive constant. If there is a closed subset
B ⊂ CH such that the solution remains in B, then α =∞. Further, the symbol
|.| will denote a convenient norm in <n with |x| = max

1≤i≤n
|xi|. Let us assume that

C(t) = {φ : [t − α, t] → <n) | φ is continuous} and φt denotes the φ in the
particular C(t), and that ‖x‖ = max

t−α≤s≤t
|φ(t)|. Evidently, Eq. (3) is a particular

case of (5).

Definition 1. (Burton [4]). A continuous positive definite function W : <n →
[0,∞) is called a wedge.
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Definition 2. (Burton [4]). A continuous strictly increasing functionW : [0,∞)→
[0,∞) with W (0) = 0, W (s) > 0 if s > 0 is a wedge. (We denote wedges by W
or Wi , where i is an integer.)

Definition 3. (Burton [4]). Let D be an open set in <n with 0 ∈ D. A function
V : [0,∞) ×D → [0,∞) is called positive definite if V (t, 0) = 0 and if there is a
wedge W1 with V (t, x) ≥ W1(|x|), and is called a decrescent function if there is
a wedge W2 with V (t, x) ≤W2(|x|).

Definition 4. (Burton [4]). Let V (t, φ) be a continuous functional defined for

t ≥ 0, φ ∈ CH . The derivative of V along solutions of (5) will be denoted by V̇
and is defined by the relation:

V̇ (t, φ) = lim sup
h→0

V (t+ h, xt+h(t0, φ))− V (t, xt(t0, φ))

h
,

where x(t0, φ) is the solution with xt0(t0, φ) = φ.

Theorem 1. (Burton [4]). Let V (t, xt) be a differentiable scalar functional defi-
ned when x : [α, t]→ <n is continuous and bounded by some D ≤ ∞. If

V (t, 0) = 0,W1(|x|) ≤ V (t, xt), (where W1(r) is a wedge),

and .
V (t, xt) ≤ 0,

then the null solution of system (5) is stable.

Theorem 2. (Yoshizawa [46]). Suppose that there exists a continuous Lyapunov
functional V (t, φ) defined for all 0 ≤ t <∞, φ ∈ CH , which satisfies the following
conditions:

(i) a (‖φ‖) ≤ V (t, φ) ≤ b (‖φ‖), where a(r) ∈ CI, positive for r > H, a(r) →
∞ as r → ∞ and b(r) ∈ CI (CI denotes the family of continuous increasing
functions),

(ii)
.
V (t, φ) ≤ 0.

Then the solutions of system (5) are uniformly bounded.

2. Main results

For the case p(.) = 0, the first main result of this paper is the following theorem.

Theorem 3. In addition to the basic assumptions imposed on the functions f,
g1 and g2, we suppose that there exist positive constants α1 and L such that the
following conditions hold:

f (t, x, x(t− r(t)), y, y(t− r(t))) ≥ α1,

xg1(x) > 0, xg2(x) > 0, (x 6= 0),
∣∣g′2(x)

∣∣ ≤ L.
If

γ <
2α1(1− β)

L(2− β)
,

then the null solution of Eq. (3) is stable.
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Proof. Define the Lyapunov functional

V (t, xt, yt) = exp

(
− 2

t∫
0

|e(s)| ds
){ x∫

0

g1(s)ds+

x∫
0

g2(s)ds+
1

2
y2

+ 1 + λ

0∫
−r(t)

t∫
t+s

y2(θ)dθds

}
,(6)

where λ is a positive constant which will be determined later and e(t) is a con-

tinuous function on <+ = [0,∞) and

t∫
0

|e(s)| ds <∞.

Then we have

exp

(
− 2

∞∫
0

|e(s)| ds
){ x∫

0

g1(s)ds+

x∫
0

g2(s)ds+
1

2
y2 + 1

+λ

0∫
−r(t)

t∫
t+s

y2(θ)dθds

}
≤ V (t, xt, yt).

The time derivative of the Lyapunov functional V = V (t, xt, yt) along the system
(4) is

dV

dt
= −2 |e(t)| exp

(
− 2

t∫
0

|e(s)| ds
)

×
{ x∫

0

g1(s)ds+

x∫
0

g2(s)ds+
1

2
y2 + 1 + λ

0∫
−r(t)

t∫
t+s

y2(θ)dθds

}

− exp

(
− 2

t∫
0

|e(s)| ds
){

f (t, x, x(t− r(t)), y, y(t− r(t)))− λr(t)
}
y2

+ exp

(
− 2

t∫
0

|e(s)| ds
){

y

t∫
t−r(t)

g′2(x(s))y(s)ds− λ{1− r′(t)}
t∫

t−r(t)

y2(s)ds

}
.

By using the assumptions of Theorem 3 and the inequality |mn| ≤ m2

2 + n2

2 , we
obtain

−
{
f (t, x, x(t− r(t)), y, y(t− r(t)))− λr(t)

}
y2 ≤ −(α1 − λγ)y2,

y

t∫
t−r(t)

g′2(x(s))y(s)ds ≤ |y|
t∫

t−r(t)

∣∣g′2(x(s))
∣∣ |y(s)| ds ≤ |y|

t∫
t−r(t)

L |y(s)| ds
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≤ 1

2
r(t)Ly2 +

1

2
L

t∫
t−r(t)

y2(s)ds ≤ 1

2
γLy2 +

1

2
L

t∫
t−r(t)

y2(s)ds

and

−λ{1− r′(t)}
t∫

t−r(t)

y2(s)ds ≤ −λ(1− β)

t∫
t−r(t)

y2(s)ds

so that

dV

dt
≤− 2 |e(t)| exp

(
− 2

t∫
0

|e(s)| ds
)

×
{ x∫

0

g1(s)ds+

x∫
0

g2(s)ds+
1

2
y2 + 1 + λ

0∫
−r(t)

t∫
t+s

y2(θ)dθds

}

− α1 exp

(
− 2

t∫
0

|e(s)| ds
)
y2 + λγ exp

(
− 2

t∫
0

|e(s)| ds
)
y2

+ exp

(
− 2

t∫
0

|e(s)| ds
){

2−1L

t∫
t−r(t)

y2(s)ds

}

+ 2−1Lγ exp

(
− 2

t∫
0

|e(s)| ds
)
y2

− λ(1− β) exp

(
− 2

t∫
0

|e(s)| ds
) t∫
t−r(t)

y2(s)ds

≤−
{
α1 − 2−1(L+ 2λ)γ

}
exp

(
− 2

t∫
0

|e(s)| ds
)
y2

−
{
λ(1− β)− 2−1L

}
exp

(
− 2

t∫
0

|e(s)| ds
) t∫
t−r(t)

y2(s)ds.

Let λ = 1
2L(1− β)−1. Hence

dV

dt
≤ −

{
α1 − 2−1L[1 + (1− β)−1]γ

}
exp

(
− 2

t∫
0

|e(s)| ds
)
y2.

If

γ <
2α1(1− β)

L(2− β)
,
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then the last estimate is
dV

dt
=

d

dt
V (t, xt, yt) ≤ −ky2 ≤ 0

for a positive constant k.
Hence we conclude that the null solution of Eq. (3) is stable (see also Theorem
1). �

Remark 1. Theorem 3 arises a new result in the literature on the stability
of solutions of a certain non-autonomous Liénard type equation with a variable
delay. This case is a clear improvement on the topic of the paper.

For the case p(.) 6= 0, the second main result of this paper is the following
theorem.

Theorem 4. Let us assume that all the assumptions of Theorem 3 hold. In
addition, we assume that

x∫
0

g1(s)ds→ +∞ and

x∫
0

g2(s)ds→ +∞ as |x| → ∞,

and

|p (t, x, x(t− r(t)), y, y(t− r(t)))| ≤ |e(s)| ,
t∫

0

|e(s)| ds <∞.

If

γ <
2α1(1− β)

L(2− β)
,

then all solutions of Eq. (3) are uniformly bounded.

Proof. The essential implement to prove Theorem 4 is the Lyapunov functional
V (t, xt, yt), which was used in the proof of the preceding theorem. Evidently,
from (6) we have

exp

(
− 2

∞∫
0

|e(s)| ds
){ x∫

0

g1(s)ds+

x∫
0

g2(s)ds+
1

2
y2 + 1 + λ

0∫
−r(t)

t∫
t+s

y2(θ)dθds

}

≤ V (t, xt, yt) ≤
{ x∫

0

g1(s)ds+

x∫
0

g2(s)ds+
1

2
y2 + 1 + λ

0∫
−r(t)

t∫
t+s

y2(θ)dθds

}
.

The above inequality shows that the condition (i) of Theorem 2 holds.
Since p(.) 6= 0, then the time derivative of the Lyapunov functional V =

V (t, xt, yt) along the system (4) is

dV

dt
= −2 |e(t)| exp

(
− 2

t∫
0

|e(s)| ds
)
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×
{ x∫

0

g1(s)ds+

x∫
0

g2(s)ds+
1

2
y2 + 1 + λ

0∫
−r(t)

t∫
t+s

y2(θ)dθds

}

− exp

(
− 2

t∫
0

|e(s)| ds
){

f (t, x, x(t− r(t)), y, y(t− r(t)))− λr(t)
}
y2

+ exp

(
− 2

t∫
0

|e(s)| ds
)
p (t, x, x(t− r(t)), y, y(t− r(t))) y

+ exp

(
− 2

t∫
0

|e(s)| ds
){

y

t∫
t−r(t)

g′2(x(s))y(s)ds− λ{1− r′(t)}
t∫

t−r(t)

y2(s)ds

}
.

Employing the assumption of Theorem 4 and the estimate |mn| ≤ m2

2
+
n2

2
, we

have

dV

dt
≤− 2 |e(t)| exp

(
− 2

t∫
0

|e(s)| ds
)

×
{ x∫

0

g1(s)ds+

x∫
0

g2(s)ds+
1

2
y2 + 1 + λ

0∫
−r(t)

t∫
t+s

y2(θ)dθds

}

− α1 exp

(
− 2

t∫
0

|e(s)| ds
)
y2 + λγ exp

(
− 2

t∫
0

|e(s)| ds
)
y2

+ exp

(
− 2

t∫
0

|e(s)| ds
)
|e(t)| |y|

+ exp

(
− 2

t∫
0

|e(s)| ds
){

2−1L

t∫
t−r(t)

y2(s)ds

}

+ 2−1Lγ exp

(
− 2

t∫
0

|e(s)| ds
)
y2

− λ(1− β) exp

(
− 2

t∫
0

|e(s)| ds
) t∫
t−r(t)

y2(s)ds
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≤− 2 |e(t)| exp

(
− 2

t∫
0

|e(s)| ds
)

×
{ x∫

0

g1(s)ds+

x∫
0

g2(s)ds+
1

2
y2 + 1 + λ

0∫
−r(t)

t∫
t+s

y2(θ)dθds

}

− α1 exp

(
− 2

t∫
0

|e(s)| ds
)
y2 + λγ exp

(
− 2

t∫
0

|e(s)| ds
)
y2

+ exp

(
− 2

t∫
0

|e(s)| ds
)
|e(t)|+ exp

(
− 2

t∫
0

|e(s)| ds
)
|e(t)| y2

+ exp

(
− 2

t∫
0

|e(s)| ds
)
{2−1L

t∫
t−r(t)

y2(s)ds}+ 2−1Lγ exp

(
− 2

t∫
0

|e(s)| ds
)
y2

− λ(1− β) exp

(
− 2

t∫
0

|e(s)| ds
) t∫
t−r(t)

y2(s)ds

≤− α1 exp(−2

t∫
0

|e(s)| ds)y2 + λγ exp

(
− 2

t∫
0

|e(s)| ds
)
y2

+ exp

(
− 2

t∫
0

|e(s)| ds
){

2−1L

t∫
t−r(t)

y2(s)ds

}
+ 2−1Lγ exp(−2

t∫
0

|e(s)| ds)y2

− λ(1− β) exp

(
− 2

t∫
0

|e(s)| ds
) t∫
t−r(t)

y2(s)ds

≤− {α1 − 2−1(L+ 2λ)γ} exp

(
− 2

t∫
0

|e(s)| ds
)
y2

− {λ(1− β)− 2−1L} exp

(
− 2

t∫
0

|e(s)| ds
) t∫
t−r(t)

y2(s)ds.

Let λ = 2−1L(1− β)−1. Then

d

dt
V (t, xt, yt) ≤ −{α1 − 2−1(L+ 2λ)γ} exp

(
− 2

t∫
0

|e(s)| ds
)
y2.
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In view of the last estimate, if γ <
2α1(1− β)

L(2− β)
, then a straightforward calculation

leads to
dV

dt
=

d

dt
V (t, xt, yt) ≤ 0.

Hence one can conclude that all solutions of Eq. (3) are uniformly bounded (see
also Theorem 2).

Remark 2. It is evident that the assumptions of Theorem 3 are completely
different from that established by Liu and Huang [24, Theorem 3.1]. Next, the
method and procedure used in the proof of Theorems 3 are different from that
used in [24, Theorem 3.1], and the assumptions of Theorem 3 and 4 are very clear,
elegant and comprehensible, and our assumptions can also be easily applied to
the very general non-autonomous Liénard type equations (3). That is to say the
following:

(r1) Our equation, Eq. (3), includes and improves the equation discussed by
Liu and Huang [24], Eq. (1).

(r2) Evidently, the assumptions of Theorems 3 and 4 have very simple forms
and the applicability of our assumptions can be easily verified.

Example. As a special case of Eq. (3), consider the nonlinear second order
differential equation with a deviating argument r(t):

(7)
x′′ +

(
4 + 1

1+t2+x2+x2(t−r(t))+x′2+x′2(t−r(t))

)
x′ + x(x2 + 2)

+4x(t− r(t)) = 1
1+t2+x2+x2(t−r(t))+x′2+x′2(t−r(t)) ,

whose associated system is

x′ = y

y′ =−
(

4 +
1

1 + t2 + x2 + x2(t− r(t)) + y2 + y2(t− r(t))

)
y − x(x2 + 2)

− 4x+ 4

t∫
t−r(t)

y(s)ds+
1

1 + t2 + x2 + x2(t− r(t)) + y2 + y2(t− r(t))
.

Hence we see the following:

f (t, x, x(t− r(t)), y, y(t− r(t)))

= 4 +
1

1 + t2 + x2 + x2(t− r(t)) + y2 + y2(t− r(t))
≥ 4 = α1,

g1(x) = x(x2 + 2),

g1(0) = 0,

xg1(x) = x2(x2 + 2) > 0, (x 6= 0),
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x∫
0

(s3 + 2s)ds =
1

4
x4 + x2 → +∞ as |x| → ∞,

that is
x∫

0

g1(s)ds→ +∞ as |x| → ∞;

g2(x) = 4x, g2(0) = 0,

xg2(x) = 4x2 > 0, (x 6= 0),
x∫

0

4sds = 2x2 → +∞ as |x| → ∞,

that is
x∫

0

g2(s)ds→ +∞ as |x| → ∞;

g′2(x) = 4,∣∣g′2(x)
∣∣ = 4 = L,

p (t, x, x(t− r(t)), y, y(t− r(t))) =
1

1 + t2 + x2 + x2(t− r(t)) + y2 + y2(t− r(t))

≤ 1

1 + t2
= e(t),

∞∫
0

e(s)ds =

∞∫
0

1

1 + s2
ds =

π

2
<∞,

that is,
t∫

0

|e(s)| ds <∞

and

γ <
2α1(1− β)

L(2− β)
=

2(1− β)

(2− β)
, 0 < β < 1.

Thus, all the assumptions of Theorems 3 and 4 hold, when p ≡ 0 and p 6= 0 ,
respectively. The above discussion implies that all solutions of Eq. (7) are stable
and uniformly bounded, when p ≡ 0 and p 6= 0, respectively.

3. Conclusion

A non-autonomous Liénard type equation with a variable deviating argument
is considered. The stability and uniform boundedness of solutions of this equat-
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ion are discussed. In proving our results, we employ the Lyapunov functional
approach by defining a Lyapunov functional. An example is also given to illustrate
our theoretical findings.
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