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DETERMINATION OF THE INTERNAL HEAT SOURCE FOR

A HALF-BURIED ROD
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Dedicated to Professor Tran Duc Van on the occasion of his sixtieth birthday

Abstract. The paper considers a one-dimensional heat transfer in a per-
fectly lateral insulated uniform rod, which is partially exposed for measure-
ment at one end, and proposes an algorithm that uniquely recovers the heat
source proportional coefficient, the coefficient of convective heat transfer from
a countable set of temperature recordings at one end of the rod. The length
of the rod can be recovered by just one single measurement.

1. Introduction

Consider a uniform and perfectly lateral insulated rod of unknown length b ≤
∞, and an unknown heat source (sink) where the heat source is known to be
proportional to the temperature distribution. One end of the rod (say x = 0)
is in open air, so different initial temperatures can be imposed at this end, and
the rest of the rod is buried under earth, hence no measurement or observation
is allowed at that part of the rod. At the end(s) of the rod, there is a convection
process with unknown convective heat transfer constant(s). We vary the initial
temperature on the exposed part of the rod, and measure the corresponding
temperature at this end, x = 0, of the rod.

The problem is to determine the heat source (sink) proportionality coefficient,
the coefficient(s) of convective heat transfer, and the length of the rod. Without
loss of generality, we can assume that the left-end of the rod, x = 0, is in open
air, and the exposed part of the rod has length > 1, so we can change the initial
temperature on the interval (0, 1). The heat transfer model can be described by
the boundary value problem
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(1.1)















ut (x, t) = uxx(x, t) − q(x)u(x, t), 0 < x < b ≤ ∞, t ≥ 0, b > 1,
u(0, t) − hux(0, t) = 0,
u(b, t) +Hux(b, t) = 0,
u(x, 0) = f(x), f(x) = 0 for x > 1.

The constants h,H in the boundary conditions are the convective heat trans-
fer coefficients. These parameters basically control the amount of heat released
through radiation process at the end points. If the rod is infinite (b = ∞), we
do not require any boundary condition at b. The initial temperature f in (1.1)
was chosen so that no measurement was needed in the buried part of the rod. To
express the dependence of u on the initial temperature f , we sometimes use the
notation u = uf , when needed.

We are interested in the determination of the heat source proportionality co-
efficient q, the length b, the convective heat transfer coefficients h and H (when
b < ∞), from the measurements of uf (0, t), which is the temperature at the
left-end of the rod.

The inverse heat equation is usually considered under the assumption that the
full lateral Dirichlet-to-Neumann map, u(0, t) → ux (0, t) , is given. It is shown
that q is uniquely determined by the Dirichlet-to-Neumann map [7, 8, 3, 1, 2]. In
[10], the strategy is to introduce another family of source terms ψj , independent
of the temperature distribution u(x, t), and then solve the countable family of
equations

ut = uxx(x, t) − q(x)u(x, t) + ψj(x)

with Dirichlet boundary and initial conditions, i.e. u(x, 0) = u(0, t) = u(π, t) = 0.
It is then shown that if the sequence {ψj}j≥0 is complete in L2(0, π), then q can

be uniquely determined by the sequence
{

∂
∂x
u(0, t∗)

}

j
when q is small enough

and t∗ is large enough.

In [4, 6], the inverse heat equation on (0, π) is considered under the initial-to-
boundary map. It is shown in [4] that for any q ∈ L1(0, π) there exists N such that
q is uniquely determined by a finite number of measurements fi(x) → ufi(0, t), t ∈
(0, T ), i = 1, · · · , N , that are read for two different convective heat transfer co-
efficients h1 6= h2 at x = 0. Furthermore, in case some extra information is
known about q, then four measurements are sufficient to uniquely determine q
[6]. The approach that [4] and [6] follow is out of the mainstream in the sense
that it does not use the full Dirichlet-to-Neumann map u(0, t) → ux (0, t), but
bases the recovery algorithm of q solely on a finite number of initial-to-boundary
measurements {ufi(0, t)}.

The present paper will consider the inverse heat problem in the singular case
where the interval is infinite (b = ∞) as well as in the regular case, when the
interval is finite (b < ∞), but no a priori information on the length or even the
finiteness of the interval is given. We allow no change in the boundary condition,
even in the regular case, as in [4, 6]. Thus, in the present setting, there is no way
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to determine two sets of eigenvalues, and therefore one is unable to determine
the spectral function through two complete sets of eigenvalues.

Our approach rests on the asymptotics of the boundary temperature at infinity
to determine the eigenvalues and decide whether the rod is of a finite length or
infinite. Moreover, the finiteness and the length of the rod can be established by
just one measurement.

By choosing a suitable set of initial temperatures for the boundary observations,
we recover as an inverse Laplace transform, the product of an unknown entire
function of exponential type with a spectral function associated with a Sturm-
Liouville problem. The observations are made on discrete time intervals, so we are
faced with the problem of recovering the inverse Laplace transforms from discrete
data (Section 2). Changing the initial temperature in an appropriate way, we can
determine all Fourier coefficients of the entire function, and therefore, the function
itself. This would recover the spectral function, and by the Gelfand-Levitan
theorem, the coefficient q and the boundary constants h,H can be determined.

2. An inverse formula for the Laplace transform

Let f be an arbitrary function defined on the interval (0,∞). Recall that the
integral

(2.1) g(s) =

∞
∫

0

e−stf(t)dt,

if it exists, is called the Laplace transform of f .

In this section, we derive an asymptotics formula for the Laplace transform and
establish a formula for the inverse Laplace transform that we will need in the
next section.

The Abel theorem for the Laplace transform [16] says that

lim
s→∞

sg(s) = f(0+).

Suppose that f does not change sign on (0, a). Without loss of generality, we
may assume that f(t) > 0 on (0, a). Let 0 < ε < a. Then

g(s) =

ε
∫

0

e−stf(t) dt +

∞
∫

ε

e−stf(t) dt =: g1(s) + g2(s).

Apply the mean value theorem to the first integral to get

g1(s) = e−st0

ε
∫

0

f(t) dt ≥ e−sε

ε
∫

0

f(t) dt > 0, 0 < t0 < ε.

Hence

lims→∞e
εsg1(s) > 0.
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As for the second integral, one can see from its definition that eεsg2(s) is the
Laplace transform of f(t+ ε), therefore, the use of the Abel theorem yields

lim
s→∞

seεsg2(s) = f(ε+).

Consequently,
lims→∞e

εsg(s) > 0.

Hence if f does not change sign on (0, a), then

lim
s→∞

eas |g(s)| = ∞.

Using this and the fact that lims→∞ |g(s)| = 0 show that there is an s0 = s0(a) >
0 such that

1 > |g(s)| > e−as for s > s0.

Hence

−a ≤ lims→∞
ln |g(s)|

s
≤ lims→∞

ln |g(s)|
s

≤ 0.

Since a can be chosen as small as one would like it to be, it follows that

(2.2) lim
s→∞

ln |g(s)|
s

= 0,

which means that g(s) decays to 0 slower than any exponential function.

If the Laplace transform g is known in the complex plane, the original f can
be recovered by the Bromwich contour integral [16]. However, if the Laplace
transform g is given only on the positive real axis (0,∞), that is the case when
the Laplace transform (2.1) is considered as an integral equation of the first kind,
one should use an inverse formula involving only the values of g on (0,∞). A
first formula of this kind was introduced by Post [11] and Widder [15, 16]

(2.3) f(t) = lim
n→∞

(−1)n

n!

(n

t

)n+1
g(n)

(n

t

)

.

It allows reconstruction of the original f by means of the values of the derivatives
of high order of its Laplace image g at points of the real axis almost everywhere.
Recently, real-variable inverse formulas for the Laplace transform without using
derivatives of g have been considered ([13, 14]). All of these formulas require sam-
pling g at non-integer points depending on t. The following theorem states a new
real-variable inverse formula for the Laplace transform free of this dependency.

Theorem 1. Let f ∈ L∞(0,∞). If f has a jump discontinuity at t, then

lim
n→∞

n

∞
∑

j=1

(−1)j−1

(j − 1)!
enjtg (nj) = (1 − e−1)f(t+ 0) + e−1f(t− 0),

where g is as in (2.1). In particular, if f is continuous at t, then

(2.4) lim
n→∞

n

∞
∑

j=1

(−1)j−1

(j − 1)!
enjtg (nj) = f(t).

In other words, f is completely determined by {g(n)}n≥1.
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Proof. Define

fn(t) =
n

1 − e−ent

∞
∑

j=1

(−1)j−1

(j − 1)!
enjtg (nj) .

The series defining fn(t) converges absolutely for every t. Indeed,

∞
∑

j=1

1

(j − 1)!
enjt |g (nj)| ≤

∞
∑

j=1

1

(j − 1)!
enjt

∞
∫

0

e−njx|f(x)| dx

≤ ‖f‖∞
∞

∫

0

en(t−x)
∞
∑

j=1

1

(j − 1)!
en(j−1)(t−x)dx

= ‖f‖∞
∞

∫

0

en(t−x)ee
n(t−x)

dx =
1

n

(

ee
nt − 1

)

‖f‖∞ <∞.

Since
∣

∣

∣

∣

∣

∣

M
∑

j=1

(−1)j−1

(j − 1)!
enj(t−x)f(x)

∣

∣

∣

∣

∣

∣

≤ ‖f‖∞en(t−x)
∞

∑

j=0

1

j!
enjt = ‖f‖∞en(t−x)ee

nt

and ‖f‖∞e−xn is in L1(0,∞), Lebesque’s dominated convergence theorem justi-
fies the interchange of the order of integration and summation in the following
manipulation

fn(t) =
n

1 − e−ent

∞
∑

j=1

∞
∫

0

(−1)j−1

(j − 1)!
enj(t−x)f(x) dx

=
n

1 − e−ent

∞
∫

0

∞
∑

j=1

(−1)j−1

(j − 1)!
enj(t−x)f(x) dx

=
n

1 − e−ent

∞
∫

0

en(t−x)f(x)
∞
∑

j=1

(−1)j−1

(j − 1)!
en(j−1)(t−x)dx

=
n

1 − e−ent

∞
∫

0

en(t−x)e−en(t−x)
f(x)dx =

∞
∫

0

Kn(t, x)f(x)dx,

where

Kn(t, x) =
n

1 − e−ent e
n(t−x)e−en(t−x)

.

Clearly, Kn(t, x) > 0, and making the change of variables z = en(t−x), we get

(2.5)

b
∫

a

Kn(t, x)dx =
1

1 − e−ent

en(t−a)
∫

en(t−b)

e−z dz =
e−en(t−b) − e−en(t−a)

1 − e−ent .
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Assume that f has a jump discontinuity at t. Then for any ε > 0 there exists a
δ ∈ (0, t) such that |f(x)− f(t+0)| < ε for x ∈ (t, t+ δ) and |f(x)− f(t− 0)| < ε

for x ∈ (t− δ, t). Let

Jn(t) =
1 − e−1

1 − e−ent f(t+ 0) +
e−1 − e−ent

1 − e−ent f(t− 0) − fn(t).

Formula (2.5) yields

∞
∫

t

Kn(t, x)dx =
1 − e−1

1 − e−ent ,

t
∫

0

Kn(t, x)dx =
e−1 − e−ent

1 − e−ent ,

so that

Jn(t) =

t
∫

0

Kn(t, x)[f(t− 0) − f(x)] dx+

∞
∫

t

Kn(t, x)[f(t+ 0) − f(x)] dx

=





t−δ
∫

0

+

t
∫

t−δ



Kn(t, x)[f(t− 0) − f(x)] dx

+





t+δ
∫

t

+

∞
∫

t+δ



Kn(t, x)[f(t+ 0) − f(x)] dx

= (I1 + I2) + (I3 + I4).

Let us estimate Ii, i = 1, 2, 3, 4. We have

|I1| ≤
t−δ
∫

0

Kn(t, x)|f(t− 0) − f(x)| dx

≤ 2‖f‖∞
t−δ
∫

0

Kn(t, x)dx = 2‖f‖∞
e−enδ − e−ent

1 − e−ent

and

|I4| ≤
∞

∫

t+δ

Kn(t, x)|f(t+ 0) − f(x)| dx

≤ 2‖f‖∞
∞
∫

t+δ

Kn(t, x)dx = 2‖f‖∞
1 − e−e−nδ

1 − e−ent ,

where the last equality in each estimate comes from (2.5).
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As for I2 and I3, we have

|I2| ≤
t

∫

t−δ

Kn(t, x)|f(t− 0) − f(x)| dx ≤ ε

t
∫

t−δ

Kn(t, x)dx = ε
e−1 − e−enδ

1 − e−ent

and

|I3| ≤
t+δ
∫

t

Kn(t, x)|f(t+ 0) − f(x)| dx ≤ ε

t+δ
∫

t

Kn(t, x)dx = ε
e−e−nδ − e−1

1 − e−ent .

Thus, for a fixed t, I1 and I4 tend to 0 while I2 and I3 become smaller than ε as
n→ ∞, and since ε is arbitrary, it follows that

lim
n→∞

Jn(t) = 0.

Since limn→∞ e−ent
= 0, the proof of the theorem is complete. �

3. Determination of b, q, h,H

We start with the direct problem to characterize the solution u of (1.1).

First consider the case b = ∞.

Let ϕ(x, λ) be the solution of the associated initial-value problem
{

−ϕ′′(x, λ) + q(x)ϕ(x, λ) = λϕ(x, λ), 0 < x <∞,

ϕ(0, λ) = 1, ϕ′(0, λ) = h.

It is known [12] that there exists a non-decreasing function ρ(λ) such that if
f ∈ L2(R

+), then

(3.1) F (λ) =

∞
∫

0

f(x)ϕ(x, λ) dx

is well-defined and belongs to L2(R, dρ), and

(3.2) f(x) =

∞
∫

−∞

F (λ)ϕ(x, λ) dρ(λ),

with

(3.3) ‖f‖L2(R+) = ‖F‖L2(R,dρ).

The function ρ is the spectral function for the Sturm-Liouville operator

Ly = −d
2y

dx2
+ qy, y′(0) − hy(0) = 0.

We shall assume as in many cases of interest that q ∈ L1(0,∞). In this case,
the continuous part of the spectrum, σ(L), of the operator L is [0,∞) and there
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might be a point spectrum (discrete) in (−∞, 0), which is bounded below. In
fact, if

‖q‖loc = sup
x≥0

x+1
∫

x

|q(t)| dt ≤ ‖q‖1

and

E0 = −max
{

2 ‖q‖loc , e
2 ‖q‖2

loc

}

,

then inf σ(L) > E0. Thus, if {λn}n≥1 is the point spectrum of L, arranged in
increasing order, then E0 < λ1 < λ2 < . . . < 0. Thus, the spectral function ρ is
absolutely continuous and strictly increasing on (0,∞) and has the jump

ρn = ρ(λ+
n ) − ρ(λ−n )

at λn.

If the initial condition u(x, 0) = f(x) ∈ L2(0,∞) is given, then the general
solution uf = u of (1.1) can be obtained by the integral transform

(3.4) u(x, t) =

∞
∫

−∞

e−λtϕ(x, λ)F f (λ)dρ(λ),

where

(3.5) F f (λ) =

∞
∫

0

f(x)ϕ(x, λ) dx.

Thus, the observation uf (0, t) = u(0, t) has the integral representation

(3.6) uf (0, t) =

∞
∫

−∞

e−λtϕ(0, λ)F f (λ)dρ(λ) = Gf (t) +
∑

n=1

ρnF
f (λn)e−λnt,

where

Gf (t) =

∞
∫

0

e−λtF f (λ)dρ(λ) =

∞
∫

0

e−λtF f (λ)ρ′(λ)dλ

is the Laplace transform of F f (λ)ρ′(λ). The formula for Gf (t) and (3.6) make it
clear that uf (0, t) is an analytic function in the right-half plane Re t > 0.

Now assume b <∞.

Let 0 < µ1 < µ2 < · · · be the complete set of eigenvalues and ϕn(x) be the
eigenfunction associated with the eigenvalue µn for the Sturm-Liouville problem







−ϕ′′
n(x) + q(x)ϕn(x) = µnϕn(x), 0 < x < b <∞,

ϕ′
n(0) − hϕn(0) = 0,
ϕ′

n(b) +Hϕn(b) = 0,
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normalized by ϕn(0) = 1. The spectral function ρ(λ) in this case is a step
function, with the jump αn = 1

b
∫

0

ϕ2
n(x) dx

at λ = µn. Any function f ∈ L2(0, b) can

be expanded into the generalized Fourier series

f(x) =

∞
∑

n=1

cfnϕn(x),

with

cfn =
(f, ϕn)

(ϕn, ϕn)
=

b
∫

0

f(x)ϕn(x) dx

b
∫

0

ϕ2
n(x) dx

.

The solution of (1.1) can be obtained by the series

uf (x, t) =

∞
∑

n=1

cfne
−µntϕn(x).

Thus, the observation uf (0, t) = u(0, t) has the series representation

(3.7) uf (0, t) =
∞

∑

n=1

cfne
−µntϕn(0) =

∞
∑

n=1

cfne
−µnt,

which clearly reveals that uf (0, t) is an analytic function in the right-half plane
Re t > 0.

We now state our main theorem.

Theorem 2. Assume a priori q ∈ L1(0, b). Let the initial temperatures {fj}j≥1

be a sequence such that fjχ[1,∞) = 0, (j ≥ 1) and {fjχ(0,1)}j≥1 is an orthonormal

basis of L2(0, 1). Then the observations {ufj (0, k)}j≥1, k = 1, 2, . . ., determine

q, h,H, b, uniquely.

Proof. Clearly, fj ∈ L2(0,∞), (j ≥ 1). If we choose the initial temperature to be
fj, then

F fj (λ) =

1
∫

0

fj(x)ϕ(x, λ)dx

is an entire function, which is real-valued on the real line.

We shall break the remainder of the proof into 8 steps.

(i) Determining the nature of b, is it finite or infinite

Let b = ∞. Fix λ. Observe that there is a jn such that F fjn (λ) 6= 0, for
otherwise

0 = F fi(λ) =

1
∫

0

fi(x)ϕ(x, λ)dx, i = 1, 2, · · · ,
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and from the fact that {fi}i≥1 is a basis of L2(0, 1) it would follow that ϕ(x, λ) = 0
for x ∈ (0, 1). Furthermore,

ufi(0, t) = Gfi(t) +
∞
∑

n=1

ρnF
fi(λn)e−λnt.

As F fi(λ) is a nontrivial entire function, its zeros are isolated, and therefore
F fi(λ) does not change sign on some interval (0, ai). Since ρ′(λ) > 0 on (0,∞),
we have F fi(λ)ρ′(λ) 6= 0 on (0, ai). Thus, from the previous section it follows
that Gfi(t) as the Laplace transform of F fi(λ)ρ′(λ) decays to 0 slower than any
exponential function. In other words, lim

t→∞
eεt

∣

∣Gfi(t)
∣

∣ = ∞ for any ε > 0. Since

lim
t→∞

e−λnt = ∞ for all n, it follows that

lim
k→∞

ln
∣

∣ufi(0, k)
∣

∣

k
≥ 0.

If b <∞, then

ufi(0, t) =

∞
∑

n=1

cfi
n e

−µnt,

and since cfi
n 6= 0 for at least one n, it follows that

lim
t→∞

eεtufi(0, t) = 0

for any 0 < ε < µ1. Hence

limk→∞
ln

∣

∣ufi(0, k)
∣

∣

k
< 0.

Hence we arrive at

lim
k→∞

ln
∣

∣uf1(0, k)
∣

∣

k
< 0 ⇒ b <∞,

lim
k→∞

ln
∣

∣uf1(0, k)
∣

∣

k
≥ 0 ⇒ b = ∞.

Thus, from the observations one can determine whether the interval is finite or
not.

(ii) Determination of µn and c
fj
n

Let b < ∞, so the spectrum of L is discrete. There exists a j1 such that

c
fj1
1 6= 0. Then

lim
k→∞

ufj1 (0, k + 1)

ufj1 (0, k)
= lim

k→∞
c
fj1
1 e−µ1 +

∑

n=l c
fj1
n e−µne(µ1−µn)k

c
fj1
1 +

∑

n=l c
fj1
n e(µ1−µn)k

=
c
fj1
1 e−µ1

c
fj1
1

= e−µ1
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so that

µ1 = − lim
k→∞

ln

∣

∣

∣

∣

ufj1 (0, k + 1)

ufj1 (0, k)

∣

∣

∣

∣

.

Now, for any fj, c
fj
n 6= 0 for at least one n. Assume l is the smallest index such

that c
fj

l 6= 0. Then

lim
k→∞

ufj (0, k + 1)

ufj (0, k)
= lim

k→∞

c
fj

l e
−µl +

∑

n>l c
fj
n e

−µne(µl−µn)k

c
fj

l +
∑

n>l c
fj
n e(µl−µn)k

=
c
fj

l e
−µl

c
fj

l

= e−µl .

Hence

− lim
k→∞

ln

∣

∣

∣

∣

ufj(0, k + 1)

ufj(0, k)

∣

∣

∣

∣

= µl ≥ µ1.

Consequently, the first eigenvalue can be determined uniquely from the observa-
tions by the formula

µ1 = inf
j≥1

{

− lim
k→∞

ln

∣

∣

∣

∣

ufj (0, k + 1)

ufj(0, k)

∣

∣

∣

∣

}

.

Once the first eigenvalue µ1 is determined, c
fj

1 can be obtained from the formula

c
fj

1 = lim
k→∞

[

eµ1kufj(0, k)
]

, j = 1, 2, · · · .

Applying the above argument to

U
fj

2 (t) = ufj(0, t) − c
fj

1 e
−µ1t =

∑

n=2

c
fj
n e

−µnt (j = 1, 2, 3, . . .)

shows that the second eigenvalue can be determined uniquely by the formula

µ2 = inf
j≥1

{

− lim
k→∞

ln

∣

∣

∣

∣

∣

U
fj

2 (k + 1)

U
fj

2 (k)

∣

∣

∣

∣

∣

}

,

and c
fj

2 = lim
k→∞

[

eµ2kU
fj

2 (k)
]

, j = 1, 2, 3, . . .. It is now clear how one can determine

recursively {µ3, c
fj

3 }, {µ4, c
fj

4 }, . . .
(iii) Determination of b, ρ when b <∞

Let b <∞. From the previous step we have found µ1, µ2, · · · . The asymptotics
formula for µn

µn =
(nπ

b
+O(1)

)2
, n→ ∞,

yields a formula for b

b = lim
n→∞

nπ√
µn
.
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Since {fj|(0,1)}j≥1 is an orthonormal basis of L2(0, 1), we have

ϕn(x) =

∞
∑

j=1

(ϕn, fj)L2(0,1) fj(x), 0 < x < 1,

where

(ϕn, fj)L2(0,1) =

1
∫

0

ϕn(x) fj(x) dx =

b
∫

0

ϕn(x) fj(x) dx = (ϕn, fj) = (ϕn, ϕn)c
fj
n .

Therefore,

ϕn(x)

(ϕn, ϕn)
=

∞
∑

j=1

c
fj
n fj(x), 0 < x < 1.

Consequently, the eigenfunctions ϕn(x) can be determined on (0, 1). The restric-
tion ϕn(0) = 1 easily yields the jump αn = 1

(ϕn,ϕn) at λ = µn. Hence the spectral

function ρ is determined.

Once the first eigenfunction is known on (0, 1), the heat convective constant h
can be easily obtained

h = ϕ′
1(0).

(iv) Existence of the discrete spectrum for the infinite interval case

Let from Step (i) we have found that b = ∞. Since q ∈ L1(0,∞) the spectrum
of L consists of the continuous part [0,∞), and a (possibly empty) discrete part
on (−∞, 0).

We have

ufi(0, t) = Gfi(t) +
∑

n=1

ρnF
fi(λn)e−λnt,

and lim
t→∞

Gfi(t) = 0. Thus, if the discrete spectrum of L is empty, so that

ufi(0, t) = Gfi(t), then
{

lim
k→∞

∣

∣

∣ufi(0, k)
∣

∣

∣

}

i≥1

= {0}.

On the other hand, if the discrete spectrum of L is nonempty, then there is a j1
such that F fj1 (λ1) 6= 0. Since lim

t→∞
e−λ1t = ∞, it follows that lim

k→∞

∣

∣ufj1 (0, k)
∣

∣ =

∞. Hence

∞ ∈
{

lim
k→∞

∣

∣

∣
ufi(0, k)

∣

∣

∣

}

i≥1

.

Thus, in case b = ∞, one can determine from the observations whether the
discrete spectrum of L is empty or not.

(v) Determination of λn and ρnF
fj(λn)



DETERMINATION OF THE INTERNAL HEAT SOURCE FOR A HALF-BURIED ROD 529

Let b = ∞ and the discrete spectrum of L be nonempty. There exists a j1 such
that F fj1 (λ1) 6= 0. Then

lim
k→∞

ufj1 (0, k + 1)

ufj1 (0, k)

= lim
k→∞

Gfj1 (k + 1)eλ1k + ρ1F
fj1 (λ1)e

−λ1 +
∑

n=2 ρnF
fj1 (λn)e−λne(λ1−λn)k

Gfj1 (k)eλ1k + ρ1F
fj1 (λ1) +

∑

n=2 ρnF
fj1 (λn)e(λ1−λn)k

=
ρ1F

fj1 (λ1)e
−λ1

ρ1F
fj1 (λ1)

= e−λ1

so that

λ1 = − lim
k→∞

ln

∣

∣

∣

∣

ufj1 (0, k + 1)

ufj1 (0, k)

∣

∣

∣

∣

.

Now, for any fj, it is either F fj(λn) = 0 for all n, so that

ufj(0, t) = Gfj (t)

and

lim
k→∞

ufj(0, k) = 0,

or F fj(λn) 6= 0 for at least one n. Assume the latter case and λl is the smallest
eigenvalue such that F fj (λl) 6= 0. Then

lim
k→∞

ufj (0, k + 1)

ufj(0, k)

= lim
k→∞

Gfj (k + 1)eλlk + ρlF
fj(λl)e

−λl +
∑

n>l ρnF
fj (λn)e−λne(λl−λn)k

Gfj (k)eλlk + ρlF
fj (λl) +

∑

n>l ρnF
fj (λn)e(λl−λn)k

=
ρlF

fj(λl)e
−λl

ρlF
fj (λl)

= e−λl .

Hence

− lim
k→∞

ln

∣

∣

∣

∣

ufj (0, k + 1)

ufj(0, k)

∣

∣

∣

∣

= λl ≥ λ1.

But F fj (λl) 6= 0 for at least one l if and only if

lim
k→∞

∣

∣

∣ufj (0, k)
∣

∣

∣ = ∞.

Consequently, the first eigenvalue can be determined uniquely from the observa-
tions by the formula

λ1 = inf
j≥1

{

− lim
k→∞

ln

∣

∣

∣

∣

ufj (0, k + 1)

ufj (0, k)

∣

∣

∣

∣

: lim
k→∞

∣

∣

∣ufj (0, k)
∣

∣

∣ = ∞
}

.

Once the first eigenvalue λ1 is determined, ρ1F
fj (λ1) can be obtained from the

formula

ρ1F
fj (λ1) = lim

k→∞

[

eλ1kufj(0, k)
]

, j = 1, 2, · · · .
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Applying the above argument to

U
fj

2 (t) = ufj (0, t)−ρ1F
fj (λ1)e

−λ1t = Gfj (t)+

∞
∑

n=2

ρnF
fj (λn)e−λnt, (j = 1, 2, 3, . . .)

shows that if

lim
k→∞

U
fj

2 (k) = 0,

for any j, then there is no other eigenvalue of L, and the discrete spectrum of
L consists of only one eigenvalue λ1. Otherwise, a second eigenvalue exists, and
can be determined uniquely by the formula

λ2 = inf
j≥1

{

− lim
k→∞

ln

∣

∣

∣

∣

∣

U
fj

2 (k + 1)

U
fj

2 (k)

∣

∣

∣

∣

∣

: lim
k→∞

∣

∣

∣
U

fj

2 (k)
∣

∣

∣
= ∞

}

,

and ρ2F
fj(λ2) = lim

k→∞

[

eλ2kU
fj

2 (k)
]

, j = 1, 2, 3, . . . It is now clear how one can de-

termine recursively pairs {λ3, ρ3F
fj(λ3)}, {λ4, ρ4F

fj (λ4)}, . . ., if they exist. This

process yields
∞
∑

n=1
ρnF

fj (λn)e−λnt, and consequently, one would determine

Gfj (k) =

∞
∫

0

e−λkF fj (λ)ρ′(λ) dλ = ufj (0, k) −
∞
∑

n=1

ρnF
fj (λn)e−λnk.

(vi) Determination of F fj(λ)ρ′(λ) for λ > 0

Let b = ∞. Since q ∈ L1(0,∞), the solution ϕ(x, λ) satisfies
∣

∣ϕ(x, λ2)
∣

∣ ≤
Cex| Im λ| for some independent constant. This shows that ϕ(x, λ) is bounded by
C for λ > 0, and consequently,

∣

∣F fj(λ)
∣

∣ ≤ C ‖fj‖2 for λ > 0. Since ρ′(λ) ∼ 1
π
√

λ

as λ→ ∞, it follows that F fj (λ)ρ′(λ) ∈ L∞(0,∞).

As F fj(λ)ρ′(λ) (λ > 0) is the inverse Laplace transform of Gfj (t) = ufj (0, t)−
∞
∑

n=1
ρnF

fj(λn)e−λnt that is known at t = 1, 2, 3, . . ., the inversion formula for the

Laplace transform (2.4) will then recover

F fj(λ)ρ′(λ) = lim
n→∞

n

∞
∑

k=1

(−1)k−1

(k − 1)!
enkt

[

ufj (0, nk) −
∞
∑

n=1

ρnF
fj (λn)e−λnnk

]

, λ > 0.

Thus, F fj (λ)ρ′(λ) for λ > 0 is obtained uniquely from the observations ufj (0, k),
k = 1, 2, 3, . . .

(vii) Determination of ρ(λ)

The relation
1

∫

0

fj(x)ϕ(x, λ) dx = F fj(λ)
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shows that for each λ > 0, the constans F fj(λ), (j ≥ 1), are the Fourier coef-
ficients in the expansion of ϕ(x, λ) into its generalized Fourier series relative to
the basis {fj}j≥1 on (0, 1), i.e.

ϕ(x, λ) =

∞
∑

j=1

(ϕ, fj)L2(0,1)fj(x) =

∞
∑

j=1

fj(x)

1
∫

0

fj(x)ϕ(x, λ) dx =

∞
∑

j=1

F fj (λ)fj(x).

Hence

ϕ(x, λ)ρ′(λ) =
∞
∑

j=1

F fj (λ)ρ′(λ)fj(x), 0 < x < 1, λ > 0.

Consequently, once F fj (λ)ρ′(λ) has been determined for all λ > 0 and for any
j, we can recover ϕ(x, λ)ρ′(λ) on (0, 1), and because ϕ(0, λ) = 1 one can deter-
mine ρ′(λ). Of course, this along with the determination of λn, ρn, in Step (iii)

completely determines ρ(λ) = H(λ)
λ
∫

0

ρ′(t)dt+
∞
∑

n=1
ρnH(λ−λn) on the whole real

line, where H(t) is the Heaviside step function.

(viii) Determination of q and h,H

Now that ρ(λ) has been determined (in Step (v) for b <∞, and in Step (vii) for
b = ∞), we can apply the Gelfand-Levitan inverse spectral theory [9] to recover
q and h,H. To this end, we define

(3.8) T (x) =

∞
∫

−∞

cos(x
√
λ)d

(

ρ(λ) − 2

π

√

λ+

)

,

where λ+ = max(λ, 0), and

L(x, y) =
1

2
T (x+ y) +

1

2
T (x− y),

and solve the Fredholm integral equation

L(x, y) +K(x, y) +

x
∫

0

K(x, s)L(s, y)ds = 0, 0 ≤ y ≤ x,

to find K(x, y), which is also differentiable. The heat source proportionality
coefficient q is then given by q(x) = 2 d

dx
K(x, x). The boundary constant h

follows from h = K(0, 0). For b <∞, solving the initial value problem

ϕ”
1(x) − q(x)ϕ1(x) = µ1ϕ1(x),

ϕ1(0) = 1, ϕ′
1(0) = h,

will yield

H = −ϕ
′
1(b)

ϕ1(b)
.

This completes the proof of the theorem. �
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Remark 1. The observations {ufj (0, t)}j≥1, t ∈ (0, T ), determine q, h,H, b,

uniquely.

In fact, ufj (0, t) is an analytic function in Re t > 0, therefore, from ufj(0, t)
on (0, T ) by analytic continuation one can determine ufj(0, t) for any t > 0, and
Theorem 2 can be applied.

4. Algorithm

Let {fj}j≥1 be an orthonormal basis of L2(0, 1) and {ufj (0, n)}j≥1, n = 1, 2, · · · ,
be the observations.

(1) If

lim
k→∞

ln
∣

∣uf1(0, k)
∣

∣

k
< 0,

then b <∞. Go to Step 2
Otherwise, b = ∞. Go to Step 4.

(2) The first eigenvalue can be determined by the formula

µ1 = inf
j≥1

{

− lim
k→∞

ln

∣

∣

∣

∣

ufj (0, k + 1)

ufj(0, k)

∣

∣

∣

∣

}

.

And c
fj

1 can be obtained from the formula

c
fj

1 = lim
k→∞

[

eµ1kufj(0, k)
]

, j = 1, 2, · · · .

Let
U

fj

2 (t) = ufj(0, t) − c
fj

1 e
−µ1t (j = 1, 2, 3, . . .),

then the second eigenvalue can be determined by the formula

µ2 = inf
j≥1

{

− lim
k→∞

ln

∣

∣

∣

∣

∣

U
fj

2 (k + 1)

U
fj

2 (k)

∣

∣

∣

∣

∣

}

,

and c
fj

2 = lim
k→∞

[

eµ2kU
fj

2 (k)
]

, j = 1, 2, 3, . . .. Determine recursively {µ3,

c
fj

3 }, {µ4, c
fj

4 }, . . . and go to Step 3 below.
(3) The length b

b = lim
n→∞

nπ√
µn
.

The jump αn

αn = lim
x→0+

∞
∑

j=1

c
fj
n fj(x), 0 < x < 1.

The spectral function

ρ(λ) =
∞
∑

n=1

αnH(λ− µn).

Go to Step 8.
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(4) If
{

lim
k→∞

∣

∣

∣
ufi(0, k)

∣

∣

∣

}

i≥1

= {0},

then the discrete part of the spectrum of L is empty. Define Gfj (k) =
ufj (0, k) and go to Step 6.

Otherwise, the discrete part of the spectrum of L is nonempty. Go to
Step 5 below.

(5) The first eigenvalue can be determined by the formula

λ1 = inf
j≥1

{

− lim
k→∞

ln

∣

∣

∣

∣

ufj(0, k + 1)

ufj (0, k)

∣

∣

∣

∣

: lim
k→∞

∣

∣

∣ufj(0, k)
∣

∣

∣ 6= 0

}

,

and ρ1F
fj(λ1) can be obtained from the formula

ρ1F
fj (λ1) = lim

k→∞

[

eλ1kufj(0, k)
]

, j = 1, 2, · · · .

Let

U
fj

2 (t) = ufj(0, t) − ρ1F
fj (λ1)e

−λ1t (j = 1, 2, 3, . . .).

If
{

lim
k→∞

U
fj

2 (k)

}

j≥1

= {0},

then there is no other eigenvalue of L, and the discrete spectrum of L con-
sists of only one eigenvalue λ1. Otherwise, the second eigenvalue exists,
and can be determined by the formula

λ2 = inf
j≥1

{

− lim
k→∞

ln

∣

∣

∣

∣

∣

U
fj

2 (k + 1)

U
fj

2 (k)

∣

∣

∣

∣

∣

: lim
k→∞

∣

∣

∣
U

fj

2 (k)
∣

∣

∣
6= 0

}

,

and ρ2F
fj(λ2) = lim

k→∞

[

eλ2kU
fj

2 (k)
]

, j = 1, 2, 3, . . . Recursively, one can

determine the pairs {λ3, ρ3F
fj(λ3)}, {λ4, ρ4F

fj (λ4)}, . . ., if they exist.
Define

Gfj (k) = ufj (0, k) −
∑

n=1

ρnF
fj(λn)e−λnk

and go to Step 6 below.
(6)

F fj (λ)ρ′(λ) = lim
n→∞

n

∞
∑

k=1

(−1)k−1

(k − 1)!
enktGfj (nk) , λ > 0, j = 1, 2, · · ·

Go to Step 7 below.
(7)

ρ′(λ) = lim
x→0+

∞
∑

j=1

F fj (λ)ρ′(λ)fj(x), λ > 0.
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ρ(λ) = H(λ)

λ
∫

0

ρ′(t)dt+
∑

n=1

ρnH(λ− λn), −∞ < λ <∞.

Go to Step 8 below.
(8) Define

T (x) =

∞
∫

−∞

cos(x
√
λ)d

(

ρ(λ) − 2

π

√

λ+

)

,

and

L(x, y) =
1

2
T (x+ y) +

1

2
T (x− y).

Solve the Fredholm integral equation

L(x, y) +K(x, y) +

x
∫

0

K(x, s)L(s, y)ds = 0, 0 ≤ y ≤ x,

to find K(x, y).

q(x) = 2
d

dx
K(x, x), h = K(0, 0).

For b <∞ solving the initial value problem

ϕ”
1(x) − q(x)ϕ1(x) = µ1ϕ1(x),

ϕ1(0) = 1, ϕ′
1(0) = h,

to find

H = −ϕ
′
1(b)

ϕ1(b)
.

5. Determination of the length b by one measurement

Suppose that we are interested only in the question of whether the half-buried
rod is finite or infinite, and if it is finite, then what is the length of the rod? Then,
we need only one measurement {uf1(0, k)}k>0 for a suitable initial temperature
f1. In fact, from (i) Section 3, we have that

lim
k→∞

ln
∣

∣uf1(0, k)
∣

∣

k
< 0 ⇒ b <∞,

lim
k→∞

ln
∣

∣uf1(0, k)
∣

∣

k
≥ 0 ⇒ b = ∞.

In [4, 6], it was shown that for a finite rod, with the initial temperature f1(x) =

xα,−1
2 < α < 0, the Fourier coefficients cf1

n 6= 0 for all n large enough. Then,

by (ii) Section 3, one can find the eigenvalues µn for those c
f1
n . Number the

eigenvalues in an increasing order as ν1, ν2, . . .. Since only a finite number of
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eigenvalues were missing, νn = µn−K for large n and fixed K (K is actually the
number of missing eigenvalues). The length b can then be found by the formula

b = lim
n→∞

(n+K)π

µn+K
= lim

n→∞
nπ

νn
.
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