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ABSTRACT. The paper considers a one-dimensional heat transfer in a per-
fectly lateral insulated uniform rod, which is partially exposed for measure-
ment at one end, and proposes an algorithm that uniquely recovers the heat
source proportional coefficient, the coefficient of convective heat transfer from
a countable set of temperature recordings at one end of the rod. The length
of the rod can be recovered by just one single measurement.

1. INTRODUCTION

Consider a uniform and perfectly lateral insulated rod of unknown length b <
00, and an unknown heat source (sink) where the heat source is known to be
proportional to the temperature distribution. One end of the rod (say = = 0)
is in open air, so different initial temperatures can be imposed at this end, and
the rest of the rod is buried under earth, hence no measurement or observation
is allowed at that part of the rod. At the end(s) of the rod, there is a convection
process with unknown convective heat transfer constant(s). We vary the initial
temperature on the exposed part of the rod, and measure the corresponding
temperature at this end, x = 0, of the rod.

The problem is to determine the heat source (sink) proportionality coefficient,
the coefficient(s) of convective heat transfer, and the length of the rod. Without
loss of generality, we can assume that the left-end of the rod, x = 0, is in open
air, and the exposed part of the rod has length > 1, so we can change the initial
temperature on the interval (0,1). The heat transfer model can be described by
the boundary value problem
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ug (x,t) = uge(x,t) — q(x)u(z,t), 0<x<b<oo, t>0, b>1,
(1.1) u(0,t) — hu,(0,t) = 0,

' u(b,t) + Huy (b, t) = 0,
(

u(z,0) = f(z), f(z)=0 for x>1.

The constants h, H in the boundary conditions are the convective heat trans-
fer coefficients. These parameters basically control the amount of heat released
through radiation process at the end points. If the rod is infinite (b = 00), we
do not require any boundary condition at b. The initial temperature f in (1.1)
was chosen so that no measurement was needed in the buried part of the rod. To
express the dependence of u on the initial temperature f, we sometimes use the
notation u = uf, when needed.

We are interested in the determination of the heat source proportionality co-
efficient ¢, the length b, the convective heat transfer coefficients h and H (when
b < o), from the measurements of ul (0,t), which is the temperature at the
left-end of the rod.

The inverse heat equation is usually considered under the assumption that the
full lateral Dirichlet-to-Neumann map, u(0,t) — u, (0,t), is given. It is shown
that ¢ is uniquely determined by the Dirichlet-to-Neumann map [7, 8, 3, 1, 2. In
[10], the strategy is to introduce another family of source terms ;, independent
of the temperature distribution w(z,t), and then solve the countable family of
equations

U = Ugg(x,t) — q(x)u(z,t) + 1;(x)
with Dirichlet boundary and initial conditions, i.e. u(z,0) = u(0,t) = u(w,t) = 0.
It is then shown that if the sequence {1); }jzo is complete in L(0,7), then ¢ can
be uniquely determined by the sequence {%u(O,t*)}j when ¢ is small enough
and t* is large enough.

In [4, 6], the inverse heat equation on (0, 7) is considered under the initial-to-
boundary map. It is shown in [4] that for any ¢ € L1 (0, 7) there exists N such that
q is uniquely determined by a finite number of measurements f;(z) — ufi(0,t),t €
(0,7),i =1,---, N, that are read for two different convective heat transfer co-
efficients hy # hy at x = 0. Furthermore, in case some extra information is
known about ¢, then four measurements are sufficient to uniquely determine ¢
[6]. The approach that [4] and [6] follow is out of the mainstream in the sense
that it does not use the full Dirichlet-to-Neumann map u(0,¢) — wu, (0,%), but
bases the recovery algorithm of ¢ solely on a finite number of initial-to-boundary
measurements {u/i(0,)}.

The present paper will consider the inverse heat problem in the singular case
where the interval is infinite (b = 0o0) as well as in the regular case, when the
interval is finite (b < oo), but no a priori information on the length or even the
finiteness of the interval is given. We allow no change in the boundary condition,
even in the regular case, as in [4, 6]. Thus, in the present setting, there is no way
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to determine two sets of eigenvalues, and therefore one is unable to determine
the spectral function through two complete sets of eigenvalues.

Our approach rests on the asymptotics of the boundary temperature at infinity
to determine the eigenvalues and decide whether the rod is of a finite length or
infinite. Moreover, the finiteness and the length of the rod can be established by
just one measurement.

By choosing a suitable set of initial temperatures for the boundary observations,
we recover as an inverse Laplace transform, the product of an unknown entire
function of exponential type with a spectral function associated with a Sturm-
Liouville problem. The observations are made on discrete time intervals, so we are
faced with the problem of recovering the inverse Laplace transforms from discrete
data (Section 2). Changing the initial temperature in an appropriate way, we can
determine all Fourier coefficients of the entire function, and therefore, the function
itself. This would recover the spectral function, and by the Gelfand-Levitan
theorem, the coefficient ¢ and the boundary constants h, H can be determined.

2. AN INVERSE FORMULA FOR THE LAPLACE TRANSFORM

Let f be an arbitrary function defined on the interval (0,00). Recall that the
integral
(2.1) os) = [,
0
if it exists, is called the Laplace transform of f.

In this section, we derive an asymptotics formula for the Laplace transform and
establish a formula for the inverse Laplace transform that we will need in the
next section.

The Abel theorem for the Laplace transform [16] says that
lim sg(s) = f(0+).

Suppose that f does not change sign on (0,a). Without loss of generality, we
may assume that f(¢) > 0 on (0,a). Let 0 < e < a. Then

g(s) = /e_Stf(t) dt + / e SF(t) dt =: g1(s) + ga(s).
0 ¢

Apply the mean value theorem to the first integral to get

gl(s):e_StO/f(t)dtze_“/f(t)dt>0, 0<ty<e
0 0

Hence
h_ms—>ooeesgl (S) > 0.
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As for the second integral, one can see from its definition that e“gs(s) is the
Laplace transform of f(t + €), therefore, the use of the Abel theorem yields

lim se“ga(s) = f(e+).
S§—00
Consequently,
lim,_,,.e“g(s) > 0.
Hence if f does not change sign on (0,a), then
lim €% |g(s)| = oc.
S§— 00
Using this and the fact that lims_. [g(s)| = 0 show that there is an sg = sp(a) >

0 such that
1> g(s)] >e for s > so.

Hence
0 <lim, nlg(o)l T nlgs)l
s s
Since a can be chosen as small as one would like it to be, it follows that
1
(2.2) lim @ =0,

which means that g(s) decays to 0 slower than any exponential function.

If the Laplace transform ¢ is known in the complex plane, the original f can
be recovered by the Bromwich contour integral [16]. However, if the Laplace
transform g is given only on the positive real axis (0,00), that is the case when
the Laplace transform (2.1) is considered as an integral equation of the first kind,
one should use an inverse formula involving only the values of g on (0,00). A
first formula of this kind was introduced by Post [11] and Widder [15, 16]

. (=)™ N\t oy

23) o= Jim == (3) 9" (3)-
It allows reconstruction of the original f by means of the values of the derivatives
of high order of its Laplace image g at points of the real axis almost everywhere.
Recently, real-variable inverse formulas for the Laplace transform without using
derivatives of g have been considered ([13, 14]). All of these formulas require sam-
pling ¢ at non-integer points depending on ¢t. The following theorem states a new
real-variable inverse formula for the Laplace transform free of this dependency.

Theorem 1. Let f € Lo(0,00). If f has a jump discontinuity at t, then
. — (=17 , ~1 -1
Jim 7 E We Pgnj) =0 —e ") f(t+0)+e f(t-0),
=1 ’
where g is as in (2.1). In particular, if f is continuous at t, then
. (=177t .
2.4 lim n ———c"'qg (nj) = f(t).
(24) 3 G e ) = 1)

In other words, f is completely determined by {g(n)}n>1.
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Proof. Define

n N (=1
J:

The series defining f,(f) converges absolutely for every t¢. Indeed,

o0

=1 . o | |
. e"]t ni < : engt/e—n]x o\ de
D LD D oy 7))
0
< fll / ety " L G0 g,
— (j —1)!
0 j
n(t—x) en(t—z) - l ent
— HfHoo/ e do = — (e 1) £ lleo < oo.
0
Since
S j_ t {E) t x - n(t—m) ent
X5 F@)] < 1™ 3 e = | e
Jj=1 :0

and || f|lcce™™" is in L;1(0,00), Lebesque’s dominated convergence theorem justi-
fies the interchange of the order of integration and summation in the following
manipulation

falt) = " Z/ 52 f (1) da
J:10
e [ e o o
0o J=1
:Lm/ n(t-) Z D) gy
1—-e¢ / ]:1
- n n(t—x) _en(tfz) -
=1 | ¢ e flx)de = | Ky(t,z)f(x)dzx,
—e €
0 0

where
en(t—z)

Kp(t,z) = %en(t—x)e_

—ent
e e

Clearly, K,(t,x) > 0, and making the change of variables z = e"*=%) we get

b en(t—a)

1
(25) /Kn(t,lﬂ)dfﬂ = ﬁ / e_z dz = ¢

_en(t=b) _ e_en(tfa)

1—ee"
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Assume that f has a jump discontinuity at ¢t. Then for any € > 0 there exists a
0 € (0,t) such that |f(z) — f(t+0)| < e for z € (¢t,t+0) and |f(z) — f(t—0)| <€
for x € (t —6,t). Let

1 -1 ent
Talt) = S (4 0) + S (- 0) — )
Formula (2.5) yields
/Kn(tax)dx = 1_76__;7
1—e¢
t
p -1 —ent
/Kn(t,a;)da: ¢ -¢ —,
) 1—e¢
so that
In(t) = [ Kt 0)[f(t —0) — f()] da + / Kot 2)[f(t+0) — f(2)] da
t

,2)[f(t+0) = f(z)] do
t t+6
= (I + I2) + (I3 + Ly).
Let us estimate I;,7 = 1,2,3,4. We have

| < / Kot 2)|f(t - 0) — f(x)|da

n(S _ent

(&
<2||f||oo/K (8 2)d = 2 floe S
and

L) < / Kn(t.2)|f(t +0) — f(z)| da
)
—nd
1—e ¢
<2|fle [ Kaltiz)de =2l
t+0

where the last equality in each estimate comes from (2.5).



DETERMINATION OF THE INTERNAL HEAT SOURCE FOR A HALF-BURIED ROD 523

As for I and I3, we have

t t s
L] < /Kn(t,x)]f(t—o) ~ F@)|de < e / Ko (t,2)da = eell%
t—6 =6
and
t46 t+6 Cemé 4
Iy < / Kon(t,)|f(t+0) — f(z)] dz < e / e
t t

Thus, for a fixed ¢, I; and I4 tend to 0 while Iy and I3 become smaller than € as
n — 00, and since € is arbitrary, it follows that

lim J,(t) = 0.
n—oo
Since limy, o e~ " = 0, the proof of the theorem is complete. O

3. DETERMINATION OF b,q,h, H

We start with the direct problem to characterize the solution u of (1.1).
First consider the case b = oo.
Let ¢(x, \) be the solution of the associated initial-value problem

—" (2, \) + q(z)p(z, A) = Ap(z,A), 0<x < o0,
©(0,\) =1,¢'(0,\) = h.

It is known [12] that there exists a non-decreasing function p(\) such that if
f € Lay(R™), then

(3.1 FO) = [ F@)ele ) da
0
is well-defined and belongs to Ly(R,dp), and
(3.2 f@ = [ FOe(w 2 do(h,
with
(3.3) 1 2orty = 1l Lo (R dp)-

The function p is the spectral function for the Sturm-Liouville operator
d%y

Ly=———5+ay,  y(0)—hy(0) =0.
We shall assume as in many cases of interest that ¢ € L1(0,00). In this case,
the continuous part of the spectrum, o(L), of the operator L is [0,00) and there
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might be a point spectrum (discrete) in (—o0,0), which is bounded below. In
fact, if
z+1

lqllpe = sup / lq(®)] dt < Jql,
x>0
T

and
Ey = —max{QHquOCae Hquloc}’

then info(L) > Ep. Thus, if {\,}n>1 is the point spectrum of L, arranged in
increasing order, then Fy < A1 < Ao < ... < 0. Thus, the spectral function p is
absolutely continuous and strictly increasing on (0, 00) and has the jump

pn = p(AF) = p(Ay)
at \,.

If the initial condition u(z,0) = f(x) € L2(0,00) is given, then the general
solution uf = w of (1.1) can be obtained by the integral transform

(3.4 u(et) = [ Npla NF o),
where
(3.5) FI0) = [ ol ) da.
0
Thus, the observation uf(0,t) = u(0,t) has the integral representation
(36)  u(0.1) = / e M0, VFI (N dp(\) = GT(8) + D puFT (An)e ™™,
— 00 n=1
where
Gl (t) = / e MET(N)dp(\) = / e MET(N)p (V) dA
0 0

is the Laplace transform of F¥()\)p/(\). The formula for G¥(¢) and (3.6) make it
clear that u/(0,t) is an analytic function in the right-half plane Ret > 0.

Now assume b < oco.

Let 0 < pyp < po < --- be the complete set of eigenvalues and ¢, (x) be the
eigenfunction associated with the eigenvalue pu,, for the Sturm-Liouville problem

—ol(z) + q(z)pn(z) = pnpn(z), 0<z<b< o0,
©,,(0) — hep(0) =0,
@ (b) + Hepy(b) =0,
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normalized by ¢,(0) = 1. The spectral function p(\) in this case is a step

function, with the jump «,, = +2—— at A = p,,. Any function f € Ly(0,b) can

| o5 (x) da
0

be expanded into the generalized Fourier series
(o]
fx) = chenlw),
n=1
with

(fsn)
(¢ns Pn)

b
bff(fﬂ)cpn(w) dx

of = :
[ @3(@) da
0

The solution of (1.1) can be obtained by the series
o0
W(a,t) = 30 e, (a).
n=1

Thus, the observation uf(0,t) = u(0,t) has the series representation

[e.e]

(3.7) ul (0,6) =Y e o, (0) =Y e,
n=1

which clearly reveals that uf(0,t) is an analytic function in the right-half plane
Ret > 0.

We now state our main theorem.
Theorem 2. Assume a priori ¢ € L1(0,b). Let the initial temperatures {f;}j>1
be a sequence such that fjX(1,00) =0, (j > 1) and {fjx(0,1)}j>1 is an orthonormal

basis of L2(0,1). Then the observations {u'i(0,k)};j>1, k = 1,2,..., determine
q,h, H,b, uniquely.

Proof. Clearly, f; € L2(0,00), (j > 1). If we choose the initial temperature to be
fj, then

1
Fh()) = / f(@)p(e, Ndz
0

is an entire function, which is real-valued on the real line.
We shall break the remainder of the proof into 8 steps.
(i) Determining the nature of b, is it finite or infinite

Let b = oo. Fix A. Observe that there is a j, such that Ffin(\) # 0, for

otherwise
1

0
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and from the fact that { f;};>1 is a basis of L3 (0, 1) it would follow that ¢(z,\) =0
for z € (0,1). Furthermore,

uf( Gfl +Zp Ffz Ant

As FJi()\) is a nontrivial entire function, its zeros are isolated, and therefore
FJi(\) does not change sign on some interval (0,a;). Since p'(\) > 0 on (0,0c0),
we have F/i(\)p/(\) # 0 on (0,a;). Thus, from the previous section it follows
that G/i(t) as the Laplace transform of F/i(\)p/()\) decays to 0 slower than any
exponential function. In other words, tlggo eft |Gfi (t)‘ = oo for any € > 0. Since

tlim e~ Mt = oo for all n, it follows that
~In ‘ufi(O, k‘)‘
lim ——————~ > 0.
k—o0 k
If b < oo, then

[e.9]
and since c/; * # 0 for at least one n, it follows that
lim eu’i(0,t) =0
t—o0

for any 0 < € < u;. Hence

) In ‘ufi(O, k:)|
lim, , ——— <0.
Hence we arrive at
] ln|uf1(0, k:)|
lim ————2 <0 = b< oo,
k—oo k
. ln|uf1(0, k)|
khm — >0 = b=

Thus, from the observations one can determine whether the interval is finite or
not.

(ii) Determination of j,, and ol
Let b < oo, so the spectrum of L is discrete. There exists a j; such that
c{jl # 0. Then

wln (07 k+ 1) _ fﬂl —H1 Z fﬂ'l e Hn o(H1—pn)k
1m o m 7; f
k—oo  uli1 (O, k) k—o0 61]1 + Zn ]1 e(:ul Hn )k
_ C{jl e M1 _ m

fjl
¢
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so that

= — lim 1
== i I

wfin (0,k 4 1) ‘
ulin (0,k) |

Now, for any f;, cff # 0 for at least one n. Assume [ is the smallest index such
that clj # 0. Then

l' uf] (O7 k + 1) 1 C‘lfj e_ul _|_ Zn>l C'rflj e_ﬂ/ne(ul_ﬂ/n)k
m —— = 11m
koo uli (07 k‘) k—o0 lej + Zn>l szj e(ti—pn)k
— lej e_/” — e_ul
b
Hence
Ji(0,k+1)
w’li
— lim In | ——"—"2| = 1 > p1.
k—o00 ufj (07 k‘) He=

Consequently, the first eigenvalue can be determined uniquely from the observa-
tions by the formula
j>1 k—oo

f.
1 = inf{— lim In w‘}

ufi (0, k)

Once the first eigenvalue 1 is determined, c{j can be obtained from the formula

o) = lim |eFuli0, k)], =12,
k—o0
Applying the above argument to

U (8) = w5 (0,8) —cf'emmt = Y clfent (j=1,2,3,...)
n=2

shows that the second eigenvalue can be determined uniquely by the formula

Uy’ (k+1
[LQZiI;f{— lim In M },
e Gl Uy’ (k)
and cgj = klim [e”kuzfj (k:)} .7 =1,2,3,.... Itis now clear how one can determine
—00

recursively {3, cg,:j oA, cf;j J .
(iii) Determination of b, p when b < oo

Let b < oo. From the previous step we have found pq, po, - - - . The asymptotics

formula for g,

P = (n%+0(1)>2, n — 0o,

yields a formula for b
nm

b= lim
n—oo \//Tn
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Since {fj|(0,1)};>1 is an orthonormal basis of La(0, 1), we have

o)
Z(ipn7ij201 fj( )7 0<3§‘<1,
J=1

where
1 b
((PN7fj)L2(0,l) = /‘Pn( /‘Pn z)dr = (¢n, fj) = (‘Pna‘Pn)sz]
0 0
Therefore,

Zc j(x), 0<a<l.

()077/7 (pn

Consequently, the eigenfunctions gpn( ) can be determined on (0, 1). The restric-

tion ¢, (0) = 1 easily yields the jump a,, = on 1%) at A = u,. Hence the spectral
function p is determined.

Once the first eigenfunction is known on (0, 1), the heat convective constant h
can be easily obtained

h = ¢/ (0).

(iv) Existence of the discrete spectrum for the infinite interval case

Let from Step (i) we have found that b = oo. Since ¢ € L1(0, 00) the spectrum
of L consists of the continuous part [0,00), and a (possibly empty) discrete part
on (—00,0).

We have

W10, 1) = G (1) +ZP i

and tlim Gfi(t) = 0. Thus, if the discrete spectrum of L is empty, so that
— 00
uli(0,t) = G'i(t), then

{kli_)ngo ‘ufi(O, k:)‘}iZl — (o).

On the other hand, if the discrete spectrum of L is nonempty, then there is a j;
such that F7i () # 0. Since tlim e Mt = oo, it follows that klim ‘ufjl (0,k)| =
oo —00

0o. Hence
ooG{hm‘fZOk“} .
i>1

Thus, in case b = 0o, one can determine from the observations whether the
discrete spectrum of L is empty or not.

(v) Determination of A, and p, F%i(\,)
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Let b = oo and the discrete spectrum of L be nonempty. There exists a j; such
that F/i1(\;) # 0. Then

ulin (0,k 4+ 1)
m ——FF———
k—oo  uli (0, k)
Gl (k+ DeMF 4+ pr Flin(A)em™ + 37y paFFin (M) e An el mAnlk

= lim
koo GI(k)eMk + py FIn(A) + 32, 2o puF T3 (A )ea—Ank
_pF ey
p1FIin(A)
so that

A1 = — lim In
k—o00

ufin (0,k + 1) ‘
ufin (0, k)
Now, for any f;, it is either F/i(),) = 0 for all n, so that

uli(0,t) = GTi(t)

and
lim w7 (0, k) =0,

k—o0
or F1i(\,) # 0 for at least one n. Assume the latter case and )\; is the smallest
eigenvalue such that F'/i()\;) # 0. Then
f.
i J(Q,k +1)
k—o0 ufﬂ (O, k)
GIi(k+ 1)k + pFli(\)e™ + 3o pnF T (A )e A eimAnlk

S T G 4 D) £ 5y puF B (e E
CpFL (e
- pFL(y)
Hence
— lim In w :)\12)\1.
k— 00 uli(0, k)

But F/i()\;) # 0 for at least one [ if and only if
klim ‘uff(O, k:)‘ = 00.

Consequently, the first eigenvalue can be determined uniquely from the observa-
tions by the formula

A1 = inf {— lim In

uli(0,k +1)
7j>1 k—oo

uli (0, k)

Once the first eigenvalue A1 is determined, p; F’ fj(/\l) can be obtained from the
formula

: lim ‘ufj(O,k‘)‘ = oo}

k—o00

plFfj ()\1) = khm |:€)\1kufj (07 k)] ) j = 17 27 e
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Applying the above argument to

Uy’ () = w9 (0,6)—pr FI (\)e ™ = GIi(0)4+) " pn FF (A)e ™!, (7=1,2,3,...)

n=2
shows that if
lim Uy’ (k) =0,
k—o0
for any j, then there is no other eigenvalue of L, and the discrete spectrum of
L consists of only one eigenvalue A;. Otherwise, a second eigenvalue exists, and

can be determined uniquely by the formula

Uy’ (k+1)
Uy (k)

7j>1 k—oo

Ao = inf {— lim In

. lim ‘Uzj(k;)‘ - oo} ,

and po F'7i(\g) = klim [e)‘2kU2fj (k;)} ,j7=1,2,3,... It is now clear how one can de-
—00
termine recursively pairs {3, p3Ffi(A3)}, {\1, paF77(\1)}, ..., if they exist. This
o0

process yields > pnFTi ()\n)e_)‘”t, and consequently, one would determine

n=1
Gl (k) = / eNEL () (N dA = w5 (0,k) = S i (n)e
0 n=1

(vi) Determination of F/i(\)p/(A) for A > 0
Let b = co. Since ¢ € L1(0,00), the solution ¢(x,\) satisfies |p(z,\?)| <

Ce*I™ Al for some independent constant. This shows that ¢(z, \) is bounded by
C for A > 0, and consequently, |F/i(\)| < C | f;]l, for A > 0. Since p/(A) ~ -1~

™A

as A — o0, it follows that F/i(\)p'(A) € Leo(0,00).
As FTi(X)p'(\) (A > 0) is the inverse Laplace transform of G7i (t) = ufi(0,t) —
> pnFTi(An)e ! that is known at t = 1,2,3, ..., the inversion formula for the

n=1
Laplace transform (2.4) will then recover

FIi(\)p'(\) = lim nz ((kl_) il ekt [ufj (0,nk) — anFfj(/\n)e_A””k ,A> 0.
k=1 ’ n=1

Thus, F/i(A\)p'()\) for A > 0 is obtained uniquely from the observations u/i (0, k),
k=1,2,3,...
(vii) Determination of p(\)

The relation
1

/ﬁ@M@AMwZFWM

0
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shows that for each A > 0, the constans F%i()\), (j > 1), are the Fourier coef-
ficients in the expansion of ¢(x,\) into its generalized Fourier series relative to
the basis {f;};>1 on (0,1), i.e

[e.9]

o, = S (0 F) a0 /() ij / Yolw N de = 3 FB () f (@)

j=1 7j=1

Hence

'(\) = f:Ffj(A)p’(A)fj(x), 0O<zx<1l, A>0.

Consequently, once F'i(\)p/()\) has been determined for all A > 0 and for any
J, we can recover ¢(x, \)p'(A) on (0,1), and because ¢(0,\) = 1 one can deter-
mine p'(N). Of course, this along with the determination of A, p,, in Step (iii)

completely determines p(A f p(t)dt+ Z pnH (A — A,) on the whole real
line, where H (t) is the Heaviside Step functlon

(viii) Determination of ¢ and h, H

Now that p(\) has been determined (in Step (v) for b < oo, and in Step (vii) for
b = 00), we can apply the Gelfand-Levitan inverse spectral theory [9] to recover
q and h, H. To this end, we define

oo

(33) 7(0) = [ cosevia () - 2VAT).

where A} = max(A,0), and
1 1
L(z,y) = §T($ +y)+ §T(!E - Y),

and solve the Fredholm integral equation
Ley) + K@) + [ K(@s)Lis.pds =0, 0<y<a,

to find K(z,y), which is also differentiable. The heat source proportionality
coefficient ¢ is then given by ¢(x) = Q%K (z,z). The boundary constant h
follows from h = K (0,0). For b < oo, solving the initial value problem

p1(2) — 4(2)o1(2) = per (@),

p1(0) =1, #1(0) = h,
will yield

This completes the proof of the theorem. O
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Remark 1. The observations {ufj(O,t)}jzl, t € (0,7), determine q,h, H,b,
uniquely.

In fact, uf7(0,t) is an analytic function in Ret > 0, therefore, from u/i (0,t)
on (0,T) by analytic continuation one can determine u/i(0,t) for any ¢ > 0, and
Theorem 2 can be applied.

4. ALGORITHM

Let {fj};>1 be an orthonormal basis of Ly(0, 1) and {uf7(0,n)};j>1, n=1,2,--,
be the observations.
(1) It
~In ‘ufl (0, k‘)‘
lim ——=
k—o0 k
then b < co. Go to Step 2

Otherwise, b = co. Go to Step 4.
(2) The first eigenvalue can be determined by the formula

uli(0,k 4+ 1) }
uli (0, k) '
And c{j can be obtained from the formula
ol = lim [eFufi(0,k)], j=1,2

<0,

= inf ¢ — lim |
= inf{ - fim o

Let
US (1) = ui(0,8) — et (j=1,2,3,...),
then the second eigenvalue can be determined by the formula

j
ugzinf{— lim In w },
j=>1 k—oo U2J(k)
and ng = klim [e“QkUgj (k:)}, j =1,2,3,.... Determine recursively {us,

cgj}, {,u4,c£j}, ... and go to Step 3 below.
(3) The length b

b= lim
n—oo \//Tn

The jump a,,

n—hch j(x), O0<z<l

x—>+

The spectral function

= ZanH(A — ln).
n=1

Go to Step 8.
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(4)

If
{kh—>n<;lo ‘ufi © k)‘}

then the discrete part of the spectrum of L is empty. Define GYi(k) =
ufi(0,k) and go to Step 6.

Otherwise, the discrete part of the spectrum of L is nonempty. Go to
Step 5 below.
The first eigenvalue can be determined by the formula

wfi(0,k +1)
uli (0, k)

= {0},
1

>

j>1 k—o0 k—o00

A1 = inf {— lim In

: lim ‘ufj(O,k‘)‘ # 0},
and py F7i(\1) can be obtained from the formula
PP (On) = Tim [ Euli(0 k)], G =1,2,
Let
UP (#) = uli(0,8) = pp FHi(M\)e™  (j=1,2,3,...).
If
{ lim U2j(k:)} = {0},
hoo i>1
then there is no other eigenvalue of L, and the discrete spectrum of L con-

sists of only one eigenvalue A\;. Otherwise, the second eigenvalue exists,
and can be determined by the formula

Uy’ (k+1)

Ay = inf < — lim In 7
Uy’ (k)

i>1 k—o0

i |vd )] # 0}’

and paF1i(Xg) = kh_)ngo [e)‘QkU;j(k‘)], j =1,2,3,... Recursively, one can

determine the pairs {A3, p3F/i(\3)}, {\a, paFFi(\)}, ..., if they exist.
Define

G (k) = ul (0,k) = 3 pn Pl (An)e "
n=1

and go to Step 6 below.

(6)
= (1)
Ffj (A)p/()\) = nlugonz (k’ — 1)| enkthj (’I’Lk’), A > 07 J = 17 27 U
k=1 '
Go to Step 7 below.
(7)
PN = lim > FI)p (W) fi(x), A>0.

Jj=1
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A
o) = H(N) /p’(t)dt £ o HOA = A), —00 < A< 0.
0 n=1
Go to Step 8 below.
(8) Define
7(0) = [ costevia (o - 2VAL).
and

L(x,y) = %T(x +y)+ %T(:p — ).

Solve the Fredholm integral equation
€T
Lew) + K(ay) + [ K(s)Lis.pds =0, 0<y<a,
0

to find K(z,y).

q(x) = 2%K(az,x), h = K(0,0).

For b < oo solving the initial value problem
o1 (x) — q(x)p1(x) = i (@),

©1(0) =1, ¢1(0) = h,
to find

5. DETERMINATION OF THE LENGTH b BY ONE MEASUREMENT

Suppose that we are interested only in the question of whether the half-buried
rod is finite or infinite, and if it is finite, then what is the length of the rod? Then,
we need only one measurement {u/1(0, k)}x~o for a suitable initial temperature
fi. In fact, from (i) Section 3, we have that

. In [uf1(0, k)|

li <0 = b<oo

k—o0 k
. ln!ufl(O, k:)|
khm TEO = b=o0.

In [4, 6], it was shown that for a finite rod, with the initial temperature fi(x) =

e, —% < «a < 0, the Fourier coefficients cl! % 0 for all n large enough. Then,

by (ii) Section 3, one can find the eigenvalues pu,, for those ¢l'. Number the

eigenvalues in an increasing order as vq,vs,.... Since only a finite number of
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eigenvalues were missing, v, = p,—x for large n and fixed K (K is actually the
number of missing eigenvalues). The length b can then be found by the formula

(1]
(2]

(13]
(14]
(15]

(16]

. n—+ K)r Y s
b= lim u: lim —.
n—oo Nn—}—K n—oo Uy
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